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Chirality and angular momentum in optical radiation
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This paper develops, in precise quantum electrodynamic terms, photonic attributes of the “optical chirality
density,” one of several measures long known to be conserved quantities for a vacuum electromagnetic field. The
analysis lends insights into some recent interpretations of chiroptical experiments, in which this measure, and an
associated chirality flux, have been treated as representing physically distinctive “superchiral” phenomena. In the
fully quantized formalism the chirality density is promoted to operator status, whose exploration with reference
to an arbitrary polarization basis reveals relationships to optical angular momentum and helicity operators.
Analyzing multimode beams with complex wave-front structures, notably Laguerre-Gaussian modes, affords a
deeper understanding of the interplay between optical chirality and optical angular momentum. By developing
theory with due cognizance of the photonic character of light, it emerges that only the spin-angular momentum
of light is engaged in such observations. Furthermore, it is shown that these prominent measures of the helicity
of chiral electromagnetic radiation have a common basis in differences between the populations of optical modes
associated with angular momenta of opposite sign. Using a calculation of the rate of circular dichroism as an
example, with coherent states to model the electromagnetic field, it is discovered that two terms contribute to the
differential effect. The primary contribution relates to the difference in left- and right-handed photon populations;
the only other contribution, which displays a sinusoidal distance dependence corresponding to the claim of nodal
enhancements, is connected with the quantum photon number-phase uncertainty relation. From the full analysis,
it appears that the term “superchiral” can be considered redundant.
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I. INTRODUCTION

Recently, considerable interest has been aroused by a redis-
covered measure of helicity in optical radiation—commonly
termed “optical chirality density.” This time-even, parity-odd
pseudoscalar has been shown to be key in determining, for
example, the differential absorption of circularly polarized
light in small chiral enantiomers (molecules of opposite hand-
edness), along with a host of other optically active processes.
Specifically, when considering the regular dipolar mechanisms
for optical excitation, any difference in rates of absorption
proves to be proportional to a product of the local optical
chirality—given by the spatially integrated optical chirality
density—and another pseudoscalar characterizing the inherent
chirality of the material. Originally termed the “Lipkin zilch,”
the optical chirality measures were found to be distinct
from stress energy and were initially dismissed as having
no ready physical interpretation, but were later associated
with conservation of polarization of the electromagnetic field
[1,2]. Recent work by Bliokh and Nori has uncovered close
connections between the optical chirality density and such
measures as polarization helicity and energy density [3].

Many biomacromolecules are composed of intrinsically
chiral molecular subunits, such as sugars and amino acids,
and molecular chirality is therefore often used for detection
and characterization purposes through the deployment of chi-
roptical spectroscopic techniques such as circular dichroism
(CD), optical rotation, and Raman optical activity. For this
reason, recent claims of generating and detecting “superchiral”
light, whose electromagnetic fields have a chiral dissymmetry
greater than that of purely circularly polarized light, have been
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met with enthusiasm [4]. Tang and Cohen recently assembled
an experiment to detect differential fluorescence near to one
node of a circularly polarized electromagnetic standing wave, a
region postulated to be “superchiral.” They irradiated a sample
consisting of an achiral control layer and a neighboring chiral
layer, each 10 nm in thickness, with a green (543 nm) laser
beam, the layers being set at a tilt to ensure that part of
the sample was near to a node. On the side of the sample
opposing the laser was a partial mirror reflecting the radiation,
the superposition of the counterpropagating beams generating
a standing wave [5,6]. Under such conditions, observations
of differential absorption one or two orders of magnitude
larger than expected were interpreted as a manifestation of
superchirality.

Kadodwala et al. recently provided experimental results
that were similarly interpreted as verifying the capability of the
optical chirality to identify regions of uncommonly enhanced
chiral dissymmetry. They used planar chiral metamaterials
(PCMs) comprising left- and right-handed gold gammadions
of length 400 nm and thickness 100 nm, with a 5-nm
chromium adhesion layer, deposited on a glass substrate with
a periodicity of 800 nm. Using UV-visible CD spectroscopy,
the optical properties of the PCMs were probed under various
liquid layers, and resonances in the CD spectra, associated
with the excitation of localized surface plasmon resonances,
were observed. Furthermore, it was noted that there exist
regions in which the effective chirality of the field appears “one
to two orders of magnitude larger than expected for circularly
polarized plane waves” [7]. This is in agreement with the
well known surface plasmonic amplification of local electric
fields in systems fabricated with a metal substrate, in which
the chiroptical (as well as conventional optical) response
will exhibit much larger than usual effects [8]. In support of
their conclusions, Kadodwala et al. exhibited the results of
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calculating both the electric field strengths and the corre-
sponding value of the optical chirality around the PCM [9].

One therefore has to ask what property there could be,
in supposedly “superchiral light,” that could support a higher
than usual degree of optical chirality, capable of engaging with
electronic transitions that can exhibit a discriminatory response
to opposite helicities. Because of the deep fundamental
link between optical angular momentum and chirality, the
only candidate is optical orbital angular momentum—the
counterpart spin component having a well known connection
with the circularity of polarization. In the following work we
prove that the value of the optical chirality is related only to the
helicity and spin-angular momentum of the electromagnetic
field. Any “superchiral” behavior would require the additional
engagement of the field’s orbital angular momentum [10–12];
however, we shall show that photon spin alone can engage in
circular dichroic effects; moreover we explicitly demonstrate
that orbital angular momentum cannot be responsible for the
reported effects.

II. MEASURES OF CHIRALITY IN OPTICAL RADIATION

In order to more fully understand the reported phenomenon
it is necessary to adopt a completely quantized representation
of the electromagnetic field. In this quantum optical formula-
tion the fields and related variables are promoted to quantum
operators. In particular it is appropriate to consider in detail
the optical angular momentum operator, in order to clarify the
relationship between it and other measures of electromagnetic
helicity.

In general, the angular momentum J of the electromagnetic
field can be defined as [13]

J = ε0

∫
d3r r × (E × B), (1)

where ε0 is the vacuum permittivity, r is the position vector, and
E and B, respectively, are the electric and magnetic induction
fields, implicitly evaluated at that position. It is well known
that this total angular momentum operator can be recast as the
sum of the following terms:

L = ε0r̂i

∫
d3rEl(r × ∇)iAl, (2)

S = ε0r̂i

∫
d3r(E × A)i , (3)

L signifying the orbital angular momentum for the field and S
the spin-angular momentum; A is the electromagnetic vector
potential, and the Einstein summation convention is used.
Indeed, the spin-angular momentum need not be derived from
Eq. (1) as it is known that it arises separately from Maxwell’s
equations, when intrinsic torque densities are included. It is
now shown that a mode analysis on the spin-angular momen-
tum (SAM) operator defined in Eq. (3) permits its expression in
terms of photon creation and annihilation operators a(η)(k) and
a†(η)(k). The operator for the electromagnetic vector potential
is given by

A =
∑
k,η

(
h̄

2ε0ckV

) 1
2

{e(η)(k)a(η)(k)ei(k·r)

+ ē(η)(k)a†(η)(k)e−i(k·r)}, (4)

where h̄ is the reduced Planck constant, V is the quantization
volume, and e(η)(k) is the polarization vector for a mode with
polarization η and wave vector k; the right-hand term in (4)
represents the Hermitian conjugate of the term on the left [14].
The magnetic and electric fields then emerge in operator form
through the prescription

B = ∇ × A; E = −∂A/∂t, (5)

allowing completion of the mode analysis of Eq. (3); the final
result is then delivered as

S = h̄
∑

k

{N̂ (L)(k) − N̂ (R)(k)}k̂, (6)

where N̂ (η)(k) = a†(η)(k)a(η)(k) is the photon number operator,
and L and R correspond to left and right circular polariza-
tions, respectively. As might be anticipated, the spin-angular
momentum operator depends solely on the disparity of left-
and right-handed photon populations. In the detailed mode
analysis, it will be necessary to enact a sum over polarization
states through the embedding of Eq. (4); here we note that
the circularly polarized basis can be expressed in terms of the
following unit vectors:

e(L)(k) = 1√
2

(î + i ĵ); e(R)(k) = 1√
2

(î − i ĵ), (7)

where î and ĵ are the Cartesian unit vectors, such that (î, ĵ,k̂)
comprise a right-handed orthogonal group.

The aim is to now show that this direct dependence on the
difference between the number operators for left- and right-
handed modes appears in a variety of electromagnetic helical
measures. We proceed by first analyzing the helicity of the free
electromagnetic field, defined as [15,16]

κ =
∫

d3r A · B. (8)

Following the prescription of mode analysis used with the
SAM operator, the helicity operator emerges as

κ = h̄

ε0c

∑
k

[N̂ (L)(k) − N̂ (R)(k)]. (9)

Notably the result is again dependent on the difference between
the number operators for the respective modes, characterized
by wave vector k.

Our main focus is now on a similar mode analysis on the
optical chirality density, where it will be instructive to consider
in more detail the symmetry properties of this measure. First,
the optical chirality density is defined as

χ = ε0

2
E · ∇ × E + 1

2μ0
B · ∇ × B, (10)

where μ0 is the vacuum permeability. In the ensuing quantum
electrodynamic (QED) representation, χ ≡ χ (r,t) is to be
regarded as an operator on the radiation states. In terms
of fundamental symmetries, the matrix elements of χ in a
radiation state basis are pseudoscalars, odd with respect to the
operator for space inversion (or parity), P, but even under the
time reversal operation, T [17]. Using a mode expansion on
Eq. (10), similar to that enacted upon the spin and helicity
operators, proves to deliver a result whose expectation value
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for a particular optical state is also dependent on the difference
between the left- and right-handed photon populations. To
further comprehend the physical picture we note that χ satisfies
the following continuity equation:

∂χ

∂t
+ ∇ · ϕ = 0, (11)

with respect to the corresponding flux of χ ,

φ = ε0c
2

2
[E × (∇ × B) − B × (∇ × E)], (12)

hereafter called the “optical chirality flow.” In a fully closed
system, chirality is a conserved quantity; this is a logical
consequence of CPT invariance. As regards the expectation
values for these two measures in a state comprising a different
number of left- and right-handed photons, the chirality is
also accordingly conserved, in the absence of any sinks (or
sources)—the latter signifying physical processes of photon
absorption (or emission). Indeed, any conservation law such as
that presented in Eq. (11) can be written as ∂μϕμ = 0, for μ =
0,1,2,3, where the zeroth index represents the time component
and the further indices represent spatial components; as such,
the optical chirality and chirality flow together represent
components of a four-vector (cχ,ϕ) in Minkowski space
[2,18].

We have reached the optimal point in the analysis to
undertake a mode expansion of the expression for the optical
chirality density presented in Eq. (10). First we note in
passing that, as is the case with the helicity and spin-angular
momentum operators, use of a linearly polarized light basis
for the polarization sum in the optical chirality density gives
a null result, as can be expected for light fields with no
angular momentum. When using the circularly polarized light
basis, shown in Eq. (7), the calculations produce the following
equation:

∫
d3rχ =

∑
k

h̄ck2{N̂ (L)(k) − N̂ (R)(k)}, (13)

where it can be seen that the optical chirality density is depen-
dent on the same difference in left and right photon populations
as the previously analyzed measures on the electromagnetic
field. Furthermore, when considering a monochromatic (not
necessarily parallel) beam of circular frequency ω = ck we
obtain the elementary result:

∫
d3rχ = ε0ω

2
∫

d3r A · B. (14)

For a generalization of this analysis it is appropriate at this
juncture to allow a relaxation of two previous assumptions.
First, we accommodate a degree of freedom in the choice
of basis polarization vectors, allowing a generalization of the
result for circularly polarized light. Any acceptable basis of
states has to satisfy the necessary orthogonality condition, en ·
ēm = δnm, the polarization pair corresponding to diametrically
opposite points on the Poincaré sphere [19]. An arbitrary
polarization vector e1, characterized by angular coordinates
θ and φ and its counterpart basis vector e2, are generated

according to the following prescription:

e1 = sin θ î + eiφ cos θ ĵ
e2 = cos θ î − eiφ sin θ ĵ

}
. (15)

Secondly, to address the possible involvement of orbital
angular momentum it is furthermore expedient to consider,
as a representative example, Laguerre-Gaussian (LG) modes,
these being prototypical examples of beams bearing orbital
angular momentum [20,21]. As has recently been shown,
the field structures of such beams can also be represented
by an extension of the Poincaré sphere [22]. In the usual
paraxial approximation, the magnetic and transverse electric
field vectors are determined by the LG vector potential
given by

A =
∑

k,η,l,p

(
h̄

2ε0ckV

) 1
2 {

e(η)
l,p(k)a(η)(k)fl,p(r)eikz−ilϕ

+ ē(η)
l,p(k)a†(η)(k)fl,p(r)e−ikz+ilϕ

}
, (16)

where fl,p(r) represents the radial distribution of the LG mode
with radial number p and azimuthal index l. Once again, the
E and the B fields are obtained by the prescription noted in
Eq. (5). With the generalized polarization basis (15), the result
for the integrated chirality density duly emerges as∫

d3rχ = h̄c sin 2θ sin ϕ
∑

k

k2{N̂ (1)(k) − N̂ (2)(k)}, (17)

where the superscripts 1 and 2 correspond to the arbitrarily
chosen basis vectors. Recognizing the orthogonality of the
radial distribution function, the e−ilϕ and fl,p(r) factors
included in the expression for the LG mode disappear from
the calculation on implementing the normalization condition
on the quantization volume, and the result (17) is therefore
independent of any factors pertaining to orbital angular
momentum.

The significance in the result is this: The optical chirality
density is not a measure of orbital angular momentum, only
spin. It follows that any field whose chiral character is fully
defined by the optical chirality measure cannot possibly dis-
play superchiral behavior; the maximum value the expression
(17) can take is when the radiation is circularly polarized
(wherein the sinusoidal factors have the value of unity), and
when the population of the second basis state is zero. When
the generalized polarization representation is used in the plane
mode analysis, as performed earlier with circularly polarized
light, the emergent result is identical to that expressed in
Eq. (17). Furthermore, as the determination of Eq. (17) does
not explicitly depend on the specific LG structure of the
radial distribution function, only the associated orthogonality
condition, it is evident that other well known orthogonal
solutions to the paraxial wave equation will display identical
expressions for the spatially integrated optical chirality density.
For example, Airy, Bessel, Hermite-Gauss, and Mathieu
beams all have expressions for the optical chirality operator
proportional to the difference of the number operators in the
polarization basis. For completeness we note that the mode
expansion for the optical chirality flux is given by

ϕ = h̄ε0c
2 sin 2θ sin ϕ

∑
k

k2{N̂ (1)(k) − N̂ (2)(k)}k̂, (18)
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which, for a monochromatic (not necessarily parallel) beam,
is equivalent to ε0c

2k2 times the expression for the SAM op-
erator. This equivalence, taken with the conservation equation
governing the optical chirality and flux (11), signifies that
for a monochromatic beam, electromagnetic helicity is con-
served with respect to its flux, the spin-angular momentum—
exhibiting the fact that the helicity is the projection of the spin
onto the direction of the momentum.

III. FRAMEWORK FOR CONNECTIVITY OF
MOLECULAR AND OPTICAL CHIRALITY

We now introduce a comprehensive framework for cap-
turing the mechanism by means of which chirality in a
radiation field can engage with chirality in matter, and
revealing the origin of the symmetry principles involved. For
generality, we begin with a formulation that is applicable to
spectroscopic processes of an arbitrary order of optical nonlin-
earity, using a multipolar representation of the coupling [23].
Each photon interaction entails an interaction Hamiltonian
that comprises/linear couplings of the molecular polarization
field p(r) (accommodating all electric multipoles) with the
transverse electric field e⊥(r) of the radiation, and couplings of
the molecular magnetization field m(r) (constituent magnetic
multipoles) with the magnetic induction field b(r):

Hint = −
∫

d3r[p(r) · e⊥(r) + m(r) · b(r)]. (19)

Equation (19) excludes a diamagnetization term, associated
with variations of current density, that is quadratic in the
magnetic field: However, the associated couplings are smaller
by an order of magnitude or more than those that relate to the
two linear terms exhibited in (19), and there is no mechanism
for their involvement in chiral phenomena. The usual Taylor
series expansion of the linear terms separates the coupling into
multipolar orders, whose leading contributions are E1, E2, and
M1, cast in terms of quantum operators for the electric dipole
μ, electric quadrupole Q, and magnetic dipole m; couplings
involving the latter derive from the same level of expansion
in the minimal coupling representation, but they are smaller
than the μ term by a factor of the order of the fine structure
constant [14].

Let us consider a process in which m photons are involved
in each fundamental interaction with a material center such as
an atom or molecule. Under the normal conditions that support
the determination of a rate from time-dependent perturbation
theory, the key observables are determined from the square
modulus of a scalar matrix element M

(m)
fi that can be cast as

follows [24]:

M
(m)
fi =

m∑
e=0

m∑
b=m−e

K
(m)
e;b S(e+b+2q)

e;b;m−e−b ⊗ T(e+b+2q)
e;b;m−e−b. (20)

Here, the expression on the right comprises a sum of terms,
each expressed in the form of an inner tensor product between
radiation tensors S(e+b+2q)

e;b;m−e−b and corresponding-rank molecular

tensors T(e+b+2q)
e;b;m−e−b. Each such tensor is distinguished by labels

(e, b, q) corresponding to the number of E1, M1, and E2
interactions, respectively; the sum of these equals the number
of photon interactions involved in the process m = e + b + q.

The radiation tensor S(e+b+2q) ≡ Si1i2...ir duly comprises an
outer product of electric and magnetic induction field com-
ponents, and electric field gradients, resulting from a product
of transition integrals (Dirac brackets) for the radiation tensor.
Notice that, because these transition integrals are implemented
for radiation states that represent the conditions of a specific
experimental interaction, they can exhibit a lower symmetry
than that of the field operators they contain. For example,
one matrix element of S might exhibit the helical symmetry
properties of a particular circular polarization, if only that
polarization is present in the radiation (whereas the mode
expansion would have both helicities equally represented, and
therefore have no overall helical character). The corresponding
molecular tensor T(e+b+2q) = Ti1i2...ir can be written in a form
entailing a product of m molecular transition integrals. For any
such transition integral not to vanish identically, the product of
the symmetry representations for the two states that it connects
must span one or more of the irreducible representations under
which components of the corresponding transition moment
itself transforms, under the full set of symmetry operations
determined by the molecular point group [25]. Mapping
the irreducible representations of the full three-dimensional
rotation-inversion group O(3) onto a lower symmetry in many
cases permits transitions to occur between states of more
than one symmetry class, a necessary condition for exhibiting
molecular chirality.

We can now interrogate Eq. (20) for its fundamental
symmetry behavior. The matrix element is a scalar with the
dimensions of energy, obviously invariant with respect to space
or time inversion. It is important to note that although the
constants K

(m)
e;b have physical dimensions determined by e

and b, they also are invariant with respect to space and time
inversion; all the dynamical symmetries are accommodated
within the radiation and molecular tensors. Clearly, the parity
signatures of each corresponding S and T tensor have to be
identical, both with respect to the operations of space inversion
P and time reversal T. In fact, these signatures are (–1)e and
(–1)b, respectively, as determined by the space-odd, time-even
character of the electric field, and the space-even, time-odd
character of the magnetic field. Notice that the possible
involvement of an electric quadrupole plays no part in this
determination, because of its even parity under both P and T.

When the rate is evaluated from the square modulus of
the matrix element (20), “diagonal” terms do not produce
any distinctive behavior with regard to fundamental symme-
try. For example, a quadratic dependence on any radiation
tensor S is necessarily of even parity with respect to both
space and time; the same is true for the corresponding T.
Thus, terms that are quadratically dependent on any specific
molecular tensor (such as, in the simplest case, one electric
dipole transition moment) will be invariant under a space
inversion that physically corresponds to a substitution of the
opposite enantiomeric form, in the case of a chiral molecule.
The same logic applies to the radiation tensor, with regard to
an inversion that signifies a change to circular polarization of
the opposite handedness.

The quantum interferences between terms with different
symmetry character, in the overall rate equation, are therefore
of primary interest. The distinctive feature of a chiral center is
that included in these interference terms are products that are
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odd in spatial parity. For example, one specific matrix element
contribution might be written as S(r) ⊗ T(r) and another as
S(t) ⊗ T(t); the products S(r)S(t) and T(r)T(t) may have a net
parity of − 1 with respect to either P or T, notwithstanding the
fact that their product is necessarily of even parity. It suffices to
focus on the space parity, for which the conditions supporting
a nonzero optical chirality density χ of Eq. (10), itself a
pseudoscalar, clearly also support the odd-parity instances of
S(r)S(t). As we have seen, this necessitates a radiation field
whose arbitrary basis modes—according to the prescription
given in (15)—are disproportionately populated; most notably
there is a nonzero difference in circularly polarized photon
populations.

IV. CIRCULAR DICHROISM: A TEST CASE

The conjecture that the optical chirality metrics might
signify more comprehensive measures of differential chiral
response can be tested by considering circular dichroism, a
classic example of an interaction whose dependence can be
calculated by symmetry methods. Since the initial and final
molecular states differ, the process is incoherent, obviating
any interference between quantum amplitudes associated with
different molecules [26]. With the engagement of only one
photon, the Fermi rate for the absorption is given by

� ∝ Nξ

〈∣∣Mξ

fi

∣∣2〉 = Nξ

〈∣∣Mξ (E1)
fi + M

ξ (M1)
fi + · · ·∣∣2〉

= Nξ

[〈∣∣Mξ (E1)
fi

∣∣2〉 + 2Re :
〈
M

ξ (E1)
fi M

ξ (M1)
fi

〉
+ 〈∣∣Mξ (M1)

fi

∣∣2〉 + · · · ] (21)

where Nξ is the number of molecules, Re : denotes the real part,
and angular brackets signify rotational averaging, required in
the case of a fluid sample. The leading (E1)2 term and the
(M1)2 term in (21) deliver identical results for either left-
or right-handed circularly polarized radiation, whereas the
E1-M1 interference changes sign if the helicity of the radiation
(or molecular handedness) is reversed. In such chiroptical
phenomena, the largest contributions generally come from
the E1-M1 and E1-E2 interactions, but the latter contribu-
tion vanishes when an isotropic rotational average is taken.
Thus, the emergent rate differential for circular dichroism
emerges as

〈�L〉 − 〈�R〉 ∝ 4Re : Nξ

〈
M

ξ

fi (E1)Mξ

fi (M1)
〉
. (22)

It is readily seen from Eq. (22) that handedness is apparent in
two respects; using the parity operation on just the molecular
multipoles (not the radiation)—corresponding to a change of
enantiomer—invokes a sign change in the interference term.
Similarly, reversing the handedness of the radiation, while
leaving the molecular multipoles unchanged, again results in
the interference term changing sign.

A. Single-beam case

We now tackle the explicit quantum electrodynamical
calculation of the differential absorption associated with an
electronic transition 0 → β in a chiral molecule, characterized
by electric and magnetic transition dipole moments, μβ0 and
mβ0, respectively. The difference in Fermi rates of single-
beam absorption in a system of Nξ left- and right-handed

enantiomers denoted by + and − , respectively, gives

〈�(+)〉 − 〈�(−)〉
∝ Im : Nξμ

β0(+) · mβ0(+)
∑

k

k〈n(L)(k),n(R)(k)|N̂ (L)(k)

−N̂ (R)(k)|n(L)(k),n(R)(k)〉, (23)

where the input radiation mode of wave vector k comprises
n(L) and n(R) photons of left and right-handed circularity,
respectively, and Im : indicates the imaginary part of the
expression. Equivalently,

〈�(+)〉 − 〈�(−)〉 ∝ Im : Nξ (μβ0(+) · mβ0(+))
∫

d3rχ. (24)

Here it is explicitly evident that the difference in the rates of
absorbing left- and right-handed light is given by a product of
the spatially integrated optical chirality with the pseudoscalar
μβ0(+) · mβ0(+), the latter representing the inherent chirality of
the material.

B. Counterpropagating beams

Considering that the experiments of most interest are
performed with counterpropagating beams, it is expedient
for further calculations to reflect this fact in the guise of a
superposition state. To properly exhibit the important phase
properties associated with the corresponding electromagnetic
field, both the incident and reflected beams are best described
by a coherent radiation state—one that has minimum quantum
uncertainty and is most like a classical wave [27]. Photon
number (Fock) states are not eigenstates of the annihilation
operator, and so the absorption of light from different modes
could not in fact give the required interference. Specified by a
complex variable α, the coherent state |α(k,η)〉 is an eigenstate
of the photon annihilation operator:

â(η)(k)|α(k,η)〉 = α(k,η)|α(k,η)〉, (25)

and the probability of a given number of photons being
measured in a coherent state follows a Poisson distribution,
thus

N̂ (η)(k) = |α|2; �n = |α|. (26)

Here the overbar represents the expectation value, and �n the
uncertainty, for the photon population. We are now in a position
to characterize the initial and final states of the system:

|mol〉|rad〉 = |ψn〉|α(k,e(L)(k)),α′(k′,e′(R)(k′))〉, (27)

where the molecular state is characterized by the wave function
for the molecule (n = 0 and β for the ground and excited state,
respectively) and the radiation comprises a superposition of
the coherent states α and α′, with wave vectors k and k′ =
− k, respectively. In absorption the leading term in the rate
corresponds to the E12 term; as such the principal contribution
to the probability amplitude is

�(±) ∝ Re : Nξe
(L)
i (k)e(R)

j (k)μβ0
i μ

β0
j {n̄L + n̄′

R

− 2�nL�n′
Re2ikz}, (28)

where z is the position relative to the mirror and the expression
remains unchanged when swapping enantiomer. If the input
and reflected beams have similar α values, then the coherent
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state properties (26) imply that the corresponding photon pop-
ulations are similar and hence the rate, given in Eq. (28), has
a position dependence on 1 − cos (2kz). Therefore, nodes—
where the expression vanishes—appear at z = nπ/k, n ∈
Z. However, as before, the largest contribution to the dif-
ferential absorption is the E1-M1 interference term, from
which the difference between the absorption rates emerges
as

�(+) − �(−) ∝ Re : Nξe
(L)
i (k)e(R)

j (k)
{(

iμ
β0(+)
i m

β0(+)
j

+ im
β0(+)
i μ

β0(+)
j

)
(n̄′

R − n̄L) + (
iμ

β0(+)
i m

β0(+)
j

− im
β0(+)
i μ

β0(+)
j

)
(2�nL�n′

Re2ikz)
}
. (29)

One part of the result is, as in the single-beam case, dependent
on the difference in the number of left- and right-handed
photons—here signified by the input and reflected photon
populations—through the term (n̄′

R − n̄L). However, the above
result also contains an interference term that is dependent on
the position z, relative to the mirror. Significantly, this term
vanishes on taking an isotropic rotational average—signifying
the conditions of a fluid for which the normal measures
of circular dichroism are defined. Nonetheless under the
same rotationally averaged conditions, the first term of (29)
generates the pseudoscalar μβ0(+) · mβ0(+), which can only be
nonzero for chiral molecules.

We can verify that the interference term also satisfies the
necessary symmetry constraints, changing sign under parity
inversion (equivalent to swapping the handedness of the input
radiation L ↔ R). In the framework of quantum mechanics
the magnetic dipole operator is given as

m = − ih̄ρ

2

∫
d3r r×∇, (30)

where ρ is the charge density. Accordingly, choosing the
electric dipole moment to be real requires the magnetic dipole
moment to be imaginary; thus we can write im = M, where M
is real. Casting the vector indices in (29) in terms of specific
Cartesian components using Eq. (7), we thus have

�(+) − �(−) ∝ Nξ

{[
μβ0(+)

x Mβ0(+)
x + μβ0(+)

y Mβ0(+)
y

]
(n̄L − n̄′

R)

+ 4
[
μβ0(+)

x Mβ0(+)
y − μβ0(+)

y Mβ0(+)
x

]
×�nL�n′

R cos(2kz)
}
, (31)

from which it is clear that the whole expression duly changes
sign under parity inversion.

More generally, we note that the position-determined
conditions under which the interference term vanishes, namely
for z = (2n − 1) π/4k, n ∈ Z, signify positions at which the
electric vector of one beam is parallel (or antiparallel) to the
magnetic vector of the other. Molecules interacting with these
two field components therefore experience an electromagnetic
influence that has the symmetry of a plane containing those
vectors and the propagation direction; these do not span the
three-dimensional vector space3—in other words there is,
at such positions, no three-dimensional basis for resolving
chirality and generating a circular differential.

The first term in (31), through its dependence on the differ-
ence in mean left- and right-handed photon populations, relates
directly to the measures of helicity for the electromagnetic
field, most notably the optical chirality χ (17). The term with

sinusoidal distance dependence notably exhibits a connection
with phase-photon number uncertainty relation through the
product of �n’s—defined in Eq. (26)—and therefore displays
shot noise, a feature associated with the Poisson distribution
of photons in a coherent state [28]. Significantly, this term
corresponds to the claim of nodal enhancements in the
experiments devised by Tang and Cohen [5,6].

V. CONCLUSION

We have shown that CD and related chiroptical phenomena
respond only to the polarization state, and that the extent of
such effects in beams with precise number states cannot exceed
that delivered by a circularly polarized beam. Furthermore,
it has been shown that a precise QED representation of
recently performed experiments shows circular differential
results due to E1-M1 interference with two terms: one
position-independent term that is characteristically dependent
on differences of photon populations in a pair of orthogonal
basis states, and another with a sinusoidal dependence on
position. However, the nodal positions for the latter term do
not coincide with the positions at which zeros occur in the
normally dominant E12 contribution to the absorption rate.
The experiment performed by Tang and Cohen was initially
regarded as indicating that regions near to an electromagnetic
node experience superchiral fields—with a dissymmetry factor
greater than that for purely circularly polarized light [5]. The
above analysis shows that although there are certainly nodal
enhancements (or attenuations) to the differential absorption
of circularly polarized light, the effect is a result of the beam
superposition.

Although it is certainly possible to generate optical states
of still more highly chiral character consistent with Maxwell’s
equations, through the engagement of orbital angular momen-
tum, the additional contributions to optical chirality cannot be
measured by spectroscopic means [29,30]. When such effects
become especially prominent at metal surfaces, through the
generation of surface plasmon optical vortices [8,31], they are
manifest in mechanical rather than chiroptical effects. It is well
known that planar surface structures, while not intrinsically
chiral, can support chiral reponse when coupled with a
physical stimulus whose sense of direction has a component
perpendicular to the plane. The studies reported by Kadodwala
et al. are consistent with this setup; radiation impinging on
the PCM structures will accordingly have the capacity to
exhibit circular differential response. In particular, molecules
adsorbed on such structures will certainly exhibit circular
dichroism at wavelengths where they absorb. However, it can
be misleading to apply to surface adsorbed species formulas
designed to quantify the extent of CD in solution media. It is
not surprising that truly normalized measures of differential
response, such as the dissymmetry factor, should be larger in
the system studied than for a corresponding solution.
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