
PHYSICAL REVIEW A 85, 063813 (2012)

Tuning the scale factor and sensitivity of a passive cavity with optical pumping
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The pushing of the Fabry-Perot cavity modes by an intracavity medium of Rb vapor may be tuned with optical
pumping. A second laser, propagating through the Rb vapor orthogonal to the intracavity beam, is used to modify
the optical transmission of the Rb vapor. We demonstrate that the cavity scale factor may be switched from S > 1,
on one side of its pole along the gain axis, to the other side of the pole, where mode splitting occurs, simply by
changing the pumping transition. Continuous tuning of the cavity scale factor and sensitivity may be realized by
varying the intensity and/or frequency of the pump beam.
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I. INTRODUCTION

In a recent paper [1], the phenomenon of mode pushing
in a Fabry-Perot cavity by an intracavity medium with an
absorption resonance was demonstrated. In the region of
the absorption resonance, the peaks of the cavity modes are
displaced from their empty cavity positions by an amount
which depends on the anomalous dispersion associated with
the medium’s resonance. It was shown that the mode pushing
is further enhanced by the variation in the absorption across the
finite width of the cavity mode profile. When the modes are nar-
row compared to the atomic resonance, the mode positions are
predicted by the standard mode pulling expressions [2–5] and
there is no net enhancement in cavity sensitivity, defined here
as the ratio of the scale factor enhancement to the normalized
mode width. On the other hand, for mode widths comparable
to the atomic linewidth, the modes can be reshaped, effectively
pushing them even farther from the resonance and resulting in
a net enhancement in sensitivity. These effects have particular
relevance to optical ring cavity devices, in particular to optical
gyroscopes and to ring laser gyroscopes. For these sensors
the mode-pushing phenomenon may be used to enhance
both the magnitude of the response to rotation (scale factor) and
the signal-to-noise ratio [6–9]. Other potential applications in-
clude dispersion-enhanced optical interferometers for gravity
wave detection, precision measurements of the Lense-Thirring
frame-dragging effect [10], and enhanced strain sensing with
an optical cavity [11].

Even though application of dispersive media to optical
gyroscopes involves measuring the modified Sagnac effect in a
rotating ring cavity, the essential physics of the mode pushing
due to the intracavity dispersive medium can be studied simply
with a one-dimensional cavity, for example, a Fabry-Perot
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cavity with tunable spacing. Neither is a high-finesse cavity
required. In fact, a low-finesse cavity has the advantage that
its mode widths are comparable to Doppler-broadened Rb
transition linewidths, making observation of the dispersion en-
hancement considerably more straightforward, by maximizing
the reshaping effect and increasing the bandwidth over which
the dispersion enhancement occurs. Moreover, unlike the case
of a laser where any anomalous dispersion that is introduced
into the cavity by an absorbing medium is offset by increased
normal dispersion in the gain medium, which necessitates
the use of nonlinear and/or coherent mechanisms to observe
the dispersion enhancement [9], in a passive cavity such a
cancellation is precluded and the dispersion enhancement of
the cavity can be readily observed with linear media.

For typical Gaussian or Lorentzian absorption resonances,
the magnitude of the anomalous dispersion may be related to
the on-resonance transmission, τ0, and resonance width, γ . In
conjunction with these medium parameters, the optical path
length in the cavity, and loss factors of the cavity uniquely
determine the cavity mode structure, with no dependence on
intensity for a linear medium. Atomic vapor cells, used as
the resonant intracavity medium, provide several desirable
properties for investigating the enhancement of the scale
factor and sensitivity, including a stable resonance frequency
and a room-temperature Doppler-broadened resonance width
compatible with the free spectral range (FSR) of tabletop
optical cavities. Also, at low intensities relative to the sat-
uration intensity of the relevant transition(s), the medium
response is approximately linear. Previous studies using a
Doppler-broadened resonance of hot alkali-metal vapor at high
absorption (strong atom-cavity coupling) have demonstrated
the phenomenon of mode splitting in a nonlinear regime [12].
In our earlier work using vapor cells containing isotopically
pure 87Rb at room temperature and of two different cell lengths
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(3 and 8 cm), we demonstrated two types of cavity mode
behavior near resonance in the approximately linear regime:
fixed mode-pushing enhancement, and mode splitting.

The alkali-metal atomic vapor also enables modification
of τ0 by optical means. Optical hyperfine pumping between
the two ground hyperfine levels may be used to increase or
decrease the density of the atoms in the lower level seen by the
cavity probe beam. Since the hyperfine pumping efficiency
increases monotonically with the pump beam intensity, the
pump intensity provides a useful control parameter for tuning
the cavity scale factor. Furthermore, the time scale for changing
τ0 with optical pumping can be on the order of 1 μs or less,
with moderate pump intensities. This allows for rapid tuning
of the cavity optical response, which can be important for
gyroscopic applications in high-dynamic-range environments.
Although optical pumping modification of τ0 is essentially a
nonlinear phenomenon, when the pumping beam is orthogonal
to the probe beam, the pumped intracavity vapor behaves as
a linear medium with respect to the cavity transmission of
the probe beam for weak probe intensity. In this paper, we
demonstrate that optical pumping of the 87Rb atom may be
used to change τ0 in a manner which is relatively independent
of the resonance width and the empty cavity mode width and
thereby achieve continuous tuning of the cavity scale factor
and sensitivity. With this method, we demonstrate tuning the
scale factor across its pole along the net gain axis, going from
the region of enhanced but finite scale factor, S > 1, to the
region of mode splitting, utilizing the same vapor cell. We
discuss the behavior of S with the round-trip field gain in the
cavity, g, and obtain an expression for the critical gain at which
the pole occurs. We also discuss the limits of tuning g with
optical hyperfine pumping and the time constant associated
with this technique.

II. CAVITY SCALE FACTOR AND SENSITIVITY

Figure 1 shows the pushing of the cavity modes in the
vicinity of a Gaussian optical resonance, for a Fabry-Perot
cavity with an intracavity resonant medium. Physically, the
shift in the cavity mode peak is due to a reshaping of the cavity
mode near the resonance, both from the medium dispersion,
n(�), and the variation of absorption, α(�), across the width
of the mode profile, with � being the detuning of the weak
input laser from the resonant frequency of the medium,

� ≡ ωL − ω0,

where ω0 is the resonant frequency of the medium and ωL is
the laser frequency. The reshaping of the cavity mode may
be treated, to first order, as a displacement of the peak and
broadening of the feature. In addition to displacement of the
peak and broadening of the mode profile, the phenomenon of
mode splitting may also occur [Fig. 1(d)].

In order to discuss these effects quantitatively, we establish
our notation and define some terms. Consider first an empty
cavity, with mode peak frequencies, ωp,ec,, where p is the
mode index. The frequencies may be given as offsets from the
resonance frequency, ω0,

δp ≡ ωp,ec − ω0.
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FIG. 1. (Color online) Cavity mode pushing and broadening by
an intracavity resonant medium. The dashed curves show the empty
cavity transmittance vs input laser detuning, �, for different detunings
of an empty cavity mode from resonance. The solid curves at the top of
each graph show the medium (single-pass) transmittance profile, and
the solid curves at the bottom of each graph show the resulting cavity
transmittance due to the presence of the resonant medium. In (a) an
empty cavity mode peak coincides with the peak of an absorption
resonance, δp = 0, leading to a broadened and attenuated dispersive
cavity mode. In (b) and (c) the empty cavity mode is detuned from the
absorption peak by δp = ±γ /4, leading to dispersive cavity modes
which are not only attenuated and broadened, but also have enhanced
shifts in the peak positions. In (d) the mode detuning is δp = 0 again,
but the medium transmission, τ0, has been further decreased, leading
to mode splitting. The particular value of τ0 at which mode splitting
occurs depends on the resonance width and cavity parameters.

Similarly, the corresponding pushed modes in the same cavity
containing a dispersive medium have offsets given by

�p ≡ ωp − ω0,

where ωp is the angular frequency of the mode peak for
the dispersive cavity. The medium is assumed to contain a
single absorption resonance in the optical frequency region of
interest.

Figure 2 shows the pushed mode detuning as a function of
the empty cavity mode detuning, �p vs δp, for a Fabry-Perot
cavity with an intracavity dispersive medium. In a region of δp

about the absorption resonance, �p is dramatically enhanced.
When the medium absorption is not strong enough to result in
mode splitting, there is a one-to-one mapping between each
empty cavity mode and a dispersive cavity mode. The cavity
scale factor enhancement for a given mode p, may then be
defined as

Sp ≡ S(δp,g) ≡ d�p

dδp

. (1)

For certain values of the round-trip field gain, g(�), the
cavity scale factor enhancement at the resonance frequency
can be increased dramatically and indeed become infinite.
This is true even in the case of the passive cavity with
a single beam, for which g(�) is always less than 1, as
shown in Fig. 1. Furthermore, the width of the mode(s)
nearest the resonance remains bounded by the combination
of dispersion and absorption. Then it has been shown that the
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FIG. 2. (Color online) Pushed mode detuning, �p, vs the empty
cavity mode detuning, δp , for cavity mode p. The curves correspond
to various choices of the round-trip field gain. The diagonal line
represents the case of the empty cavity, �p = δp . The solid curve
shows the effect of a dispersive medium with an absorption resonance
at δp = 0. For this case, the dispersive cavity has a much larger
shift in its mode position near the resonance than an empty cavity
mode due to a change in length of the cavity. At δp = 0, the
cavity has a scale factor of S(δp = 0) = 3.4. The dashed curve
shows the effect of decreasing the round-trip gain below a critical
value. If the on-resonance transmission of the medium, τ0, is low
enough, the cavity mode splits into two peaks.

cavity sensitivity may also be enhanced. We define sensitivity
enhancement as

ζp ≡ Sp

Wp

, (2)

where Wp is the mode width for dispersive cavity mode p,
normalized to the empty cavity mode width. The sensitivity
enhancement, ζp, is related to the signal-to-noise ratio in the
measurement of mode offsets. Analytic expressions for Sp

and Wp were given in [1] for the case of a Fabry-Perot cavity
containing a dispersive medium and are reproduced here in the
present notation,

S(δp,g) = 1

n̂g(�p) + (1/tc)[dF (�p,g)/d�p]
, (3)

where n̂g is the effective group index of the medium, tc is the
empty cavity round-trip time, and F (�p,g) is an equivalent
additional phase shift, given by

F (�p,g)

= − arcsin

[
1 − g(�p)2

2g(�p)

1

tcn̂g(�p)

d ln[τ (�)]

d�

∣∣∣∣
�=�p

]
.

(4)

The physical origin of the additional phase shift, F , for a finite
width cavity mode, is seen to be the group velocity dispersion,
arising from the d ln(τ )/d� term in the above equation.

Both the scale factor enhancement, Sp, and the sensitivity
enhancement, ζp, may be computed for a given mode detuning,
δp, when the above expressions are combined with the
transcendental expressions for the dispersive cavity mode peak
detuning and mode width, derived from the dispersive cavity
transmittance. The dispersive cavity mode peak detuning is

given by

�p = δp − (1/tc)[	(�p) + F (�p,g)], (5)

where 	 is the additional round-trip phase shift in the cavity
due to the dispersive medium. Under the assumption of linear
dispersion, the above expression may easily be shown to
be equivalent to the standard expression for mode pulling
[2–5,7] in the limit where the reshaping factor F goes to
zero, i.e., when the cavity mode width is much narrower than
the atomic resonance linewidth, for example, in the case of a
laser. The full width at half maximum for the pth mode in the
dispersive cavity may be determined from the detunings of the
half maxima of the transmittance function and are given by
solution of

�±,p = δp − (1/tc){	(�±,p)

∓ 4π arcsin[
√

z(�p,�p±1) − y(�±,p)]}, (6)

with the definitions for z(�p,�p±1) and y(�±,p) given in [1].
Our earlier work made use of a resonant transition in 87Rb

vapor at room temperature. The optical resonance from this
medium possessed a spectral width, γ , and peak field round-
trip transmission value, τ0, which were well-matched for
demonstrating scale factor enhancement and cavity sensitivity
enhancement for compact optical cavities with FSR of ∼1 GHz
or greater. The resonant transmission, τ0, is a critical parameter
in observing enhancement of the cavity scale factor and
sensitivity, because it is related to the on-resonance net gain
via g0 = raτ0, where r and a are frequency-independent cavity
parameters, representing the round-trip mirror reflection and
internal field attenuation, respectively. When τ0 ≈ 1, there is
little effect on the scale factor associated with the intracavity
medium. When τ0 is much less than unity, an empty-
cavity mode coinciding with the resonance can be split into
two modes [see Fig. 1(d)], displaced in opposite directions. The
modes are also highly attenuated due to the strong absorption
that accompanies the low transmittance. For intermediate
values of τ0, the cavity sensitivity is enhanced without mode
splitting [13].

III. CRITICAL GAIN: SENSITIVITY AND
SCALE FACTOR POLE

We consider only a nonamplifying cavity with an intracavity
resonant medium. For such a cavity, the net round-trip field
gain falls in the range, 0 < g0 < 1. Figure 3 shows the
behavior of the on-resonance values of the cavity scale factor
enhancement, S0 ≡ Sp(δp = 0), the normalized mode width,
W0 ≡ Wp(δp = 0), and the cavity sensitivity enhancement,
ζ0 ≡ ζp(δp = 0), as a function of g0. The mode width, W0,
is normalized to the empty cavity mode width and remains
finite for all values of the gain. Two noteworthy values on
the gain axis are the critical gain, g0 = gc, and the gain at
which the medium becomes amplifying, g0 = ra. The scale
factor and sensitivity have poles at the critical gain, gc. For
values, g0 < gc, mode splitting occurs and the definition of
S becomes ambiguous. For g0 > gc, S0 falls until it reaches
unity at g0 = ra. At this point, the medium transmission is
unity: τ0 = 1, and S0 = W0 = ζ0 = 1, which is equivalent to
the empty cavity case. When the intracavity medium begins to
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FIG. 3. (Color online) On-resonance behavior of scale factor
enhancement, S0 (solid), normalized mode width, W0 (dashed), and
sensitivity enhancement, ζ0 (dotted), versus cavity round-trip field
gain on resonance, g0. For our choice of cavity parameters and
absorption resonance width of �α = 2π (0.564L/c), the critical gain
occurs at gc = 0.278 (solid vertical line). Note that S0 = W0 = ζ0 =
1, when g0 = ra (dashed vertical line). At this point, the medium
becomes transparent, τ0 = 1, resulting in the empty cavity case. As the
medium begins to amplify the intracavity field, the mode width, W0,
narrows, and the medium has normal dispersion, resulting in S0 < 1.
However, the sensitivity increases as the cavity lasing threshold is
approached. Measurements of S0 using a 3-cm 87Rb vapor cell under
different pumping conditions are indicated by the two points (solid
circles) on the graph.

amplify, g0 > ra, the scale factor enhancement continues to
decrease below 1. However, the sensitivity enhancement, ζ0,
has another pole at the lasing threshold of the cavity, g0 = 1,
owing to the rapid narrowing of the mode width with increasing
gain.

The common pole for S0 and ζ0 occurs at the critical gain
value given by

gc = χ +
√

1 + χ2, (7)

where χ ≡ −(n̂g(0)tc)2τ (0)/τ ′′(0) is a parameter that depends
only on absorption and dispersion and not on the cavity
parameters r and a and τ ′′ is d2τ/dω2. We may express χ

directly in terms of the material absorption and dispersion,
α(�) and n(�), using the relations given in [1],

χ = 2



(
tc + k0

dn(�)

d�

)2 (
d2α(�)

d�2

)−1
∣∣∣∣∣
�=0

, (8)

where  is the round-trip path length in the medium, α(�)
and n(�) are related through the Kramers-Kronig dispersion
relations, and � is the detuning of the intracavity field from the
resonance frequency, ω0. For a Gaussian absorption resonance,
we may evaluate the expression for χ using the analytic
expressions for α(�) and n(�),

α(�) = α0 exp
[ − 4 ln(2)�2/�2

α

]
, (9)

where α0 is the peak absorption coefficient and �α is the full
width at half maximum (FWHM) of α(�). Note that �α should
not be confused with the FWHM of the transmittance profile,
γ , although the two are related through the medium length.

From the Kramers-Kronig relations [14], the corresponding
analytic expression for the dispersion is

n(�) = Re

{
1 + i

cα(�)

2(� + ω0)
erf

(
i2

√
ln (2)

�

�α

)}
. (10)

Using the above, we obtain a convenient formula to compute
χ in terms of the two resonance parameters, α0 and �α , and
the two lengths, L and , the cavity round-trip length and the
medium round-trip length, respectively,

χ = �2
α

4 ln
(

1
2

) (
1

α0

) (
L

c
− 2α0√

π �α

√
ln(2)

)2

. (11)

The critical gain is sensitively dependent on the width and
depth of the absorption resonance. For fixed cavity parameters,
L, r , and a, Eqs. (7) and (11) lead to a transcendental equation
in the resonant round-trip transmission, τc, needed to achieve
critical gain, gc,

raτc = �2
α

8 ln (2) ln (τc)

(
L

c
+ 4 ln (τc)√

π�α

√
ln (2)

)2

. (12)

For the cavity parameters used in this work, a FSR of
c/L = 981 MHz, r = 0.62, and a = 0.83, and using �α =
2π (555 MHz),corresponding to the absorption resonance
width of the 87Rb F = 1 → F ′ Doppler-broadened resonance
near room temperature (T ≈ 24 ◦C), equation (12) yields
τc = 0.538, or a critical gain of gc = 0.278, consistent with
the theoretical calculation of S0 shown in Fig. 3. Note that
this critical value of gain corresponds to an effective group
index of n̂g(0) = 0.672, much greater than the value of
n̂g = 0 predicted in [6] for the critical anomalous dispersion.
The discrepancy arises due to the effect of the variation of
absorption with �, across the finite width of the cavity mode,
which was not considered in the earlier work.

Figure 3 also shows the operating points of measurements
performed in the 3-cm Rb vapor cell. With the longer 8-cm
cell, the low transmission, τ0 = 0.29, on resonance with the
Doppler-broadened F = 2 → F ′ transitions placed us to the
left of the scale factor pole, g0 < gc, well into the mode-
splitting regime. On the other hand, when a shorter 3-cm cell
was used, τ0 became high enough to place us near the pole
on the opposite side, g0 > gc, giving both an enhanced scale
factor, S0 = 2.4, and an enhanced sensitivity, ζ0 = 1.4, for the
chosen experimental parameters.

We note also that, for a given g0, the range of δp over which
the scale factor enhancement occurs, i.e., the bandwidth of
scale factor enhancement, depends not only on the width of
the resonance profile, γ , but also on the value of S0. Figure 4
shows the dependence of Sp vs δp, with a width denoted by ws .
As S0 is increased, by decreasing τ0, the width ws decreases.
Although we have not obtained an analytic expression for the
width ws , numerical calculation of the scale factor-bandwidth
product, S0ws , shows that it is approximately constant in the
region gc < g0 < ra, except near the end points.

IV. TUNING VIA OPTICAL PUMPING

Our earlier analysis modeled the atomic vapor as an
inhomogeneously broadened collection of identical two-level
atoms and ignored saturation and pumping effects, even though
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FIG. 4. (Color online) Scale-factor dependence on empty cavity
mode detuning, S(δp,g) vs δp , for several gain values, g(0), and our
cavity parameters and resonance width (see Fig. 3). The scale factor
enhancement is unity at large mode detunings, shown in units of
cavity FSR, and has a maximum, S0, when the empty cavity mode
exactly coincides with the absorption resonance of the medium. The
three curves show S(δp,g) for (a) g0 = 0.279, S0 = 47 (dotted line);
(b) g0 = 0.306, S0 = 4.0 (solid line); and (c) g0 = 0.398, S0 = 1.4
(dashed line).

the D2 transition in 87Rb at room temperature involves multiple
transitions between the multiple hyperfine and Zeeman levels.
Homogeneous broadening via power-broadening was also
ignored since the intracavity intensity was measured to be
below the saturation intensity [15]. Even in the absence of
significant saturation effects by the intracavity beam, pump-
probe effects due to optical pumping may modify the effective
absorption and index of refraction presented by the medium.
The richness of optical pumping effects involving the transfer
of an atom between its ground hyperfine levels and Zeeman
sublevels, via an optical transition to an excited state, affords
us a great deal of flexibility in tailoring the response of the
medium to the intracavity field and, therefore, tuning the cavity
response. Optical pumping by a second laser may be used to
either increase or decrease the effective atom density seen
by the probe (intracavity) beam. Figure 5 shows the four
different combinations of pump and probe transitions used
in our experiments. Optical pumping between the F = 1 and
F = 2 ground levels can occur via excitation to and decay
from the upper F ′ = 1 and F ′ = 2 hyperfine levels.

An upper limit on the tuning range of τ0 and, consequently,
g0, afforded by the optical pumping method can be estimated
by making the simplification that the atoms have a Maxwellian
distribution of longitudinal velocities, vl , i.e., velocity with
respect to the intracavity beam, but have zero transverse
velocity, vt (zero velocity with respect to the pump beam).
Then the incoherent rate equations describing the laser-atom
interaction with the multilevel atom may be applied to a single
velocity group, vt = 0, over the practical range of intensity.
The change in atom density in a given lower hyperfine level,
and the accompanying change in absorption coefficient seen by
the cavity probe beam, due to the presence of the pump beam,
may be obtained as a function of time. Since the pumping of
an atom which transits through the pump and probe regions
depends on the interaction time of the atom with the pump

(a) (b)

FIG. 5. (Color online) Optical pumping schemes for the 87Rb D2

transition. (a) For the intracavity field tuned to F = 2 → F ′ (thin
arrow), the pump beam (thick arrow) may be tuned to the F = 1 →
F ′ to increase the population of the lower F = 2 hyperfine level,
decreasing τ0 for the intracavity field, or the pump beam may be
tuned to F = 2 → F ′, to decrease the population of the lower F = 2
level, increasing τ0 for the intracavity field. (b) Similarly for the
intracavity field tuned to F = 1 → F ′, the pumping transition may
be selected to either decrease τ0 or to increase τ0. A linearly polarized
pumping beam is used, and the degree of pumping is controlled by
adjusting the intensity of the pump beam. Multiple hyperfine levels
and Zeeman sublevels participate in the pumping process.

beam, it is not the steady-state solutions to the rate equations
which are of interest. Rather, the populations most relevant
to the experiment are the solutions of the rate equations at the
particular time which represents the average interaction time of
the atom in the pump beam. Figure 6 shows the time-dependent
populations for one of the cases described in Fig. 5 at a given
pump intensity. The change in atom density, for the given
lower level of the intracavity field, can then be estimated
as a function of time. The fractional change in the resonant
absorption coefficient is given by

�α0

α0
= nF − nF,0

nF,0
, (13)
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FIG. 6. (Color online) Time-dependent populations for optical
pumping. The populations of the lower F = 1 and F = 2 levels are
shown in the presence of a pumping beam tuned to the F = 1 → F ′ =
2 transition in 87Rb. The initial populations are thermal equilibrium
values at room temperature. An eight-level model, including Zeeman
sublevels, was used to compute the dynamics. Shown in the graph
are the sum of the F = 1, mF sublevel populations (solid line) and
the population of the F = 2 level (dashed line). Nearly complete
pumping is achieved for an atom with transverse velocity, vt = 0,
within a pumping time of 2 μs.
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FIG. 7. (Color online) Single-pass transmittance versus laser detuning from resonance (�). (a) The middle curve is the transmittance of the
vapor cell with no repumping beam, with a single-pass transmittance of 0.52, corresponding to a round-trip τ0 = 0.52, while the transmittance
below and above correspond to the two cases shown in Fig. 5(a), with the pumping beam (〈I 〉 ∼ 2mW/cm2) on the F = 1 → F ′ transition
(τ0 = 0.47) and F = 2 → F ′ transition (τ0 = 0.58), respectively. The resonance widths also change with the repumping beam parameters, by
about 2%. Given ra = 0.458 for our experiment, we can tune the cavity round-trip field gain over the range 0.22 < g0 < 0.26. (b) For the case
of the intracavity laser field tuned to the F = 1 → F ′ transition, with the pumping beam on the two different transitions shown in 5(b), we
obtain a tuning range 0.25 < g0 < 0.34.

where nF is the time-dependent population of the lower
hyperfine level, F , for the intracavity probe beam, and nF,0

is the initial population at the beginning of optical pumping.
Nearly complete pumping occurs on a time scale of 2 μs for the
parameters used in the calculation of Fig. 6. This is the same
order of magnitude as the transit time of an atom in the pump
beam, for a thermal vapor and pump beam diameters of a few
mm. Thus, even at pump beam intensities on the order of the
typical saturation intensity for closed transitions, the atom will
be fully pumped. For any (lower) pump intensity, complete
optical pumping will occur for a long-enough atom-pump
interaction time. Therefore, to evaluate the tuning limits,
we may assume the atom becomes fully pumped and take
nF = n0, where n0 is the total atom density. Assuming thermal
equilibrium, nF,0 is given by

nF,0 = 2F + 1∑
f (2f + 1)

, (14)

where f = 1,2 for 87Rb. For complete pumping, nF will be
either 0 or n0, depending on the selected pumping transition.
Then the quantity �α0/α0 has a theoretical maximum tuning
range from −1 → 5/3 when the intracavity field (probe) is
tuned to the F = 1 → F ′ transitions and a maximum tuning
range from −1 → 3/5 when the probe is tuned to the F =
2 → F ′ transitions. A measurement of α0 for the probe beam
can then be used to determine the theoretical maximum tuning
range of τ0, via optical pumping in 87Rb. For example, single-
pass transmittance measurements made at low probe power in
a 3-cm vapor cell, given in Fig. 7, yield α0 = 13.9 m−1 for the
F = 1 → F ′ probe, and α0 = 21.5 m−1 for the F = 2 → F ′
probe. Thus, τ0 has a theoretical maximum tuning range for this
cell and probe beam of 0.33 → 1 for the F = 1 → F ′ probe
and a slightly reduced maximum tuning range of 0.36 → 1 for
the F = 2 → F ′ probe.

Quantitative estimates of the tuning range in τ0 in a true
thermal vapor are more difficult to compute. The problem
does not have to do with simply having to compute the
pumping effects over the entire range of transverse velocities.

For a narrow linewidth pump laser, velocity-selective optical
pumping predicts the transfer between ground-state hyperfine
levels of only narrow velocity groups, vt , as shown in Fig. 8.
Since vt is independent of vl, these velocity groups constitute
only a small fraction of the atoms seen by the intracavity
field. Hence, one might expect that transverse optical pumping
would not lead to sizable changes in τ0. Frequency mod-
ulation of a laser as a means of achieving high efficiency
pumping in a thermal vapor of alkali-metal atoms has been
studied [16].
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FIG. 8. (Color online) Velocity-selective optical pumping with a
π -polarized pump beam locked to the F = 2 → F ′ = 2 transition.
The calculated relative number density of ground-state 87Rb atoms is
shown as a function of the atom velocity, with respect to the pump, for
the two ground hyperfine levels. Two narrow velocity groups from the
lower F = 2 level are transferred to the lower F = 1 level. A pump
beam intensity of 2.0 mW/cm2 and an atom-pump interaction time
of 1.5 μs were used in the calculation. The incoherent rate equations
for the level populations were solved numerically, using all relevant
Zeeman sublevels in the F = 1, F = 2, and F ′ = 2 hyperfine levels.
With the pump beam locked to the F = 1 → F ′ = 2 transition, the
dips in the above figure become spikes, and vice versa, although not
with the same magnitudes.
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In practice, significant changes in the effective atom density
seen by the intracavity field occur even when using a narrow
linewidth pump laser in the transverse configuration. Two
effects, which are dependent on the details of the pump beam
and vapor-cell geometry, conspire to diminish the effects of the
velocity-selective optical pumping: (1) ineffective relaxation
of the atom’s internal state after a wall collision and (2)
velocity-changing collisions due to atom-wall collisions and,
to a lesser extent in low-pressure vapor cells, atom-atom
collisions during the measurement time. If the collision of
a pumped atom with the vapor-cell wall is not effective at
rethermalizing the internal state of the atom, the assumption
that the atom enters the pump beam in a thermal equilibrium
state, that is, with all hyperfine sublevels populated according
to the Boltzmann distribution, is invalid for the rate equation
calculations. Furthermore, if a velocity-changing collision
occurs for the pumped atom so that the velocity, vl , is scattered
to a new longitudinal velocity, v′

l , then the effective density of
pumped atoms, seen by the intracavity field, increases. Such
effects have been noted previously [17] and are consistent
with our observations of the change in τ0 using a transverse
pump beam. Fortunately, these effects are beneficial, rather
than detrimental, for tuning the cavity response via optical
pumping.

Figure 6 shows the time-dependent populations of the
two lower hyperfine levels in the transition diagrams of
Fig. 5. The populations were computed for a pump beam
on the F = 1 → F ′ = 2 transition and a probe beam on the
F = 2 → F ′ = 3 transition. In general, for π -polarized pump
and probe beams inducing these transitions, a 16-level model
is needed to account for the effects of Zeeman pumping.
However, our calculations showed that inclusion of Zeeman
pumping effects did not significantly alter the time scale
for transfer of population from the F = 1 to the F = 2
lower hyperfine levels. We used, instead, an 8-level model
to include the Zeeman sublevels of the lower F = 1 level, a
single effective lower F = 2 level, the three relevant Zeeman
sublevels of the upper F ′ = 2 level, and a single effective
upper F ′ = 3 hyperfine levels. In Fig. 6, the intracavity probe
beam intensity was taken to be zero to investigate the low
intensity probe limit. Hence, the dynamics induced by the
probe beam are not relevant for this figure, and the F = 2 and
F ′ = 3 level populations need not be tracked. The intensity
of the pump beam was taken to be 2 mW/cm2. For the
temperature of our experiment and our relevant beam width
for the repumping beam, the average drift time for an atom
in the repumping beam, prior to entering the cavity probe
beam, was approximately 1.5 μs. Hence, nearly maximum
optical pumping efficiency is achieved for a single velocity
group.

V. EXPERIMENT

The single-pass transmittance spectra of the vapor cell,
outside of the cavity, are shown in Fig. 7 for the two
sets of Doppler broadened hyperfine transitions, F = 1 →
F ′ and F = 2 → F ′. For each case, repumping may be
used to either increase or decrease the population of the
level, depending on which lower level is resonant for the

pump beam transition. Figure 7 shows that the on-resonance
transmittance, τ0, may be increased or decreased by the
presence of the repumping beam, about the value of τ0 in the
absence of the pump beam. These single-pass transmittance
measurements of the resonance, made without the optical
cavity, give a good idea of the tunability of τ0, but may not
coincide exactly with the actual conditions of the experiments
performed with the cavity, owing to reproducibility of the
vapor-cell temperature, and the difference in intracavity beam
intensity compared to the single-pass intensity, discussed
below. It should be noted that the repumping beam does not
significantly alter the resonance width. Hence, the anomalous
dispersion will also change inversely with the change in
transmittance.

The mode-pushing experiment is shown in Fig. 9 and
the basic method of obtaining the cavity mode spectra is
the same as in our earlier work. However, a second narrow
linewidth laser (linewidth of ∼1 MHz) provides a pump beam
of adjustable intensity and locked-in frequency to one of the
four cases shown in Fig. 5. The pump beam is first expanded
and then focused via a 15-mm-focal-length cylindrical lens
into a line inside the intracavity vapor cell (see Fig. 9). Note
that the propagation direction of the pump beam is orthogonal
to that of the probe beam, and the focused line is parallel
with the probe beam. The focused line extends across a 1/e

width of 6 mm in the transverse direction, along the length
of the cell, and a 1/e width of 0.25 mm in the vertical
direction, along the direction of focus. With a typical power

FIG. 9. (Color online) The experimental configuration shown
above includes a tunable diode laser which acts as the intracavity
probe laser and a frequency-locked pump laser to produce optical
hyperfine pumping of atoms in the intracavity 87Rb vapor cell.
Separate saturated-absorption spectrometers provide a frequency
scale for the swept probe laser and a frequency reference for
locking the pump laser. A Michelson interferometer, with unequal
arm lengths, provides a fringe pattern useful for frequency scale
linearization, as the probe laser is swept in frequency. The cavity
mode profile is observed by recording the Fabry-Perot transmittance
as the probe laser is swept. The peak transmission of the intracavity
cell is adjusted above or below that of the unpumped vapor cell by
selection of the saturated-absorption resonance to which the pump
laser is locked and tuned continuously via the variable attenuator
(VA). Additional elements in the setup include optical isolators (ISO),
a beam expander (BE), and a cylindrical lens (CL).
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in the pump beam of 12 mW, the average pump intensity
near the probe beam is determined to be 38 mW/cm2. The
average pump-beam intensity across the entire cell is roughly
2 mW/cm2. The average pump intensity is significant, since
our optical pumping calculations show that, even at such
low pump intensities, the atom can be nearly completely
pumped for short interaction times of a few microseconds.
Thus, the pumping for resonant atoms during their transit time
into the probe field, is nearly complete. The orthogonality of
the pump beam with the probe beam means that all velocity
groups sampled by the probe beam are pumped; that is, while
velocity-selective pumping occurs along the pump propagation
axis (z), the pumping is not velocity-selective along the probe
propagation axis (x). As a consequence of this arrangement,
no additional resonances occur in the probe spectrum. In
contrast, using a collinear pump and probe configuration gives
rise to additional velocity-selective pumping resonances in
the probe spectrum [18,19]. For the measurements presented
here, we used only the 3-cm, isotopically pure 87Rb vapor
cell.

The pump and probe beams were overlapped; however, it
was not necessary that the focused line of the pump beam
intersect perfectly with the probe beam. By varying the
position of the cylindrical lens along the z axis, we could
control the displacement of the focused pump beam within
the cross section of the probe profile. The optimum position
of the focused pump, to obtain the maximum change in the
cavity mode peak, was determined by repetitively sweeping
the probe laser frequency through the cavity mode nearest
resonance and observing the mode height while positioning
the pump focusing lens.

Determination of the plane parallel Fabry-Perot cavity
parameters, r and a, was discussed in our previous work [1].
Due to degradation of the mirror coatings used previously, new
substrates were coated with thin gold films of about 60 nm.
The present values of r and a were found to be 0.62 and 0.83,
respectively. For the results reported in this work, the empty
cavity round-trip length, L, was 0.31 m, and the finesse of the
cavity, with the intracavity vapor cell included, was measured
to be about 5.5 at a detuning of several GHz off resonance. The

probe beam intensity, as in our earlier experiment, was kept
low to avoid strong saturation effects on the absorption line
shape. For the probe tuned to the F = 2 → F ′ transition, the
incident optical intensity onto the cavity was approximately
60 mW/cm2. Despite the large input intensity with respect
to the saturation intensity (Isat = 3.0 mW/cm2) for 87Rb on
the F = 2 → F ′ = 3 transition, the intracavity intensity, as
inferred from the transmitted intensity off the cavity mode
peak on resonance, was ∼0.03 mW/cm2, more than an order
of magnitude below Isat, typically. The low intracavity laser
intensity, relative to the incident intensity, is attributed to
the effective values of r and a for our cavity. The effect
of the nonlinear intensity-dependent absorption of the medium
on the scale factor enhancement, S0, has not been studied in
detail, and we plan to provide experimental and theoretical
results on this effect elsewhere.

VI. RESULTS

Cavity mode shifts using a 3-cm, isotopically pure 87Rb
vapor cell were measured with and without the optical pumping
beam [20]. Data were obtained with all four pumping cases
shown in Fig. 5. For the intracavity probe beam swept
through each of the two Doppler-broadened transmission
resonances, the repumping beam is locked to one of two
different hyperfine transitions: one which results in increased
ground-state population seen by the probe (decreased τ0)
and one which results in decreased ground-state population
seen by the probe (increased τ0). Measured dispersive cavity
mode-shift curves, �p(δp), are shown in Figs. 10 and 11.
The empty cavity detunings δp were determined from modes
that were off resonance by a few FSRs near the end of the
frequency scan. Consequently, the error in the δp values was
dominated by frequency scale nonlinearity. On the other hand,
measurements of dispersive cavity detunings �p were limited
to the region near resonance where the frequency scale was
approximately linear. The error in the �p values was, therefore,
dominated by the resolution of mode peak positions. The
measured mode shifts vs empty cavity mode detunings were
fit by the theoretical model for �p, given in [1], using two
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FIG. 10. (Color online) Mode-shift measurements for the F = 1 → F ′ intracavity probe field: (a) data (circles) and fit (solid line) for a
3-cm cell with no pump beam present (S0 = 4.0), (b) data (squares) and fit for 3-cm cell with pump beam locked to the F = 1 → F ′ = 2
transition (S0 = 1.59), and data (triangles) and fit with the pump beam locked to the F = 2 → F ′ = 2 transition (mode-splitting region). The
dashed line, shown for reference, is the empty cavity response.
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FIG. 11. (Color online) Mode-shift measurements for the F =
2 → F ′ intracavity field. Data (squares) and fit (solid line) for the
pump beam locked to the F = 2 → F ′ = 2 transition reveal that
decreased absorption by the medium pushes the operating point away
from the critical gain sufficiently to give a finite but enhanced scale
factor, S0 = 14.8. With the pump locked to the F = 1 → F ′ = 2, the
absorption has increased sufficiently to observe clear mode splitting
in the data (triangles).

fitting parameters: the peak absorbance, α0, and an offset for
the δp values, δof s , to account for a possible systematic error
in the determination of the empty cavity mode detunings. The
cavity parameters, r , a, and tc were fixed to experimentally
determined values, given previously. Also, the resonance
width, �, was fixed to the experimentally determined width
for the corresponding resonance (see Fig. 7). From the
fitted �p vs δp curve, we obtained the best fit estimates
of τ0, S0, and the normalized mode width at zero detuning,
W0. Estimated uncertainties in the fitted parameters, and
parameters derived from these values, were determined from
the uncertainties in the �p [upper limit of ±2π (4 MHz)] and
δp [±2π (5 MHz)] values.

Measurements for the unpumped vapor cell are shown
in Fig. 10(a). For these data, the cavity modes are detuned
about the D2, F = 1 → F ′ Doppler-broadened resonance.
The fitted values are τ0 = 0.592 ± 0.007, S0 = 4.01 ± 0.53,
and W0 = 2.47 ± 0.05. The pair of values (τ0, S0) from
this data set is shown in Fig. 3, overlaying the predicted
behavior of S0 vs τ0. The sensitivity enhancement factor
for this data is greater than unity, ζ0 = S0/W0 = 1.62. With
optical pumping of the vapor cell, the cavity mode shifts are
substantially modified, as shown in Fig. 10(b). Two pumping
cases are shown on the graph. With the pump locked to
the F = 1 → F ′ = 2 transition, atoms in the vapor cell are
transferred from the ground-state F = 1 hyperfine level to
the ground-state F = 2 level. The pumping decreases the
density of atoms seen by the intracavity field, which interacts
with the F = 1 atoms, increasing the value of τ0. For this
case, we obtained τ0 = 0.723 ± 0.009, a reduced scale factor
enhancement of S0 = 1.59 ± 0.05 and W0 = 1.78 ± 0.04. The
sensitivity enhancement factor is now below unity, ζ0 = 0.89.
With the pump locked to the F = 2 → F ′ = 2 transition, the
density of atoms in the F = 1 lower level is increased, and
τ0 is found to be decreased to a value of 0.41, well below the
critical value seen in Fig. 3. For this case, the cavity mode
is split into two peaks, and S0, W0, and ζ0 are no longer
meaningful.

Data were also obtained with cavity modes detuned from
the D2, F = 2 → F ′ Doppler-broadened resonance, as shown
in Fig. 11. For this resonance, the unpumped vapor cell had
a large-enough absorption for the mode to be just slightly
above the splitting point. It should be noted that in our
previously reported results for an unpumped 3-cm vapor cell
[1], the absorption of the same unpumped cell was somewhat
lower, leading to a finite and small-scale factor (S0 = 2.4)
for this case. The difference in operating point between the
earlier measurements and the present ones is attributed to a
difference in the ambient temperature, leading to a sufficiently
large change in the absorption profile for the cell. Ambient
temperature variations occur on a slow time scale of hours in
our laboratory, and they are not expected to lead to variations in
absorption during the measurements on the effects of pumping
presented here. Nevertheless, temperature dependence of the
cell absorption can lead to large variations in the scale factor.
A typical operating temperature for our measurements is
T = 24.4 ◦C, with variations from day to day of a couple of
degrees Celsius.

Only data with the pump field present, corresponding
to the two cases in Fig. 5(a), are shown in Fig. 11. With
the pump beam locked to the F = 2 → F ′ = 2, the fitted
parameters were τ0 = 0.529 ± 0.009, W0 = 2.84 ± 0.07, and
S0 = 14.84 (with errors of +30.21 and −5.82), corresponding
to a sensitivity enhancement factor of ζ0 = 5.23. The sparsity
of data in the region of enhancement leads to the large
uncertainty in the fitted value of S0. Note that the pair
of values (τ0, S0) from this fit are not shown in Fig. 3
since the calculated curves in that figure are specific to the
width of the F = 1 → F ′ resonance. With the pump beam
locked to the F = 1 → F ′ = 2 resonance, the increased
population of the lower F = 2 level gives an increased
absorption (τ0 = 0.33), resulting in clearly observable mode
splitting.

VII. CONCLUSIONS

We have demonstrated tuning of the cavity response for
a cavity containing a thermal atomic vapor through the use
of optical pumping of the intracavity medium. By selecting
the pumping transition (pump frequency) and pump beam
intensity and size, we have shown that it is possible to change
the optical transmission of the intracavity 87Rb vapor, τ0, by
a sufficient amount to tune the cavity round-trip field gain
from below the critical gain, g0 < gc, to g0 well above the
critical gain. In particular, for the experiments presented here,
we have demonstrated tuning the cavity scale factor across
a range, 1 < S0 < 15, with a corresponding tuning of the
sensitivity across a range, 0.8 < ζ0 < 5.3. The entire range of
tuning was obtained in a single 3-cm 87Rb vapor cell. Although
one can also tune the cavity response by changing the finesse
of the cavity, either through the reflectivity (r) of the cavity
mirrors, or through a frequency-independent attenuation (a),
tuning with the optical pumping method has the advantage
of modifying the anomalous dispersion independently from
the empty cavity mode width; hence, optical pumping allows
for increasing the cavity sensitivity, even for a passive optical
cavity.
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