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Generating a Schrödinger-cat-like state via a coherent superposition of photonic operations
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We propose an optical scheme to generate a superposition of coherent states with enhanced size adopting
an interferometric setting at the single-photon level currently available in the laboratory. Our scheme employs
a nondegenerate optical parametric amplifier together with two beam splitters so that the detection of single
photons at the output conditionally implements the desired superposition of second-order photonic operations.
We analyze our proposed scheme by considering realistic on-off photodetectors with nonideal efficiency in
heralding the success of conditional events. A high-quality performance of our scheme is demonstrated in view
of various criteria such as quantum fidelity, mean output energy, and measure of quantum interference.
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I. INTRODUCTION

Since Schrödinger envisioned a Gedankenexperiment to
illustrate some peculiar feature of quantum mechanics when
applied to macroscopic objects [1], the so-called Schrödinger
cat state has long been of great interest from a fundamental
point of view. Furthermore, the Schrödinger cat state has also
been identified as a useful resource for practical applications,
e.g., in the field of quantum information science over the
past decades. There have been a great deal of theoretical and
experimental attempts to generate a Schrödinger-cat-type state
in various physical systems including atomic system [2,3],
solid-state system [4], and optical system [5–12]. Among
these, an optical-cat-like state, especially a superposition of
coherent states (SCS) [13,14], turns out to be useful for quan-
tum computation [15–20], quantum teleportation [21–23],
quantum-enhanced metrology [24–29], and fundamental test
of quantum mechanics [30–39]. Along this line of practical
significance, a number of proposals have been made to
generate an optical SCS [13,40–51], which subsequently led
to considerable experimental progresses [6–12].

The original proposals for generating an optical SCS in
a deterministic way were based on Kerr nonlinear medium
[13,40]. However, their realizations have not yet been made
since the high nonlinearity required for such a deterministic
scheme is not achievable with the current technology. Alterna-
tively, most of the SCSs created so far in laboratory [6–12]
are based on a nondeterministic scheme that generates a
target state only under prespecified conditions. For instance,
the photon-subtraction method [42] can implement a SCS
relying on the fact that even (odd)-photon-subtracted squeezed
vacuum states well approximate even (odd) SCSs with small
amplitudes. Marek et al. also investigated the effect of photon
addition as well as subtraction on the initial squeezed vacuum
state to obtain an output state close to a squeezed SCS [50]. On
the other hand, the experimental scheme of Ref. [8] produced
a squeezed SCS by conditioning an input Fock state on the
outcome of homodyne detection. That is, if a Fock state |n〉
is injected into a beam splitter and conditioned on a certain
predetermined value of the quadrature amplitude at one output
mode, the other output state converges well to a 3-dB-squeezed
SCS as n becomes large.

In this paper we propose an experimental scheme to
generate a squeezed SCSs with enhanced size employing a
coherent superposition of photonic operations. Our proposal
makes use of an interferometic setting that combines a
nondegenerate parametric amplifier (NDPA) together with two
beam splitters. The detection of single photons at two output
modes conditionally implements a coherent superposition of
second-order operations, namely, ââ† and â†2, on an arbitrary
input state. We show that this scheme, when applied to a
single-photon input, can successfully generate an output state
very close to an odd-parity squeezed SCS which includes a
triple-photon component or higher. To illustrate the feasibility
of our scheme, we consider the use of nonideal on-off photode-
tectors for heralding the conditional events and demonstrate
a high-quality performance in terms of various criteria such
as quantum fidelity, mean output energy, and the measure
of quantum intereference [52]. Our proposed scheme thus
seems very feasible within the currently available experimental
techniques [53]. In particular, we note that a single-photon
interferometric scheme similar to ours was recently proposed
[54] and also experimentally realized [55] to verify the bosonic
commutation relation [â,â†] = 1.

This paper is organized as follows. In Sec. II, we briefly
introduce a class of squeezed SCSs targeted in our work. In
Sec. III, we propose an experimental scheme to implement a
superposition operation to our end. With a brief account of the
working principle under our scheme, its rigorous description
is also provided within the Wigner-function formalism. In
Sec. IV, we evaluate the performance of our scheme in terms of
various criteria such as quantum fidelity, mean output energy,
and measure of quantum interference. In Sec. V, our analysis
is further extended to investigate the effect of on-off photo
detectors with nonideal efficiency. Finally, our results are
summarized in Sec. VI.

II. SQUEEZED SCS

Although there exist some generalized versions of SCSs
[13,14], we begin with two typical SCSs, namely, even and
odd SCSs,

|SCS±(α)〉 = N±(|α〉 ± |−α〉), (1)
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whereN± = 1/
√

2 ± 2e−2α2 are the normalization factors and
|±α〉 is a coherent state of amplitude ±α. Here α is assumed
to be real for simplicity but without loss of generality. The
SCS with the positive (negative) sign in Eq. (1) is called an
even (odd) SCS because it contains only even (odd)-numbered
Fock states for any α. The size of SCS may be quantified by
the magnitude of the amplitude |α|, which also characterizes
the distance between the two component states |α〉 and |−α〉
in phase space.

Suppose now that we apply a squeezing operation Ŝ(s) =
exp[ s

2 (â2 − â†2)] (s: real) on the SCS in Eq. (1). Note that Ŝ(s)
squeezes a quantum state along the real (imaginary) axis in
phase space for a positive (negative) s. When applied to |SCS±〉
in Eq. (1), Ŝ(s) does not change the parity of |SCS±〉 since
Ŝ(s) is invariant under the parity operator (−1)â

†â . Hereafter,
we label the state

|sSCS±(α)〉 = Ŝ(s)|SCS±(α)〉 (2)

as a squeezed (even or odd) SCS (sSCS). In view of Eq. (2),
let us now define a class of states,

|ψn〉 = Ŝ(ln
√

2)|SCS(−)n (
√

n)〉, (3)

which is 3-dB-squeezed SCS and has the parity (−1)n and
amplitude α = √

n for a non-negative integer n.
Ourjoumtsev et al. proposed a novel conditional scheme to

create a similar Shrödinger-cat-type state, which generated
a state close to |ψ2〉 in Eq. (3). Their idea was to utilize
homodyne-conditioning technique with n-photon state |n〉 as
an input [8]: The state |n〉 is injected into a 50:50 beam splitter
with the other input in a vacuum state. The output state is kept
conditioned on a particular outcome of homodyne detection at
the other mode, which produces a class of states |φn〉. Along
with the trivial states |φ0〉 = |0〉 and |φ1〉 = |1〉, other lowest
states turn out to be

|φ2〉 =
√

1

3
|0〉 +

√
2

3
|2〉, (4)

|φ3〉 =
√

3

5
|1〉 +

√
2

5
|3〉, (5)

|φ4〉 =
√

3

35
|0〉 +

√
24

35
|2〉 +

√
8

35
|4〉, . . . . (6)

It is worth noting that |φn〉 has the same parity as the Fock
state |n〉: If n is even (odd), |φn〉 has only even (odd) number
of photons just like |SCS±〉 and |sSCS±〉.

Interestingly, |φn〉 is very close to |ψn〉 in view of quantum
fidelity: F ≡ |〈ψn|φn〉|2 � 0.97 for all n � 0, and F → 1 as
n → ∞. Ourjoumtsev et al. produced a state targeting |φ2〉 [56]
with a two-photon state |2〉 as an input. The target state |φ2〉
is very close to |ψ2〉 with the fidelity F = 97.2% and can be
made even closer to |sSCS±〉 with F = 99.0% by increasing
the squeezing level from 3 to 3.5 dB. In the next sections,
we propose an experimental scheme to generate a larger-size
sSCS, i.e., |φ3〉 and beyond.

III. SCHEME TO GENERATE SCS

In this section, we present an experimental scheme to
implement a coherent superposition of photonic operations for

generating a sSCS. For instance, to generate the target state
|φ3〉, which is a superposition of the number states |1〉 and
|3〉, one has to apply a superposition of identity operation I

and two-photon addition â†2 to an input single-photon state |1〉.
That is, (tI + râ†2)|1〉 ∼ c1|1〉 + c2|3〉. Our scheme makes use
of a NDPA together with two beam splitters, and the output
state is kept on the condition of single-photon detections at
two output modes of a beam splitter (Fig. 2). This implements
the superposition operation of the form t ââ† + râ†2, as will
be shown below. Note that the effect of the operation ââ† is
essentially the same as that of the identity operation I for the
case of Fock-state input.

To begin with, we describe our experimental scheme
under the small-parameter approximations [54,55,57], which
characterizes the output state when using an NDPA with small
squeezing. In Sec. III B, we will more rigorously describe our
proposed scheme using a Wigner-function formalism in phase
space.

A. Brief sketch of the scheme

The first stage of our scheme is to prepare a single-photon
state |1〉. This can be done by pumping an NDPA with both
inputs of signal and idler modes in vacuum states and then
by projecting the output idler to a single-photon state (Fig. 1).
More precisely, the interaction between the signal mode a and
the idler mode d within the NDPA is described by a two-mode
squeezing operator

Ŝad (s) = exp[s(âd̂ − â†d̂†)]. (7)

With the two inputs in vacuum states, the output becomes

|�〉ad = Ŝad (s)|0〉a|0〉d ≈ (1 − sâ†d̂†)|0〉a|0〉d (8)

= |0〉a|0〉d − s|1〉a|1〉d , (9)

where the condition s 
 1 (small squeezing) is used. Now,
the detection of a single photon at mode d gives the desired
single-photon state in mode a:

|�〉a ∼ 〈1|d (|�〉ad ) ∼ |1〉a. (10)

In Fig. 1, the signal mode a is reflected by a mirror to be
injected again into the same NDPA (see Fig. 2). By doing
this, we can reduce the number of required NDPAs, and
furthermore, as the input signal has been produced within the
same NDPA, the mode-matching condition, which is critical
for quantum interference, may be better satisfied. Thus, in the

FIG. 1. (Color online) Experimental scheme for a preliminary
single-photon generation. The pump beam creates twin beams as it
passes through a NDPA. One output mode is directed to the detector
PDd and the other to a mirror. A detection event at PDd heralds the
generation of an approximate single-photon state in mode a.
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FIG. 2. (Color online) A whole process to generate a desired state
|φ3〉 and beyond. After generating the approximate single-photon
state, the pump beam is redirected by a mirror into the NDPA
and creates another twin beams. The coincident detection of single
photons at PDb and PDc heralds a successful implementation of a
superposition operation coherently combining ââ† and â†2. See the
main text.

next stage, we reuse the pump beam during its coherence time
for the NDPA process. Under the small-squeezing condition,
the output now reads

|�〉ac = Ŝac(s)|�〉a|0〉c (11)

≈ (
1 − sâ†ĉ† + 1

2 s2â†2ĉ†2
)|1〉a|0〉c (12)

= |1〉a|0〉c −
√

2s|2〉a|1〉c +
√

3s2|3〉a|2〉c. (13)

Note that other irrelevant terms are not included in Eq. (12)
and that only the last two terms in Eq. (13) will survive the
subsequent detection process as described below.

In the third stage, we tap a very small amount of the beam
in mode a using a beam splitter BSab whose transmittance
is very close to 1. This can be described by a beam splitter
operator B̂ab(t) acting on the state |�〉ac, with mode b in a
vacuum state, as

|�〉abc = B̂ab(t1)|�〉ac|0〉b, (14)

where

B̂ab(t) = exp

[
θ

2
(âb̂† − â†b̂)

]
(15)

with its transmissivity (reflectivity) given by t = cos θ
2 (r =

sin θ
2 ). Under the condition r1 
 1 (t1 ≈ 1) and O(r1) ∼ O(s),

Eq. (14) may be approximated as

|�〉abc ≈ (1 + r1âb̂†)|�〉ac|0〉b (16)

∼ −2sr1|1〉a|1〉b|1〉c +
√

3s2|3〉a|0〉b|2〉c. (17)

Finally, after the state |�〉abc passes through another beam
splitter BSbc (transmissivity t), we obtain the output state

|�〉′abc = Bbc(t)|�〉abc (18)

≈ 2sr1(r2 − t2)|1〉a|1〉b|1〉c +
√

3s2tr|3〉a|1〉b|1〉c.
(19)

Note that the first term in Eq. (19) is due to the first term in
Eq. (17): The factor t2 (r2) indicates that two single photons
are simultaneously transmitted (reflected) via the BSbc, and the

FIG. 3. (Color online) The first two and the third diagrams show
a single- and triple-photon generation, respectively. Yellow arrows
represent the single-photon generated in the first stage of our scheme
in Fig. 2, whereas red arrows represent a single-photon in the first and
the second diagram, or a two-photon in the third diagram, generated in
each mode b and c. The parameter s denotes the degree of squeezing
within the NDPA, r1 the reflectivity of the beam splitter BSab, and
t (r) the transmissivity (reflectivity) of the beam splitter BSbc. In the
first two diagrams, s indicates that twin singlephotons are generated
and r1 indicates that upper one of twin beams is reflected by BSab.
Two t’s (r’s) in the first (second) diagram means that two beams all
pass through (are reflected at) BSbc without reflection (transmission).
In the third diagram, s2 indicates that twin two photons are generated
and t and r means that one of the two photons in the lower beam
passes through, and the other is reflected, at BSbc.

different sign between r2 and t2 arises due to the phase change
induced by two reflections at the beam splitter. The last term
in Eq. (19) implies that two photons of mode c in Eq. (17)
are split into individual single photons in mode b and c. The
whole process here is a quantum-mechanical superposition of
three different paths, which is illustrated by the diagrams in
Fig. 3.

Now, if both detectors PDb and PDc simultaneously register
single photons, the conditional output is given by

|�〉out ∼ 〈1|b〈1|c(|�〉′abc) ≈ 2sr1(r2 − t2)|1〉a +
√

3s2tr|3〉a.
(20)

Thus, by adjusting the parameters s, t1(r1), and t(r) in the
experimental scheme of Fig. 2, we can obtain |φ3〉 in Eq. (5).

More generally, if an arbitrary input state |�〉in is injected
into the scheme in Fig. 2, one can similarly confirm that the
output state is given by

|�〉out = 〈1|b〈1|cB̂bc(t)B̂ab(t1)Ŝac|�〉in|0〉b|0〉c
≈ (C1ââ† + C2â

†2)|�〉in, (21)

where C1 = sr1(r2 − t2) and C2 = 1√
2
s2tr . Therefore, our

scheme in Fig. 2 implements a superposition of second-order
operations ââ† and â†2 on an arbitrary input [57]. In principle,
one can generate |φ3〉,|φ5〉,|φ7〉, . . . or |φ2〉,|φ4〉,|φ6〉, . . . by
consecutively applying this superposition operation to an input
state |1〉 or |0〉, respectively.

B. Rigorous formulation using Wigner-function approach

In Sec. III A, we have briefly described the working
principle of generating the target sSCS under small-parameter
approximations. We now present an exact formulation of our
experimental scheme in Fig. 2 using the Wigner-function

063815-3



LEE, LEE, NHA, AND JEONG PHYSICAL REVIEW A 85, 063815 (2012)

formalism in phase space. We here give a concise description
of the Wigner-function method with essential steps and all
detailed derivations are shown in Appendix B.

Let us start with the twin-beam state created within
the NDPA, which is formally described by the two-mode
squeezing of the input vacuum states |0〉a|0〉d . In phase-space
representation, a two-mode squeezing has the effect of pseu-
dorotation on the arguments of two quasidistribution functions.
That is, the input two-mode Wigner function Wvac(βa)Wvac(βd )
transforms into

Wad (βa,βd ) = Wvac(βa cosh s + β∗
d sinh s)

×Wvac(βd cosh s + β∗
a sinh s)

= (2/π )2 exp[−2 cosh 2s(|βa|2 + |βd |2)

+ 2 sinh 2s(βaβd + β∗
aβ∗

d )], (22)

where Wvac(β) = (2/π ) exp(−2|β|2) is the Wigner function of
a vacuum state |0〉, with β = βr + iβi .

If the detector PDd in Fig. 2 registers any number of
photons, the conditional output state is given by ρa ∼ Trd [(I −
|0〉〈0|)d ρad ], whose Wigner function becomes

Wa(βa) = (1/Pd )
∫

d2βdWad (βa,βd )[1 − πWvac(βd )], (23)

with its normalization

Pd = Trad [Ia ⊗ (I − |0〉〈0|)d ρad ]

=
∫

d2βa

∫
d2βd Wad (βa,βd )[1 − πWvac(βd )]. (24)

Note that Pd represents the conditional probability for de-
tection events and its detailed functional form is given in
Appendix B. Equation (23) is an exact version of Eq. (10).

The conditional state in Eq. (23) is again injected to the
NDPA with other mode c in a vacuum state. We thus obtain an
output state from the NDPA, whose Wigner function is given
by

Wac(βa,βc) = Wa(βa cosh s + β∗
c sinh s)

×Wvac(βc cosh s + β∗
a sinh s). (25)

The third step, i.e., mixing the mode a with another mode
b (vacuum state) at a beam splitter Bab(t2

1 ≈ 1 or r2
1 
 1) is

described by

Wabc(βa,βb,βc) = Wac(t1βa + r1βb,βc)Wvac(t1βb − r1βa).

(26)

Another mixing process at the beam splitter Bbc gives

W ′
abc(βa,βb,βc) = Wabc(βa,tβb + rβc,tβc − rβb). (27)

Finally, the success probability for the coincident detection of
photons at PDb and PDc is given, similar to Eq. (24), by

Pbc =
∫

d2βa

∫
d2βb

∫
d2βc W ′

abc(βa,βb,βc)

× [1 − πWvac(βb)][1 − πWvac(βc)]. (28)

In addition, the Wigner function of the conditional output is
given by

Wout(βa) = (1/Pbc)
∫

d2βb

∫
d2βc W ′

abc(βa,βb,βc)

× [1 − πWvac(βb)][1 − πWvac(βc)]. (29)

FIG. 4. (Color online) Wigner functions of (a) |φ3〉, (b) a state
generated via the scheme in Fig. 2, and (c) sSCS [Eq. (2)]. The
state in (b) is produced with the parameters s = 0.04 and t2

1 = 0.999
(r2

1 = 0.001). The sSCS in (c) is 2.9-dB squeezed (s ′ = 0.33) with
α = 1.7. The fidelity of the output state in (b) is 99% with respect to
the sSCS.

One of the typical examples generated under our scheme is
shown in Fig. 4, together with the target state |φ3〉 and sSCS
[Eq. (2)]. The figures show that the output state is slightly
closer to sSCS than to |φ3〉. We investigate the quantum fidelity
with respect to sSCS as

F = π

∫
d2β Wout(β)WsSCS(β), (30)

where WsSCS(β) is the Wigner function of sSCS [Eq. (2)] with
squeezing parameter s ′:

WSCS(β) = N 2
− [Wvac(βr − α,βi) + Wvac(βr + α,βi)

−2 Wvac(β) cos(4αβi)]. (31)

WsSCS(β) = WSCS(β cosh s ′ + β∗ sinh s ′). (32)

In Fig. 4, the quantum fidelity of the output state is 99% with
respect to the sSCS.

IV. PERFORMANCE OF THE SCHEME

In this section, we investigate the overall performance of our
scheme in terms of various criteria. In particular, we look into
success probability, quantum fidelity, mean photon number,
and a measure of quantum interference to properly address the
quality of an output state under our scheme.

We first investigate the success probability P and the fidelity
F in Eq. (30) in more detail. The overall success probability
P is given by P = PdPbc, which is the joint probability of
generating a single-photon state in the first stage and detecting
photons simultaneously at PDb and PDc in the final stage.
Figure 5 shows the success probability and the fidelity as
functions of the squeezing parameter s. In each panel, three
curves refer to the cases with different reflectances of the beam
splitter BSab in Fig. 2, i.e., r2

1 = 1 − t2
1 = 0.001 (blue solid),

0.01 (red dashed), and 0.1 (green dot-dashed). Note that the
fidelity is optimized over s ′, α, and t (or r) at fixed s and t1
and that the success probability is evaluated corresponding to
those parameters.

Some general trends can be seen from Figs. 5(a) and 5(b).
First, the success probability increases with the squeezing
parameter s whereas the quantum fidelity decreases with s.
Second, similarly, increasing the reflectance r2

1 enhances the
success probability but lowers the fidelity as a tradeoff. A
higher squeezing produces more twin-beam photons within
the NDPA, hence more chances of detecting photons at the
detectors PDb and PDc. Similar reasoning can be given to
the trend with the reflectance of BSab. On the other hand, the
degradation of quantum fidelity with s and r1 is somewhat
expected as our scheme is envisioned under the condition that
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FIG. 5. (Color online) (a) success probability and (b) quantum
fidelity of an output state as functions of the squeezing parameter s.
The three curves in each panel represent the cases of r2

1 = 0.001 (blue
solid), 0.01 (red dashed), and 0.1 (green dot-dashed), respectively.
The success probability P is the joint detection probability of all
three detectors in the scheme of Fig. 2. The fidelity F quantifies the
closeness between the generated state and the target sSCS, which is
optimized over t (r) in Eq. (27), s ′ in Eq. (32) and α in Eq. (31).

the squeezing s is small and that r1 should also be small in the
same order of s, as discussed in Sec. III A.

Even though the quantum fidelity can be very high, it would
be practically not useful if the conditional probability is too
low. However, in our scheme, if the fidelity above 90% is
acceptable, the success probability goes up to 10−6–10−5 for
r2

1 = 0.001 or 0.01. Thus, if the repetition rate of a pulsed
beam is assumed to be around 1 MHz, the generation rate
becomes 1–10 Hz. Therefore, with moderate values of s and
r1, the present scheme seems quite feasible for an experimental
realization of high-fidelity sSCS.

Next, as a size criterion, we investigate the mean photon
number 〈n̂〉 of the generated state. As can be seen from
Fig. 6(a), a larger squeezing s and a smaller reflectance r2

1 give
a larger size of the generated state, which may be expected
from the relative ratio of the component states in Eq. (20).
Note that the mean photon number 〈n̂〉 can go over 3, which
is relatively large compared to 2.75 of the recently generated
state [12]. However, as can be seen from Fig. 6(b), in order to
obtain a larger size state, the fidelity should be sacrificed to
some degree. Nevertheless, with the size being equal to 2.75,
the fidelity 83% under our scheme is still higher than 59% in
Ref. [12].

FIG. 6. (Color online) (a) Mean photon number 〈n̂〉 as a function
of the degree of squeezing s for the cases of r2

1 = 0.001 (blue solid),
0.01 (red dashed), and 0.1 (green dot-dashed), respectively. Here the
parameters used for optimizing the fidelity in Fig. 5 are fixed as
t = 0.21, s ′ = 0.57, and α = 2.4. Note that 〈n̂〉 increases with s but
decreases with the reflectance r2

1 . Since a larger squeezing degrades
the fidelity [see Fig. 5(b)], the fidelity as a function of 〈n̂〉 is also
plotted in (b). With a fixed target state, there is a critical value of
s which gives the maximum value for the fidelity. Thereafter, 〈n̂〉
increases, but the fidelity decreases, with s.

Finally, we consider another kind of size criterion to assess
the quality of quantum superposition, which was very recently
proposed by Lee and Jeong [52]. Their measure provides a
well-defined criterion for superposition states by quantifying
the potential of quantum interference of a state, which can be
visualized in phase space. For this reason, hereafter, we call
this measure the “measure of quantum interference” (MQI)
and define it for a single mode case as

MQI = π

2

∫
d2β W (β)

[
− ∂2

∂β∂β∗ − 1

]
W (β), (33)

in terms of Wigner function W(β). A phase-space formalism
using a quasiprobability distribution addresses a general
quantum state, so our measure can be used not only for a pure
superposition state but also for a mixed state. Further, MQI
quantitatively manifests unique properties of superposition
states. It gives maximum values for pure superposition state
and nearly zero values for fully mixed states. It can be proved
that the MQI of a state is bounded by its mean particle number
〈n〉 and reaches this maximum value only if it is a pure
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FIG. 7. (Color online) (a) MQI and (b) relative MQI (MQI divided
by 〈n̂〉) as functions of the degree of squeezing s for the case of
r2

1 = 0.001 (blue solid), 0.01 (red dashed), and 0.1 (green dot-dashed),
respectively.

superposition state. Consequently, MQI provides useful and
sensible information on a superposition state in regard to the
size of its coherence. For the present scheme, we attempt to
assess the quality of generated states by evaluating the ratio
of MQI to the mean photon number 〈n〉. This quantity may
provide an insight to the relative size of “superpositionness”
of a quantum state. It would give a value close to unity if the
probed state is close to a pure superposition state and decrease
as the state loses its coherence and hence becomes more
mixed.

Figure 7 shows the original and the relative values of MQI
for the states considered in Fig. 6. As can be seen from these
plots, the value of MQI increases with the squeezing s for some
cases. However, this is mainly due to the increased size of the
state, not due to the increased coherence. This is confirmed
in the plot of relative MQI [see Fig. 7(b), where one can see
that the relative values of MQI monotonically decrease with s.
Note that the qualitative behavior of the relative MQI in this
plot is very similar to the fidelity in Fig. 5. In this sense, the
relative MQI seems to provide another useful criterion for the
quality of a superposition state as well as its fidelity. Moreover,
MQI has an advantage over the fidelity such that it can assess
the quality of a generated state without reference to a target
state.

V. PRACTICAL APPLICATION

In this section, we further investigate the experimental
feasibility of our scheme by considering the inefficiency of
devices and then comparing its performance with the one in
Ref. [12]. First, we take into consideration the inefficiency of
detectors, which can be modeled by placing an imaginary beam
splitter in front of each detector and varying its transmittance,
say η. For a perfect (totally inefficient) detector, η = 1(0). For
a low success probability, dark counts may also play another
detrimental role. However, it is reported that a coincidence
scheme—e.g., which records only the synchronized outcomes
of laser pulse signal and a click of a detector—significantly
reduces dark count events [20]. There has also been a report of
recent progress on on-off type detectors with high efficiency
and negligible dark count rate [58].

We again calculate the success probability P and the fidelity
F , but now as functions of efficiency η for all the detectors
used in our scheme. We plot P and F for the case of moderate
squeezing in Fig. 8. At s = 0.16, the fidelity for r2

1 = 0.001
(r2

1 = 0.01) is approximately 90% (89%). Generally, P and
F decrease as the detector becomes less efficient, i.e., with η

decreasing. However, despite the rapid drop of the probability,

FIG. 8. (Color online) (a) The success probability P and
(b) fidelity F as functions of detector efficiency η at squeezing
s = 0.16. The three curves denote the cases of r2

1 = 0.001 (blue
solid), 0.01 (red dashed), and 0.1 (green dot-dashed), respectively, as
before. Notice that as η decreases, P and F also decrease but that,
nevertheless, the fidelity is relatively robust against the inefficiency
compared with the case of probability.
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FIG. 9. (Color online) Fidelity F and mean photon number 〈n〉
for the cases of r2

1 = 0.001 (blue solid), 0.01 (red dashed) at η =
1,0.9, . . . ,0.1. Refer to Fig. 6(b) for the starting values of F and
〈n〉 at η = 1. As expected, F decreases with η decreasing, while 〈n〉
slightly increases. However, the degradation of the fidelity is not very
significant in both of the cases r2

1 = 0.001 and 0.01.

the fidelity is very robust against the detector efficiency and still
remains high. Moreover, this robustness of the fidelity can also
be demonstrated together with the mean photon number. With
the experimental report of Ref. [12] in mind, we investigate
the effect of detector efficiency η for the case of 〈n〉 = 2.75
in Ref. [12] and the fidelity F = 83% (74%) at r2

1 = 0.001
(0.01) in Fig. 6(b). Figure 9 shows both the fidelity and the
mean photon number as η decreases from 1 to 0.1 by a step
of 0.1. As can be seen from the plot, F is degraded with a
decreasing η while 〈n〉 rather increases in the opposite way.
However, the degradation of F is not very significant in both
the cases of r2

1 = 0.001 and 0.01 and the fidelities are still high
compared to the one in Ref. [12]. Even when η is lowered to
as small as 0.1, the fidelities are still higher than 59% reported
in Ref. [12], with mean value slightly higher than 〈n〉 = 2.75.
Further, if we only focus on maximizing the mean photon
number, our scheme can generate a sSCS as large as 〈n〉 =
3.24(3.18) with predetermined squeezing s = 0.2 and fidelity
F = 59% for r2

1 = 0.001 (0.01) even though the detectors
have the detector efficiency as low as η = 0.1. Finally, we also
present in Fig. 10 the moduli of the density-matrix entries of the
generated state with the squeezing s = 0.16 and r2

1 = 0.001.
Figure 10 shows that the single- and triple-photon components
dominate the other ones and that even-number components
do not appear even when the detector efficiency is very low.

FIG. 10. (Color online) The moduli of the entries of the density
matrix of the output state which is generated with the parameters
s = 0.16, r2

1 = 0.001, and the detector efficiency (a) η = 1, (b) η =
0.5, (c) η = 0.1.

This means that our scheme is reasonably robust against the
detector inefficiency and can generate definite odd-parity states
even in the presence of imperfect detectors. These aspects thus
illustrate the usefulness of our scheme for generating a viable
sSCS if implemented in a real experimental setup.

VI. CONCLUDING REMARKS

We have studied an experimental scheme to generate and
grow a large-size Schrödinger-cat-type state using an interfer-
ometric setting that implements a coherent superposition of
the operations ââ† and â†2 on an arbitrary input state. The
proposed scheme makes use of an NDPA together with two
beam splitters, and the detection of single photons at two output
modes conditionally realizes the superposition operation of
our interest. We investigated the performance of our scheme
by employing various criteria such as the success probability,
the quantum fidelity, the mean output energy, and the measure
of quantum interference. We have shown that our scheme can
generate an output state of high quality in view of all these
criteria under the use of nonideal on-off detectors for heralding
conditional events. Therefore, together with the experimental
achievements reported recently [12,55], it seems that our
proposed technique can be useful for generating a large-size
nonclassical superposition state within existing technology.
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APPENDIX A

In this section, we give detailed analytical forms to the
classes of states defined in the main text. For example, the
state |sSCS±〉 is represented by its wave function as

〈x|sSCS±〉 = N±
4
√

π e−2s

{
exp

[
− (x − √

2αe−s)2

2e−2s

]

± exp

[
− (x + √

2αe−s)2

2e−2s

]}
(A1)

valid up to an overall phase [59]. Here |x〉 is the eigenstate of
the quadrature operator x̂ = (â + â†)/

√
2; the detailed form

of |x〉 is given by Ref. [59]

|x〉 = 1
4
√

π
exp

[
−1

2
x2 +

√
2xâ† − 1

2
â†2

]
|0〉, (A2)

where |0〉 is the vacuum state. If we set the parameter e2s = 2,
i.e., the case of 3-dB squeezing, Eq. (A1) is reduced to

〈x|sSCS±〉 = N±
4

√
2

π

[
e(x−α)2 ± e(x+α)2]

. (A3)
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That is,

〈x|ψn〉 = N(−)n
4

√
2

π

[
e(x−√

n)2 + (−1)ne(x+√
n)2]

(A4)

with N(−)n = 1/
√

2 + 2(−1)ne−2n.

Next, we can represent |φn〉 in the number-state basis with
its wave function defined in Ref. [8],

〈x|φn〉 =
√

22nn!√
π (2n)!

xne−(1/2)x2
. (A5)

We use Eqs. (A2) and (A5) to obtain

|φn〉 =
∫ ∞

−∞
dx |x〉〈x|φn〉 = (−i)n

√
n!

(2n)!
Hn

[
iâ†
√

2

]
|0〉,

(A6)

where Hn[x] is the nth-order Hermite polynomial.

APPENDIX B

We can derive all the detailed expressions of the Wigner
functions and the quantum fidelity in Sec. III B. First, a
Gaussian distribution of zero mean can be determined solely by
its covariance matrix (CM) V = (Vij ) where Vij = 1

2 〈xixj +
xjxi〉 − 〈xi〉〈xj 〉 as

WV (x1, . . . ,xD) = e−(1/2)xT V −1x/√
det(2πV ). (B1)

Here x = (x1, . . . ,xD)T is a D-dimensional vector, T denotes
the matrix transposition, and 〈x〉 is the expectation value of x.
For example, a single-mode vacuum state can be represented
by

Wvac(β) = WV0 (βr,βi), (B2)

where its CM is given by V0 = I/4 with I being the 2 × 2
identity matrix. Note that a coherent state with amplitude α

is given by the same Wigner function with its center just
displaced from the origin to α in phase space, i.e., Wvac(β − α).

We now describe the transformation of an input Wigner
function to another under the operations such as single-mode
squeezing, two-mode squeezing, and beam splitting. First, a
single-mode squeezing transforms the phase-space variables
as

β → S1(s)β where S1(s) =
[

e−s 0

0 es

]
. (B3)

Here, s > 0 (s < 0) indicates squeezing along the real (imag-
inary) axis in phase space. Accordingly, the covariance matrix
V under the squeezing can be described by the transformation
V → S1(s)V ST

1 (s) and the output Wigner function thus reads
WS1(s)V0S

T
1 (s)(β).

Second, two-mode squeezing can be described similarly to
the single-mode squeezing above by a transformation matrix

S2 = cosh s(I ⊗ I) + sinh s(X ⊗ Z),

with X =
[

0 1

1 0

]
and Z =

[
1 0

0 −1

]
. (B4)

The Wigner function of a two-mode squeezed vacuum state
in Eq. (22) can thereby be represented by Wad (βa,βd ) =

WVad
(βa,βd ) with

Vad = S2(V0 ⊕ V0)ST
2 . (B5)

Third, a two-mode beam splitting can be described by the
transformation[

βA

βB

]
→ B2(t)

[
βA

βB

]
where B2(t) =

[
t −r

r t

]
⊗ I.

Accordingly, two single-mode Gaussian states with their CMs,
VA and VB , are described under beam splitting as

WVA⊕VB
(βA,βB) → WB2(t)(VA⊕VB )BT

2 (t)(βA,βB ). (B6)

Tracing over one output mode after the beam splitting of
two Gaussian states gives a single-mode Gaussian state with
a modified CM. Before presenting this formula, we will give
some general formulas for integrating Gaussian functions. The
first one is a partial integration of a Gaussian Wigner function
that can be represented by∫

d2βBWVAB
(βA,βB) = WVA(B) (βA), (B7)

where VA(B) denotes the marginal CM for mode A, i.e., by
removing block matrices related to mode B. The above result
simply tells that the marginal distribution must be determined
only by its original local CM. Note that the above and all the
following results are not confined to the two-mode case but A

and B modes can refer to any collective modes more than one.
Next we present the partial integration of the product of

two Gaussian functions,∫
d2βBWV (βA,βB)WṼ (βB − αB) = W(V +OA⊕Ṽ )(βA,αB),

(B8)

where OA denotes null matrix associated to mode A and V

(Ṽ ) refers to a CM of the two-mode (single-mode) state.
Combining Eqs. (B7) and (B8), one can also easily derive
another formula,∫

d2βWV (β)WṼ (β − α) = WV +Ṽ (α). (B9)

Now we are ready to obtain a Wigner-function formula
associated with a beam splitter. Integrating Eq. (B6) over
variable βB using the formula (B7), one can get∫

d2βBWVA
(tβA + rβB)WVB

(tβB − rβA)

= W[B2(t)(VA⊕VB )BT
2 (t)]A(B)

(βA) = Wt2VA+r2VB
(βA). (B10)

If the above two Gaussian states have centers αA and αB other
than the origin, the centers of the transformed Gaussian state
becomes [B2(t)(αA,αB)T ]A(B). In the case of two multi-mode
input Gaussian states, e.g., two two-mode states, the whole
process of tracing out after beam splitting can be similarly
represented by the transformation

WVAB⊕VCD
(βA,βB,βC,βD) → WVout (βA,βB). (B11)
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GENERATING A SCHRÖDINGER-CAT-LIKE STATE VIA . . . PHYSICAL REVIEW A 85, 063815 (2012)

Here, the integration is performed over βC and βD and

Vout = [
B4(VAB ⊕ VCD)BT

4

]
AB(CD) = T VABT T + RVCDRT ,

T = t1I ⊕ t2I, R = r1I ⊕ r2I, B4 =
[

T −R

R T

]
.

Note again that if there are nonzero centers (αA,αB,αC,αD)T

in the original Wigner function, those transform to
[B4(αA,αB,αC,αD)T ]AB(CD).

Using the general results for Gaussian integration so far,
analytical expressions for all the Wigner functions in the
main text are readily obtained. First, the Wigner functions
in Eqs. (23) and (24) read

Wa(βa) = 1

Pd

[ ∫
d2βdWVad

(βa,βd )

−π

∫
d2βdWVad

(βa,βd )WV0 (βd )

]

= 1

Pd

[
Wcosh 2sV0 (βa) − sech2sWV0 (βa)

]
, (B12)

Pd = 1 − sech2s = tanh2 s. (B13)

Next, for the state in Eq. (25), we obtain

Wac(βa,βc) = 1

Pd

[
WS2[(cosh 2sV0)⊕V0]ST

2
(βa,βc)

− sech2sWS2[V0⊕V0]ST
2

(βa,βc)
]

= 1

Pd

[WVac
(βa,βc) − sech2sWVad

(βa,βc)],

with Vac = S2[(cosh 2sV0) ⊕ V0]ST
2 . Beam splitting these

states gives the Wigner functions in Eqs. (26) and (27),

Wabc(βa,βb,βc)

= 1

Pd

[
W

V
(1)
abc

(βa,βb,βc) − sech2sW
V

(2)
abc

(βa,βb,βc)
]
,

W ′
abc(βa,βb,βc)

= 1

Pd

[
W

V
′(1)
abc

(βa,βb,βc) − sech2sW
V

′(2)
abc

(βa,βb,βc)
]
,

where

V
(1)
abc = Bab[Vac ⊕ (V0)b]BT

ab, V
(2)
abc = BabVadB

T
ab,

V
′(1)
abc = BbcV

(1)
abcB

T
bc, V

′(2)
abc = BbcV

(2)
abcB

T
bc,

Bab = B2(t1) ⊕ I, and Bbc = I ⊕ B2(t).

Finally, on-off detecting on modes b and c gives the output
Wigner functions as

Wout(βa) = 1

PdPbc

4∑
j=1

[
A(1,j )W

V
(1,j )

out
(βa)

−sech2sA(2,j )W
V

(2,j )
out

(βa)
]
,

Pbc = 1

Pd

4∑
j=1

[A(1,j ) − sech2sA(2,j )],

where i = 1,2 and

V
(i,1)

out = V
′(i)
a(bc), V

(i,2)
out = [

V
′(i)
ab(c) + Oa ⊕ (V0)b

]C
b
,

V
(i,3)

out = [
V

′(i)
a(b)c + Oa ⊕ (V0)c

]C
c
,

V
(i,4)

out = [
V

′(i)
abc + Oa ⊕ (V0)b ⊕ (V0)c

]C
bc

, A(i,1) = 1,

A(i,2) = −[
2
√

det
[
V

′(i)
(a)b(c) + V0

]]−1
,

A(i,3) = −[
2
√

det
[
V

′(i)
(ab)c + V0

]]−1
,

A(i,4) = [
4
√

det
[
V

′(i)
(a)bc + V0 ⊕ V0

]]−1
.

Here, the symbol C denotes Schur complement [60] with the
notation

(VAB)CA ≡ VB,B − VB,AV −1
A,AVA,B,

(B14)
(VAB)CB ≡ VA,A − VA,BV −1

B,BVB,A,

where VA,A, VA,B and so on are block matrices in the whole
matrix VAB associated to the corresponding modes.

The fidelity in Eq. (30) can also be calculated straightfor-
wardly as the Wigner function of the target sSCS in Eqs. (31)
and (32) can be represented by Gaussian functions, i.e.,

WSCS(β) = N 2
−
[
WV0 (βr − α,βi) + WV0 (βr + α,βi)

− 2WV0 (β) cos(4αβi)
]
, (B15)

WsSCS(β) = [WSCS(β)]α→αe−s′

V0→S1(s ′)V0S
T
1 (s ′). (B16)

Using these expressions and the formula in Eq. (B9), we obtain
the fidelity

F = 2πN 2
−

PdPbc

4∑
j=1

[
A(1,j )W[V (1,j )

out +S1(s ′)V0S
T
1 (s ′)](αe−s ′

,0)

− sech2sA(2,j )W[V (2,j )
out +S1(s ′)V0S

T
1 (s ′)](0,iαe−s ′

)
]
.

[1] E. Schrödinger, Naturwissenschaften 23, 807 (1935).
[2] C. Monroe, D. M. Meekhof, B. E. King, and D. J. Wineland,

Science 272, 1131 (1996).
[3] D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad,

J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer,
R. Ozeri, R. Reichle, and D. J. Wineland, Nature (London) 438,
639 (2005).

[4] M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, E. Lucero,
M. Neeley, A. D. O’Connell, D. Sank, J. Wenner, J. M. Martinis,
and A. N. Cleland, Nature (London) 459, 546 (2009).

[5] W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Guhne, A. Goebel,
Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, Nat. Phys.
6, 331 (2010).

[6] J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich,
K. Molmer, and E. S. Polzik, Phys. Rev. Lett. 97, 083604
(2006).

[7] A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier,
Science 312, 83 (2006).

[8] A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, and Ph. Grangier,
Nature (London) 448, 784 (2007).

063815-9

http://dx.doi.org/10.1007/BF01491891
http://dx.doi.org/10.1126/science.272.5265.1131
http://dx.doi.org/10.1038/nature04251
http://dx.doi.org/10.1038/nature04251
http://dx.doi.org/10.1038/nature08005
http://dx.doi.org/10.1038/nphys1603
http://dx.doi.org/10.1038/nphys1603
http://dx.doi.org/10.1103/PhysRevLett.97.083604
http://dx.doi.org/10.1103/PhysRevLett.97.083604
http://dx.doi.org/10.1126/science.1122858
http://dx.doi.org/10.1038/nature06054


LEE, LEE, NHA, AND JEONG PHYSICAL REVIEW A 85, 063815 (2012)

[9] H. Takahashi, K. Wakui, S. Suzuki, M. Takeoka, K. Hayasaka,
A. Furusawa, and M. Sasaki, Phys. Rev. Lett. 101, 233605
(2008).

[10] M. Sasaki, M. Takeoka, and H. Takahashi, Phys. Rev. A 77,
063840 (2008); M. Takeoka, H. Takahashi, and M. Sasaki, ibid.
77, 062315 (2008).

[11] A. Ourjoumtsev, F. Ferreyrol, R. Tualle-Brouri, and
Ph. Grangier, Nat. Phys. 5, 189 (2009).

[12] T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita,
A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill,
Phys. Rev. A 82, 031802 (2010).

[13] B. Yurke and D. Stoler, Phys. Rev. Lett. 57, 13 (1986).
[14] W. Schleich, M. Pernigo, and F. L. Kien, Phys. Rev. A 44, 2172

(1991).
[15] P. T. Cochrane, G. J. Milburn, and W. J. Munro, Phys. Rev. A

59, 2631 (1999).
[16] H. Jeong and M. S. Kim, Phys. Rev. A 65, 042305 (2002).
[17] T. C. Ralph, W. J. Munro, and G. J. Milburn,

arXiv:quant-ph/0110115; T. C. Ralph, A. Gilchrist, G. J.
Milburn, W. J. Munro, and S. Glancy, Phys. Rev. A 68, 042319
(2003).

[18] A. P. Lund, T. C. Ralph, and H. L. Haselgrove, Phys. Rev. Lett.
100, 030503 (2008).

[19] P. Marek and J. Fiurasek, Phys. Rev. A 82, 014304 (2010).
[20] A. Tipsmark, R. Dong, A. Laghaout, P. Marek, M. Jezek, and

U. L. Andersen, Phys. Rev. A 84, 050301(R) (2011).
[21] S. J. van Enk and O. Hirota, Phys. Rev. A 64, 022313 (2001).
[22] H. Jeong, M. S. Kim, and J. Lee, Phys. Rev. A 64, 052308

(2001).
[23] X. Wang, Phys. Rev. A 64, 022302 (2001).
[24] C. C. Gerry and R. A. Campos, Phys. Rev. A 64, 063814 (2001);

C. C. Gerry, A. Benmoussa, and R. A. Campos, ibid. 66, 013804
(2002).

[25] T. C. Ralph, Phys. Rev. A 65, 042313 (2002).
[26] W. J. Munro, K. Nemoto, G. J. Milburn, and S. L. Braunstein,

Phys. Rev. A 66, 023819 (2002).
[27] R. A. Campos, C. C. Gerry, and A. Benmoussa, Phys. Rev. A

68, 023810 (2003).
[28] O. Hirota, K. Kato, and D. Murakami, arXiv:1108.1517.
[29] J. Joo, W. J. Munro, and T. P. Spiller, Phys. Rev. Lett. 107,

083601 (2011).
[30] C. C. Gerry and R. Grobe, Phys. Rev. A 51, 1698 (1995).
[31] W. J. Munro, G. J. Milburn, and B. C. Sanders, Phys. Rev. A 62,

052108 (2000).
[32] D. Wilson, H. Jeong, and M. S. Kim, J. Mod. Opt. 49, 851

(2002).
[33] H. Jeong, W. Son, M. S. Kim, D. Ahn, and C. Brukner, Phys.

Rev. A 67, 012106 (2003).
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