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Single-atom laser generates nonlinear coherent states
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The stationary state of a single-atom (single-qubit) laser is shown to be a phase-averaged nonlinear coherent
state—an eigenstate of a specific deformed annihilation operator. The solution found for the stationary state is
unique and valid for all regimes of the single-qubit laser operation. We have found the parametrization of the
deformed annihilation operator which provides superconvergence in finding the stationary state by iteration. It is
also shown that, contrary to the case of the usual laser with constant Einstein coefficients describing transition
probabilities, for the single-atom laser the interaction-induced transition probabilities effectively depend on the
field intensity.
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I. INTRODUCTION

Recently the 50th anniversary of the invention of the laser
[1] has been celebrated, while the ideas lying behind light
amplification [2] are almost 100 years old. In the beginning
of the laser era it was realized that laser photons are emitted
in specific coherent superpositions—coherent states [3], which
form a kind of border between classical and nonclassical states
of light.

The general tendency of miniaturization of electronic and
optical devices and components is also observable in the dimin-
ishing of the laser size down to the value of the wavelength. The
use of microcavities of different types, like interferometric and
Fabry-Perot microcavities, microcolumns, whispering gallery
mode resonators (microdisks and microspheres), and two- and
one-dimensional tapered photonic crystal resonators, allows
the single-mode thresholdless regime of lasing to be reached
due to the increase of the ratio of photons spontaneously
emitted into the lasing mode to the number of photons emitted
into nonlasing modes. The extreme case of the active element
of a microlaser (or micromaser) is a single emitter—an atom
(in Rydberg [4,5] or lower electronic states [6,7]), an ion [8],
a quantum dot [9] or a superconducting qubit, playing the
role of an artificial atom in an electrical resonator in recent
demonstrations of a single-qubit laser [10].

The one-atom–one-mode microlaser is of great importance
as a limiting case of lasers. This intrinsically quantum system
with a number of properties very different from those of ordi-
nary lasers requires specific cavity quantum electrodynamics
methods for its description [11–13]. Rabi splitting [14,15],
the collapse-and-revival phenomenon [16,17], and the photon
blockade effect [18] are a few examples of quantum effects
observed in the system (see also [19]).

In contrast to conventional lasers, microlasers (and espe-
cially single-atom lasers) are known to be sources of nonclassi-
cal light [20–23]. It has already been shown that a single-atom
laser, considered within the scope of the strong-coupling
regime, can produce a special kind of nonlinear coherent state
(NCS), namely, Mittag-Leffler coherent states [24]. In this
paper we provide a general uniformly applicable description
of the single-atom laser and show that it generates NCSs for
any values of the interaction parameters. A NCS can be written
as an eigenstate of a specific deformed annihilation operator.
It should be emphasized that the solution found is unique

and follows from the master equation exactly, without any
approximations. We believe that the finding is both interesting
from the fundamental point of view (as a connection between
the classes of deformed annihilation operators and a single-
qubit laser), and useful for further analytical and numerical
investigations of stationary-state nonclassical properties, not
accounted for correctly by approximate solutions.

In the case of strong coupling our solution agrees with
the corresponding approximate solutions [24,25], predicting,
however, state nonclassicality, not described correctly by
the strong-coupling approximation, in regimes of weaker
coupling. It is worth noting that, although nonlinear properties
of (multiemitter) lasers have been investigated for quite a long
time (see, e.g., Refs. [26–28]), the nonlinearity and nonclas-
sicality of the properties considered here are characteristic of
the inherently quantum nature of a single-emitter laser.

The intrinsic quantum character of the light-matter inter-
action in single-atom lasers reveals itself in the impossibility
of describing the lasing effect be means of field-independent
spontaneous and induced transition probabilities, as in the
case of a conventional laser. The effect has been mentioned
for the strong-coupling regime in Ref. [24]. Here we show
that this property is general and is preserved also beyond
the strong-coupling regime. We present both numerical and
uniformly applicable analytical expressions for the transition
probabilities which are intensity dependent and provide an
explanation of the observed “saturation” effect. The observed
features of a single-atom laser are a manifestation of its quan-
tumness, revealing itself in an extremely strong correlation
of atom and field states (compared to conventional lasers)
and leading to invalidity of mean-field and other semiclassical
approaches.

The paper is organized as follows. First, we introduce the
model of an incoherently pumped single-atom laser and derive
the equations describing its stationary state. Then an analytical
solution of the equations in the form of generalized coherent
states is provided. The solution is obtained by introducing the
state-dependent operator d(n), which describes the difference
between the exact solution and the solution obtained under the
strong-coupling approximation. It is shown that the iteration
scheme for finding d(n) is unconditionally stable. Moreover,
the scheme does not depend on the boundary values of
d(n). We demonstrate the use of the iteration method both
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for numerical calculations and for constructing uniformly
applicable analytical approximations. Then, specific properties
of the stationary-state nonclassicality are discussed on the basis
of phase space quasidistributions. In the last section we discuss
the interpretation of the system evolution equations in terms
of spontaneous and induced transition probabilities. We show
that for a single-atom–single-mode system the intracavity
spontaneous emission probabilities strongly depend on the
number of photons in the mode (in contrast to usual case,
when the normalized probabilities are constant), which is a
manifestation of the inherently quantum features of single
objects.

II. EQUATIONS

A single-atom laser is considered within the framework of a
model system consisting of a two-level atom with the ground
state |1〉 and excited state |2〉, interacting with a resonance
field mode with coupling constant g. The atom is pumped
incoherently with mean rate R12. In addition, decay of the
resonance field mode and decay and dephasing of the atom
with rates κ , R21, and �, respectively, are taken into account.

The master equation for the density matrix, reduced over
the states of the environment, in the interaction representation
has the form

ρ̇ = − i

h̄
[H,ρ] + 2κLaρ + R12Lσ+ρ + R21Lσ−ρ + �Lσz

ρ,

(1)
where the operators σ+, σ−, σz, and a†, a describe the dynamics
of the atom and field, respectively, and the relaxation is
described by Lindblad operators: 2LXρ = 2XρX† − X†Xρ −
ρX†X. The atom-field interaction is described by the Jaynes-
Cummings Hamiltonian: H = h̄g(a†σ− + aσ+).

In the paper we investigate the properties of the stationary
state of the system. The following four normalized parameters
are used below for simplifying the equations: a2

0 = R12/(4κ),
ν0 = (R21 − 2κ)/(4κ), μ0 = a2

0 + ν0 + �/κ , and η = g2/κ2,
describing the pump, the atomic loss excess over the field loss,
the dephasing, and the atom-field coupling, respectively.

Introducing the jump (J ) and photon number (N ) superop-
erators

Jρ
.= aρa†, Nρ

.= a†aρ,

and decomposing the density matrix in terms of atom states as

ρ = ρ11 ⊗ |1 〉〈 1| + ρ22 ⊗ |2 〉〈 2|
+ a(v + iu) ⊗ |2 〉〈 1| + H.c.,

one can find the following properties of the stationary state.
(a) The stationary state is unique. This statement follows

directly from the form of the master equation (1) and can
be proved by considering the evolution of the trace distance,
defined as D(ρ,σ ) = 1

2 (|ρ − σ |), where |A| =
√

A†A (see,
e.g., Ref. [29]). It is known that the stationary state is unique
when the condition Ḋ(ρ(t),σ (t)) < 0 holds for any nonequal
solutions ρ(t) and σ (t) of the master equation.

Equation (1) consists of two parts: the Hamiltonian one and
the sum of Lindblad-form superoperators. The Hamiltonian
part does not influence the distance between quantum states
and, therefore, preserves the uniqueness property of the

stationary state. The Lindblad part of the master equation does
not include atom-field interaction and describes independent
interactions of the atom and the field with thermal baths. The
evolution, caused by these interactions only, has the unique
stationary state

ρ0 = |0 〉〈 0| ⊗ (R21 |1 〉〈 1| + R12 |2 〉〈 2|) / (R12 + R21)

and corresponds to a strictly negative time derivative of the
trace norm:

Ḋ(ρ(t),σ (t)) < 0 for ρ(t) �= σ (t).

Finally, the above condition is satisfied for the evolution
described by Eq. (1), and the stationary state of a single-atom
laser is unique.

(b) Operators ρ11, ρ22, u, and v, acting on the field mode, are
diagonal in the Fock basis. Diagonality of the operators follows
from the stationary state’s uniqueness. Equation (1) is invariant
under the transformations a → ae−iφ , a† → a†eiφ , and σ± →
σ ± −e±iφ . Therefore, if the starting state is described by
the diagonal operators ρ11, ρ22, u, and v, the stationary state
will also possess the diagonality property. Together with the
uniqueness of the stationary state, it implies that the operators
ρ11, ρ22, u, and v become diagonal in the limit t → ∞ for any
starting state.

(c) The operator v vanishes in the stationary state. This
operator evolves independently of the operators ρ11, ρ22,
and u:

v̇ = 2κLav − {
κ + 1

2 (R12 + R21)
}
v.

The first term of the equation describes trace-preserving
dissipative dynamics, and the second one corresponds to
exponential decay of the operator v.

(d) The operator u is defined in a unique way by the field
density operator ρf = ρ11 + ρ22:

u = ρf /
√

η.

This property follows from the master equation and the
operator’s diagonality in the stationary state.

The operators ρ11 and ρ22 satisfy the following equations:

(2ν0 + N + 1) ρ22 = (
2a2

0 − J
)
ρ11, (2)

(N + 1)ρ22 = J

{
ρ11 + 2

η
(μ0 + N − J ) ρf

}
. (3)

If Eq. (2) has a simple interpretation as the balance of the
number of total excitations in the system [Fig. 1(a)], Eq. (3)
has a more complex interpretation and can be considered in
terms of field-induced transitions between ground and excited
states of the atom. In the limiting case of weak atom-field
correlation, the transitions correspond to ordinary spontaneous
and induced transitions.

Because of the strict positiveness of all elements ρii(n) =
〈n |ρii | n〉, following from Eq. (1), it is possible to define a
superoperator d(N ), diagonal in the Fock-state basis, by the
following equation:

d(N )ρ11 = 2

η
(μ0 + N − J ) ρf . (4)

[It should be noted that for any function f (n), defined for
n = 0,1, . . ., the action of the superoperator f (N ) on diagonal
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FIG. 1. Scheme of energy levels and transitions: wavy arrows,
mode decay; double arrows, atomic excited-state decay; single
arrows, pumping. The balance of the transitions, crossing dashed
lines, is described by Eqs. (2) and (20). (a) Transitions between states
with n and n + 1 excitations (atom + field); (b) transitions between
states with n and n + 1 photons.

density matrices is also correctly defined. The superoperator
1/(N + 1) is one example.]

Using Eq. (4), one can rewrite Eq. (3) in a simpler way,

ρ22 = 1

N + 1
J {1 + d(N )} ρ11, (5)

showing directly that the excited-state photon statistics ρ22(n)
and shifted ground-state statistics ρ11(n + 1), equalized by
frequent intracavity transitions in the strong-coupling regime,
become unequal in the general case: ρ22(n)/ρ11(n + 1) = 1 +
d(n + 1). It is the function d(n + 1) that describes the deviation
of the ratio from unity.

III. GENERATION OF NONLINEAR COHERENT STATES

Substituting Eq. (5) into Eq. (2), we arrive at the following
equation for the conditional density matrix ρ11:

AF11ρ11A
†
F11

= a2
0ρ11, (6)

where

AF =
√

F (aa†) a

is a deformed annihilation operator [30,31] with its properties
completely determined by the discrete function F (n) (the de-
formation function). For the ground-state conditional operator
ρ11 this function equals

F11(n) = 1

2
+

(
1

2
+ ν0

n

)
{1 + d(n)} (7)

and is determined by the parameter ν0 and the discrete function
d(n).

Eigenstates of deformed annihilation operators are known
to be nonlinear coherent states [30,31] and represent a partic-
ular case of generalized coherent states (see, e.g., [32]). In the
special case ν0 = 0, d(n) ≡ 0, eigenstates of the operator A

are ordinary coherent states. For ν0 �= 0, d(n) ≡ 0 (the strong-
coupling regime), the eigenstatates are Mittag-Leffler states
[24]. In the general case, the eigenstate |a0; F 〉, corresponding

to the eigenvalue a0 of the operator AF , has the following Fock
decomposition:

|a0; F 〉 = const ×
∞∑

n=0

|n〉 an
0√
n!

n∏
m=1

1√
F (m)

. (8)

It follows from Eqs. (6)–(8) that the density matrix ρ11

represents a phase-averaged NCS:

ρ11 = diag (|a0; F11 〉〈 a0; F11|). (9)

Equation (5) implies that conditional (ρ22) and uncondi-
tional (ρf ) field operators also correspond to phase-averaged
NCSs, but with different deformation functions F22(n) =
F11(n)ϕ(n)/ϕ(n + 1) and Ff (n) = F11(n)[1 + ϕ(n)]/[1 +
ϕ(n + 1)], respectively, where ϕ(n) = a2

0/[F11(n)ñ(n)] and
ñ(n) = n/[1 + d(n)].

It is worth noting that the derived representation of the
stationary state follows from the exact master equation (1)
without any additional assumptions and approximations and
is valid for all values of the system parameters. The solution
found is general and has the same form for all of the
five possible regimes of single-qubit laser operation: linear,
nonlinear quantum, lasing, self-quenching, and thermal [33]
(see also Fig. 6 below).

IV. CALCULATION ALGORITHM

Equations (4)–(9) derived above imply that determination
of the stationary-state density matrix is equivalent to finding
the discrete function d(n). According to Eqs. (4)–(6), the
deviation function d(n) satisfies the following system of
recurrence equations:

d(n) = 2

η
[(μ0 + n){1 + ϕ(n + 1)}

− ñ(n + 1)ϕ(n + 1){1 + ϕ(n + 2)}]. (10)

The value d(n) depends on d(n + 1) and d(n + 2), implicitly
present in ñ(n + 1), ϕ(n + 1), and ϕ(n + 2).

Generally, in order to calculate d(n) for n = 0, . . . ,n0, one
needs to know correct values of the deviation functions d(n0 +
1) and d(n0 + 2) near the starting point n = n0. However, the
following characteristic properties of the map (10) enable us
to calculate the values of d(n) with arbitrarily high accuracy
without any prior knowledge: (i) The map is stable—small
deviations from the correct solution decrease approximately
exponentially during the steps described by Eq. (10); (ii) the
value d(n), defined by Eq. (10), is bounded:

0 < d(n) <
2

η
(μ0 + n)

(
1 + 2a2

0

2ν0 + n + 1

)
. (11)

This means that the first iteration step brings d(n) close to the
correct solution regardless of the chosen initial values d(n0 +
1) and d(n0 + 2), provided these values are positive. Figure 2
illustrates fast convergence of the numerical solution for d(n)
for different initial conditions [the bounds shown by the gray
region are obtained iteratively on the basis of Eq. (11)].
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FIG. 2. (Color online) Function d(n): black and gray points,
results of numerical calculations on the basis of Eq. (10) with different
starting values of n and d(n), d(n + 1) (black points starting from
n = 40); dashed black line, approximate analytical expression [Eq.
(12)], valid for n � 5; gray region, values of d(n) after the first
iteration step [analytical expression, improved version of Eq. (11)].
The parameters are ν0 = 1, a2

0 = 1, μ0 = 3, and η = 5.

The above-discussed stability of the map, defined by
Eq. (10), provides also a quite simple way to decompose
d(n) analytically in terms of small parameters by successive
improvement of the approximations. For example, for n 
 1
and all values of the coupling parameter η the following
expression is valid:

d(n) = 2

η

{
n + μ0 + a2

0
2n

n + η
+ O

(
1

n

)}
. (12)

For η 
 n Eq. (12) implies that d(n) ≈ 2
η

(n + μ0), which cor-
responds to the adiabatic approximation [25]. This expression,
as well as inequality (11), provides the condition for validity
of the strong-coupling approximation: one can take d(n) ≈ 0
for n,μ0 � η. Figure 3 shows the density matrix elements
of the single-qubit laser stationary state, calculated on the
basis of the above expression (dashed, dotted, and dot-dashed
lines) and using the strong-coupling approximation (solid
lines). The difference between the exact and approximate
solutions becomes significant for large photon numbers n

and for small values of the coupling parameter η. Figure 4
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Ρ f
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FIG. 3. Field density matrix ρf : dashed, dot-dashed, and dotted
lines, results of numerical calculations; points, analytical calculation
on the basis of Eq. (12) for the same sets of parameters as the lines;
solid lines, calculation on the basis of the strong-coupling approx-
imation. The parameters are as follows: gray lines, ν0 = 0, a2

0 = 5,
μ0 = 5, η = 30,200 (dot-dashed and dashed lines, respectively); dark
gray lines, ν0 = 1, a2

0 = 1, μ0 = 3, η = 5,15,50 (dotted, dot-dashed,
and dashed lines, respectively).
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FIG. 4. Trace distance between the field density operator ρf ,
calculated numerically, and the operator ρSC, obtained in the strong-
coupling approximation. The parameters are as follows: gray lines,
ν0 = 0, a2

0 = 5; black lines, ν0 = 1, a2
0 = 1; solid lines, μ0 = 5;

dashed lines, μ0 = 10.

shows the dependence of the distance between the exact and
approximate solutions on the coupling parameter η.

V. NONCLASSICAL PROPERTIES
OF THE STATIONARY STATE

For the limiting case of highly excited states (n 
 η),
Eq. (12) implies that d(n) ≈ 2n/η and

〈n | α; F11〉, 〈n | α; F22〉, 〈n | α; Ff 〉 ∼ αnηn

n!
. (13)

In this case the decrease of the density matrix elements
ρf (n) ∼ 1/(n!)2 with growth of n is faster than for any ordinary
coherent state with nonzero amplitude. This fact indicates
nonclassicality of the stationary state: any classical state can
be represented as a mixture of coherent states with positive
weights [3]; its matrix elements 〈n |ρ| n〉 cannot decrease
faster than for a certain coherent state with growth of n.
It should be noted that the strong-coupling approximation
predicts decrease of the density matrix elements proportionally
to ρSC(n) ∼ 1/n! [25]. These are the “tails” of the photon
number distribution, present in the approximate solution and
absent in the solution found in our paper, that cause a nonzero
distance between the exact and approximate density operators.
The numerically calculated trace distance D(ρf ,ρSC), shown
in Fig. 4, almost coincides with the total weight of the excess
“tails” of the approximate solution.

To characterize the types of nonclassicality of the stationary
state, it is useful to consider nonclassicality parameters
[34,35], based on considering s-parametrized phase-space
functions [36–38] P (α; s), equal to the mean value of an
observable

δ̂(â − α; s)
.= 2

π (1 − s)
: exp

(
−2(â† − α∗)(â − α)

1 − s

)
: ,

(14)
where the colons denote normal ordering of the field operators.
Any of the functions P (α; s) represents a convolution of the
Glauber function P (α) with a Gaussian weight function:

P (α; s) = 2

π (1 − s)

∫
d2γP (γ ) exp

(
−2 |α − γ |2

1 − s

)
. (15)

The Glauber P function itself, the Wigner function, and the Q

function correspond to s = 1, s = 0, and s = −1, respectively.
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For any classical state the Glauber function is well
defined (except for δ-function-type singularities) and takes
non-negative values. The weight function in Eq. (15) is strictly
positive. Therefore, any classical state is characterized by
strictly positive functions P (α; s) for −1 � s < 1.

On the other hand, positivity of the functions P (α; s) for
−1 � s < 1 implies that the Glauber function, representing
a formal limit P (α) = lims→1 P (α; s), is also non-negative
and has singularities, not stronger than that of a δ function.
Therefore, positivity of all the functions P (α; s) is a criterion
for state classicality.

With increase of the parameter s the function P (α; s)
becomes more sensitive to state nonclassicality [for example,
the Q function equal to P (α; −1) is always non-negative, but
the Wigner function can take negative values for certain states].
Therefore, the “order” of state nonclassicality (sensitivity of
the observables to be used to detect the nonclassicality) can be
characterized by the minimum values s0 of the parameter s for
which the phase-space function P (α; s0) is not strictly positive
(see Ref. [35]):

s0(ρ) = inf{s | ∃ α : Tr[ρδ̂ (â − α; s)] � 0}. (16)

For example, a single-photon state is extremely nonclassical:
s0(|1 〉〈 1|) = −1 [34], while a coherent state is a border
between nonclassical states (with s0 < 1) and classical states
(formally with s0 > 1—“nonclassicality” of the classical state
cannot be detected by any observable): s0(|α 〉〈 α|) = 1.

Figure 5 shows the dependence of the nonclassicality
order s0 of the stationary state of a single-atom laser on
the system parameters. For ν0 < 0 the stationary state is
nonclassical, with its nonclassical properties being determined
mainly by the values of ν0, similarly to predictions of the
strong-coupling approximation [25]. However, in the region
ν0 > 0 the stationary state retains its nonclassicality, contrary
to the characteristics of the approximate solution. The order s0

of the nonclassicality almost does not depend on ν0 for ν0 > 0
and is determined mainly by cutting the tails of the photon
number distribution. This type of nonclassicality corresponds
to the inherent quantumness of single-atomic systems and
arises for any parameters of the considered system.

Figure 6 illustrates the influence of the pump parameter
a0 on the stationary-state nonclassicality. The characteristic
properties of the nonclassical behavior resemble the predic-
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FIG. 5. Stationary state nonclassicality order s0(ρf ). The pa-
rameters are a2

0 = 1, μ0 = a2
0 + ν0 + 1; η = 5 (dashed line), 50

(dot-dashed line). The solid line corresponds to the strong-coupling
approximation. The value s0 = 1 corresponds to classical states,
s0 < 1 to nonclassical states.

1 2 5 10 20 50

0.7

0.8

0.9

1

1

1.5

2

a0
2

s 0 g
2a b c d e

FIG. 6. Stationary-state nonclassicality order s0(ρf ) (black lines)
and correlation function g(2) (gray lines). The parameters are ν0 =
1 (solid line), 0 (dashed line), −0.5 (dot-dashed line); μ0 = a2

0 +
ν0, η = 50. Regions of single-qubit laser operation: (a) linear, (b)
quantum nonlinear, (c) lasing, (d) self-quenching, and (e) thermal.
The inequality s0 < 1 (state nonclassicality criterion) holds for all
the regimes, including the ones with g(2) > 1.

tions of approximate solutions (see, e.g., Refs. [25,33]) for
different regimes of single-qubit laser operation. However,
the stationary state remains nonclassical even for “classical”
regions.

VI. EFFECTIVE NONLINEAR TRANSITION
PROBABILITIES

As stated above, Eq. (2) describes the balance between
energy dissipation from the system atom + field and pumping.
Here we show that the second equation for determination of ρ11

and ρ22 [Eq. (3)] can be interpreted as the balance between the
number of photons absorbed from the field mode and emitted
into it.

To make the consideration more clear, we recall the
semiclassical description of an ordinary laser, consisting of
a single mode and a large number of emitters. The average
number of photons absorbed (N12) and emitted (N21) by each
atom per unit time depends on the averaged number of photons
〈n〉 in the mode linearly and is determined by the constant
Einstein coefficients [2]:

N12 = w〈n〉1p1, (17)

N21 = w(〈n〉2 + 1)p2, (18)

where p1 and p2 are the probabilities of finding the atom in the
ground and excited states, respectively; w is the spontaneous
emission probability. The subscripts “1” and “2” are used for
〈n〉 in order to take into account energy conservation, leading to
a change of the number of photons in the mode after absorption
or emission: 〈n〉1 = 〈n〉2 + 1. Then the steady-state condition
can be formulated as equality of the net number of photons
emitted by atoms and the number of photons lost from the
cavity:

w(〈n〉 + 1)(p2 − p1) = 2κ(〈n〉 + 1)(p1 + p2). (19)

In the case of a single-qubit laser the quantities N12 and
N21 correspond to the transitions |n + 1〉|1〉 → |n〉|2〉 and vice
versa, respectively. The probabilities of these states are equal to
ρ11(n + 1) and ρ22(n). Therefore, the stationary-state equation,
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FIG. 7. Dependence of the effective total interaction-induced
transition probability (n + 1)wn (expressed in terms of g2/κ) on the
number of photons n present in the mode: solid lines, numerical
calculations; dashed line, approximate analytical expression [see Eq.
(21)], valid for large n; dot-dashed lines, total transition probability
for wn = const. The parameters are as follows: black lines, ν0 = 1,
a2

0 = 1, μ0 = 3, η = 5 (coherent regime); gray lines, ν0 = 5, a2
0 = 5,

μ0 = 200, η = 5 (strong-dephasing regime).

analogous to Eq. (19), must have the following form [see
Fig. 1(b)]:

(n + 1)wn {ρ22(n) − ρ11(n + 1)} = 2κ(n + 1)ρf (n + 1).

(20)

Comparing Eqs. (3) and (20), one can see that the transition
probability wn depends on the field intensity in the following
way:

wn = g2

κ

[
μ0 + (n + 1)

{
1 − (n + 2)ρf (n + 2)

(n + 1)ρf (n + 1)

}]−1

.

For n � μ0 the transition probability wn is approximately
constant, as it should be for ordinary spontaneous and induced
transitions. However, for large photon numbers n it becomes
strongly intensity dependent:

wn = g2

κ

{
1

n
− 1

n2

(
1 + μ0 − a2

0
η

n + η

)
+ O

(
1

n3

)}
(21)

and decreases with growth of n in such a way that the total
transition probability (n + 1)wn tends to a constant value
(Fig. 7): (n + 1)wn → g2/κ . Also the probability decreases
with growth of the pumping rate R12 = 4κa2

0 .
Such single-atom blockade of intracavity photon emission

can be explained by the fixed “capacity” of the two-level atom,
which is the only pumped object in the model considered.
The atom can store only one excitation. This means that the

system can accept only one energy quantum from the pump
during the characteristic interaction time. Therefore, however
large the probability of the induced transition of the atom
from the excited state to the ground state can be, only one
photon can be created in the mode during one such period.
The system is effectively saturated by one photon, and the
observed total transition probability is completely determined
by the pumping, interaction, and decay constants and does not
depend on the field intensity.

Mathematically, a coherent interaction between the atom
and the mode leads to a correlated stationary state with
the average photon number in the mode depending on the
state of the atom and, therefore, to effective suppression of
interaction-induced transitions (the net transition probability
decreases). It should be noted that in the regime of strong
atomic-state dephasing (� 
 κ , μ0 
 1) the correlation is
rapidly broken, and the spontaneous and induced transition
probabilities behave in the ordinary way even for quite large n

(see Fig. 7, gray lines).

VII. CONCLUSIONS

To summarize, we have provided an analytical description
of the stationary state of a one-atom–one-mode system with
incoherent pumping. The description captures both the features
characteristic of the strong-coupling approximate description
and several additional properties, such as stationary-state
nonclassicality for all values of the interaction parameters. The
stationary state is shown to be a phase-averaged eigenstate
of a special kind of deformed annihilation operator and,
thus, to represent a phase-averaged nonlinear coherent state.
The properties of the deformed annihilation operator and the
obtained nonlinear coherent state are completely determined
by the interaction parameters a0 and ν0, and the state-
dependent operator d(n), diagonal in the Fock-state basis. The
operator d(n) is constructed on the basis of an iteration scheme
characterized by such important properties as unconditional
stability and independence of boundary conditions. Both
numerical and uniformly applicable approximate analytical
solutions are constructed on the basis of the iteration scheme.
Interpretation of the system evolution equations in terms of
spontaneous and induced transitions provided in our work
reveals the inherent quantumness of a single-atom laser,
which manifests itself in strong dependence of the transition
probabilities on the field intensity and in a specific saturation
effect.
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