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We develop an efficient method to derive a class of surface states in photonic superlattices. In a kind of infinite
bichromatic superlattice satisfying some specific conditions, we obtain a finite portion of their in-gap states,
which are superpositions of finite numbers of their unstable Bloch waves. By using these unstable in-gap states,
we construct exactly several stable surface states near various interfaces in photonic superlattices. We analytically
explore the parametric dependence of these exact surface states. Our analysis provides an exact demonstration
for the existence of surface states and would be also helpful to understand surface states in other lattice systems.
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I. INTRODUCTION

Surface states are a kind of localized state found at
the interfaces between two different media. In 1932, Tamm
predicted that electronic surface waves may exist in a semi-
infinite one-dimensional repulsive Kronig-Penney (KP) model
[1] and these surface states were named as Tamm states later.
Similar results also exist in the attractive KP model [2]. The
energies of Tamm states lie in the forbidden gaps for the
corresponding infinite KP model. The surface states depend
crucially on surface termination of periodic potentials [3–5].
It has been demonstrated that Tamm states appear when the pe-
riodic potentials are asymmetrically terminated and Shockley
states appear while the periodic potentials are symmetrically
terminated [3]. Surface states have been observed in several
experimental systems such as semiconductor superlattices
[6–9] and magnetophotonic structures [10].

In the past few decades, surface states have been studied
extensively due to their potential applications in optoelectronic
devices. However, an analytical demonstration of the existence
of exact surface states is still absent [11–13]. For an example,
to construct a surface state in the semi-infinite one-dimensional
KP model, one needs to calculate analytically or numerically
a Bloch wave of a complex wave number and then match
it with an exponentially decaying state inside the surface
potential [11–13]. In a semi-infinite sinusoidal potential [13] or
a semi-infinite KP potential [1,2,14], the energies and the wave
numbers for the surface states are determined implicitly by
solving a transcendental equation. In addition, there are other
approximation methods for constructing surface states [15],
such as the coefficient method, the scattering method, the
determinant method, and the integral method. Until now, it
has been a great challenge to find exact solutions for surface
states [16–18].

Due to the fact that the temporal evolution of quantum
systems can be mapped into the spatial propagation of
light waves, engineered photonic lattices provide a highly
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controllable platform for exploring similar surface states in
periodic quantum systems. Surface states near an interface
between a periodic layered medium and a homogeneous
medium are found to be analogous to electronic surface states
in crystals [19]. The formation of Shockley-like surface states
in an optically induced semi-infinite photonic superlattice
has been experimentally demonstrated [20]. The formation of
Tamm states at the boundary between two periodical dielectric
structures has been reported [21]. It has been demonstrated that
the nonreciprocality of the surface modes can be induced by
the violation of periodicity and the violation of time-reversal
symmetry [22]. Recent advances on surface states in photonic
crystals are reviewed in Ref. [23].

In this paper, for a kind of infinite bichromatic superlattice
satisfying some certain conditions, we find a set of the in-gap
states in superpositions of finite numbers of unstable Bloch
waves. These unstable in-gap states are then used to construct
stable surface states for several typical systems of surface
states, such as the semi-infinite photonic superlattice, the finite
photonic superlattice, two directly coupled photonic superlat-
tices, and two indirectly coupled photonic superlattices. The
conditions for the existence of these surface states are derived.
We find that the symmetry and the existence of the surface
states depend crucially on both lattice parameters and interface
parameters. Our analytical results of surface states provide an
optional benchmark for understanding surface waves in lattice
systems.

II. IN-GAP STATES IN PHOTONIC SUPERLATTICES

We consider the light propagation in a one-dimensional
waveguide array. Assuming the waveguide array is aligned
along the X direction and the light is localized along the Y

direction, the propagation of the light electric field E(X,Z)
along the Z direction is described by an effective two-
dimensional wave equation [24],

i
λ

2π

∂E

∂Z
= − λ2

8π2ns

∂2E

∂X2
+ U (X)E, (1)

where λ is the free-space light wavelength and ns is the
substrate refractive index. The profile of the effective refractive
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index is in the form of U (X) = [n2
s − n2(X)]/(2ns) � ns −

n(X), with the refractive index n(X) for the waveguide array.
By using the periodic modulation techniques of n(X) [25],
one can build a bichromatic superlattice of U (X) = n1[1 −
cos( 2πX

�
)] + n2[1 + cos(πX

�
+ θ )] with the amplitudes n1 and

n2, the modulation period 2�, and the relative phase θ .
By introducing two scaled variables x = πX/�

and z = πλZ/(4�2ns) and a transformation φ(x,z) =
E(x,z) exp[i(n′

1 + n′
2)z] with n′

1 = 8�2nsn1/λ
2 and n′

2 =
8�2nsn2/λ

2, the system is then described by

i
∂φ

∂z
= −∂2φ

∂x2
+ V (x)φ, (2)

with V (x) = −n′
1 cos(2x) + n′

2 cos(x + θ ). Considering its
stationary states, φ(x,z) = ψ(x) exp[−iβz], the amplitude
ψ(x) obeys a time-independent equation,

βψ = −∂2ψ

∂x2
+ V (x)ψ, (3)

with β denoting the propagation constant. Obviously, the light
propagation is equivalent to a quantum particle in an external
potential.

By applying the Bloch-Floquet theorem, the solutions
for Eq. (3) of an infinitely periodic V (x) are Bloch waves,
ψn,k(x) = exp[ikx]un,k(x), where k is the wave number, n is
the band index, and un,k(x) has the same periodicity of V (x).
The Bloch waves of real wave numbers are amplitude-bounded
oscillatory solutions. Otherwise, the Bloch waves of complex
wave numbers show unbounded exponential behavior [26,27].
The energy spectrum for Eq. (3) consists of bands in which
there exist only amplitude-bounded oscillatory solutions and
gaps in which there exist unbounded oscillatory solutions.

Under conditions of θ = arctan[
/(N + 1)], n′
1 = 2η2 and

n′
2 = 2η

√
(N + 1)2 + 
2 with integers N � 0, the potential

V (x) could be denoted by V (η,
,N,x) and it supports a set
of in-gap solutions (see more details in the Appendix),

ψ
m1
N (η,
,x)

= exp

[
i

(
N

2
+ i




2

)
x − 2η cos x

]

×
N∑

n=0

(
an

(
β

m1
N

)
2

{exp[−inx] + exp[−i(N − n)x]}

+ i
bn

(
β

m1
N

)
2

{
exp[−inx] − exp[−i(N − n)x]

})
. (4)

Comparing to the Bloch-wave form, the solution
ψ

m1
N (η,
,x) is the Bloch-wave solution with a

complex wave number k = N/2 + i
/2. Here,
an and bn can be derived from two recursive
series: 2η(n + 2)an+2 + [(n + 1)(n + 1 − N ) + (N2 +

2)/4 − 2η2 − β

m1
N ]an+1 + 2η(N − n)an + [(n + 1)


− N
/2]bn+1 = 0 and 2η(n + 2)bn+2 + [(n + 1)(n + 1 −
N ) + (N2 + 
2)/4 − 2η2 − β

m1
N ]bn+1 + 2η(N − n)bn +

[N
/2 − (n + 1)
]an+1 = 0 with initial conditions of
a0 = 1, b0 = 0, a1 = [βm1

N + 2η2 − (N2 + 
2)/4]/2η and
b1 = −N
/4η. The propagation constant β

m1
N corresponds

to the m1-th real zeros of dN+1(η,
,β) = aN+1 + ibN+1 = 0
in ascending order. Since dN+1(η,
,β) is a polynomial

of degree N + 1 in the propagation constant β, β
m1
N

have at most N + 1 solutions. Mathematically, one can
construct a linearly independent solution for ψ

m1
N in form of

ψ̃
m1
N = ψ

m1
N

∫ x

−∞(ψm1
N )−2dx. Although ψ

m1
N and ψ̃

m1
N have the

same propagation constant β
m1
N , their divergence properties

are opposite: ψ
m1
N → 0 when ψ̃

m1
N → ∞ and vice versa.

In principle, for a given superlattice V (η,
,N,x), one may
determine the coefficients for the finite-superposition solutions
from the two recursive series. For N � 3, one can easily
obtain the exact forms for an and bn. However, if N > 3, it is
very difficult to give the exact forms for an and bn, and one
has to find their values by using numerical methods. Below,
we consider the two simplest cases: N = 0 and N = 1. For
the case of N = 0, the sole finite-superposition solution is
expressed as

ψ1
0 (η,
,x) = exp

[
−


2
x − 2η cos x

]
, (5)

with β1
0 (η,
) = −(
2 + 8η2)/4. For the case of N = 1,

there are two finite-superposition solutions. The first finite-
superposition solution is in form of

ψ1
1 (η,
,x)

= exp

[
−


2
x − 2η cos x

]
×

[
4η −

√
16η2 − 
2

4η
cos

(
x

2

)
− 


4η
sin

(
x

2

)]
, (6)

with β1
1 (η,
) = (1 − 
2 − 8η2 − 2

√
16η2 − 
2)/4. The

other finite-superposition solution reads as

ψ2
1 (η,
,x)

= exp

[
−


2
x − 2η cos x

]
×

[
4η +

√
16η2 − 
2

4η
cos

(
x

2

)
− 


4η
sin

(
x

2

)]
, (7)

with β2
1 (η,
) = (1 − 
2 − 8η2 + 2

√
16η2 − 
2)/4. If

16η2 − 
2 = 0, the two in-gap waves ψ1
1 (η,
,x) and

ψ2
1 (η,
,x) are identical.
In comparison with the band-gap structure, if 
 �= 0, we

find that β1
0 falls into the semi-infinite gap below the lowest

band and β
1,2
1 lies in the first band-gap; see Fig. 1. This means

that these finite-superposition solutions are a kind of in-gap
state. If 
 = 0, the finite-superposition solutions become
stable Bloch-wave solutions, since the wave numbers become
real. Interestingly, β1

1 and β2
1 form a closed circle connecting

the first two bands at 
 = 0; see Fig. 1(b). Moreover, the
in-gap state ψ1

0 appears at k = 0, while the in-gap states ψ
1,2
1

appear at k = ±0.5; see Figs. 1(c) and 1(d). Since the in-gap
states grow without bound, they are unphysical states for the
infinite periodic system. However, as we will show below, the
in-gap states can be used to construct a special class of exact
surface states in several typical models.

III. SURFACE STATES IN SINGLE-INTERFACE SYSTEMS

One of the most famous single-interface systems is a semi-
infinite periodic system of a truncated V (η,
,N,x) connecting

063802-2



FINITE-SUPERPOSITION SOLUTIONS FOR SURFACE . . . PHYSICAL REVIEW A 85, 063802 (2012)

FIG. 1. (Color online) Band-gap structures for V (η,
,N,x). (a)
The first band at k = 0 and the in-gap propagation constant β1

0 for
N = 0 and η = 0.1. (b) The first two bands at k = ±0.5 and the in-gap
propagation constants β

1,2
1 for N = 1 and η = 0.1. (c) The first two

bands and β1
0 for N = 0 and 
 = 0.3. (d) The first two bands and

β
1,2
1 for N = 1 and 
 = 0.3. The red dot in (a) corresponds to the

one in (c), and the two red dots in (b) correspond to the four red dots
in (d).

a constant refractive index V0 [11–14]. The potential for such
a system reads as

V1(η,
,N,x) =
{

V0, x � x0 (region I),
V (η,
,N,x), x > x0 (region II).

For an allowed surface state, in region II, it should be in form of
ψ

m1
N (η,
,x) for 
 > 0 (or ψ̃

m1
N for 
 < 0), ψII(x) = C2ψ

m1
N

(or ψII(x) = C2ψ̃
m1
N ). Below we will consider only the case

of 
 > 0. In region I, ψI(x) = C1 exp[
√

V0 − β
m1
N x] if V0 >

β
m1
N . The coefficients Ci are determined by the normalization

condition. By applying the continuity condition at the interface
x = x0, we find that√

V0 − β
m1
N (η,
) = W

m1
N (η,
,x0), (8)

with W
m1
N (η,
,x) = ψ̇

m1
N (η,
,x)/ψm1

N (η,
,x). Here the dot
denotes the derivative with respect to x. Thus, the surface
state exists if W

m1
N (η,
,N,x0) > 0 and V0 = β

m1
N + (Wm1

N )2.
For example, in the simplest case of N = 0, the interface
parameters x0 and V0 satisfy the conditions, sin(x0) > 
/4η

and V0 = −(
2 + 8η2)/4 + [
/2 − 2η sin(x0)]2. In Fig. 2(a),
we show the surface wave in this semi-infinite periodic system
with η = 0.3, 
 = 0.2, and N = 0, which corresponds to
n1 = 2.2 × 10−4, n2 = 7.6 × 10−4, and θ = arctan(0.2) in
an experimental system of λ = 980 nm, ns = 1.518, and
� = 8 μm [24,25]. In this situation, we take x0 = π/2 and thus
have V0 = −(
2 + 8η2)/4 + [
/2 − 2η sin(x0)]2 = 0.06.

Another typical single-interface system is of two truncated
periodic potentials connecting at the interface. We consider
a system of V (−η, − 
,N,x) and V (η,
,N,x) with 
 >

0 connecting at the interface x = x0 [10]. Its potential is
expressed as

V2(η,
,N,x) =
{

V (−η, − 
,N,x), x � x0 (region I),
V (η,
,N,x), x > x0 (region II).
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FIG. 2. (Color online) Surface states in single-interface systems.
(a) V1(η,
,N,x) of x0 = π/2, η = 0.3, 
 = 0.2, V0 = 0.06, and
N = 0. (b) V2(η,
,N,x) of x0 = π/2, η = 0.1, 
 = 4η sin x0, and
N = 0.

Thus, we have ψI(x) = C1ψ
m1
N (−η, − 
,x) for x � x0 and

ψII(x) = C2ψ
m1
N (η,
,x) for x > x0. The continuity conditions

at x = x0 give

W
m1
N (−η, − 
,N,x0) = W

m1
N (η,
,N,x0). (9)

For the case of N = 0, it is easy to find 4η sin x0 = 
 from the
continuity condition at the interface. Therefore, the surface
wave exists only when |
/4η| � 1. In Fig. 2(b), we show
the surface state for N = 0 and x0 = π/2. We also find that
the position of the interface x0 affects strongly the shape
of the surface waves. For an example, the surface wave for the
case of x0 = π/2 is symmetric about x = x0 = π/2. While
the surface wave for the case of x0 = π/6 is asymmetric about
x = x0 = π/6.

IV. SURFACE STATES IN DOUBLE-INTERFACE SYSTEMS

One typical double-interface system is a finite periodic
system V (η,
,N,x) sandwiched by two constant refractive
indices V0 and V1 [3], which obeys the potential

V3(η,
,N,x) =
⎧⎨⎩V0, x � x0 (region I),

V (η,
,N,x), x0 <x <x1 (region II),
V1, x � x1 (region III).

In region II, one may use the finite-superposition solution
ψ

m1
N (η,
,x) and its linearly independent solution ψ̃

m1
N to

construct the surface state, that is, ψII(x) = C2ψ
m1
N (η,
,x) +

C̃2ψ̃
m1
N . In other two regions, the physical state must be

nondivergent and normalizable. Therefore, if V0,1 > β
m1
N , we

have ψI(x) = C1 exp[
√

V0 − β
m1
N x] for x � x0 and ψIII(x) =

C3 exp[−√
V1 − β

m1
N x] for x � x1. Similarly, the continuity

conditions at the two interfaces x = x0 and x = x1 request√
V1 − β

m1
N = −W

m1
N (η,
,x1) + RK

m1
N (x1)

1 + RF
m1
N (x1)

, (10)

with

R = C̃2/C2 =
√

V0 − β
m1
N − W

m1
N (η,
,x0)

K
m1
N (x0) − √

V0 − β
m1
N F

m1
N (x0)

,
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FIG. 3. (Color online) Surface states in a finite periodic system
described by V3(η,
,N,x) with N = 0, η = 0.3, 
 = 0.1, and
x0 = −x1 = −19π/2. (a) V0 = 0.12, V1 = 0.24, and R = 0. (b)
V0 = 0.196151, V1 = 0.142676, and R = ∞. (c) V0 = 0.123884,
V1 = 0.147421, and R = 0.0696.

K
m1
N (x) = ˙̃ψ

m1

N (x)/ψm1
N (x), and F

m1
N (x) = ψ̃

m1
N (x)/ψm1

N (x). In
principle, the ratio between C2 and C̃2 can be arbitrary.
However, to satisfy the continuity conditions at the two
interfaces, the interface parameters (V0,V1,x0,x1) and the
lattice parameters (η,
,N ) should obey some certain con-
ditions. In Fig. 3, we show two surface states for η = 0.3,

 = 0.1, N = 0, and x0 = −x1 = −19π/2. If R = 0, the
continuity conditions request V0 = 0.12 and V1 = 0.24 and
the surface state is localized around the interface x = x0;
see Fig. 3(a). If R = ∞(C2 = 0), the continuity conditions
request V0 = 0.196151 and V1 = 0.142676 and the surface
state is localized around the interface x = x1; see Fig. 3(b). If
R = 0.0696, the continuity conditions request V0 = 0.123884
and V1 = 0.147421 and the surface state is almost equally
localized around x = x0 and x = x1; see Fig. 3(c).

Another typical double-interface system is a constant
refractive index V0 sandwiched by two truncated periodic
systems V (η, − 
,N,x) and V (η,
,N,x) [28–30]. The cor-
responding refractive index profile is in form of

V4(η,
,N,x)

=
⎧⎨⎩V (η, − 
,N,x), x � x0 (region I),

V0, x0 < x < x1 (region II),
V (η,
,N,x), x � x1 (region III).

Thus, we have ψI(x) = C1ψ
m1
N (η, − 
,x) in region I, ψII(x) =

C−
2 exp[−√

V0 − β
m1
N x] + C+

2 exp[+√
V0 − β

m1
N x] in region

II, and ψIII(x) = C3ψ
m1
N (η,
,x) in region III. The continuity

conditions request

W
m1
N (η,
,x1)√
V0 − β

m1
N

= R exp
[
2
√

V0 − β
m1
N x1

] − 1

R exp
[
2
√

V0 − β
m1
N x1

] + 1
, (11)

with

R = C+
2

C−
2

=
√

V0 − β
m1
N + W

m1
N (η, − 
,x0)√

V0 − β
m1
N − W

m1
N (η, − 
,x0)

× exp
[−2

√
V0 − β

m1
N x0

]
.
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FIG. 4. (Color online) Surface states in a double-interface system
described by V4(η,
,N,x) with η = 0.3, 
 = 0.1, and N = 0.
(a) x0 = −π/2, x1 = π , V0 = 0.13, and R = 0.0255412. (b) x0 =
−7π/6, x1 = π/2, V0 = 0.120845, and R = 254.28. (c) x0 = −x1 =
−π/2, V0 = 0.30, and R = 1.0.

In Fig. 4, we show two surface states for η = 0.3, 
 = 0.1, and
N = 0. The surface waves strongly depend on the two interface
positions. For x0 = −π/2 and x1 = π [or x0 = −7π/6 and
x1 = π/2], the surface state has an asymmetric distribution;
see Fig. 4(a) [or Fig. 4(b)]. While for x0 = −π/2 and x1 =
π/2, it becomes symmetric; see Fig. 4(c).

V. CONCLUSION

In conclusion, by using the superpositions of finite numbers
of unstable Bloch states for the corresponding infinite periodic
systems, we have given an efficient approach for constructing
a special class of exact surface states in photonic superlattices.
These exact surface states have the same propagation constants
for the finite-superposition states in the energy gaps and so they
are a kind of stable in-gap state. This method has been used to
find parts of the exact surface states in several typical systems
involving a single interface or two interfaces. By matching
two solutions (a finite-superposition solution and a free-space
solution or two finite-superposition solutions) at two sides
of the interfaces, the existence conditions for surface states
are obtained analytically from the continuity conditions. The
existence and the shapes of the exact surface states depend
not only on the interface parameters but also on the lattice
parameters. Our results give an analytical demonstration of
the existence of the surface states and should shine light on
understanding and ways to control surface waves.
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APPENDIX: DERIVATION OF THE BLOCH-WAVE
SOLUTIONS ψ

m1
N (η,�,x)

Below, we give more details about how to derive the in-gap
solutions

ψ
m1
N (η,
,x)

= exp

[
i

(
N

2
+ i




2

)
x − 2η cos x

]

×
N∑

n=0

(
an

(
β

m1
N

)
2

{exp[−inx] + exp[−i(N − n)x]}

+ i
bn

(
β

m1
N

)
2

{exp[−inx] − exp[−i(N − n)x]}
)

. (A1)

for the Schrödinger equation

− d2

dx2
ψ(x) + V (x)ψ(x) = βψ(x), (A2)

with

V (x) = −n′
1 cos(2x) + n′

2 cos(x + θ )

= −n′
1 cos(2x) + n′

2 cos θ cos x − n′
2 sin θ sin x.

In general, the in-gap solutions stay at the edges of Brillouin
zones and the imaginary parts of their wave numbers are
continuous in a finite region [26,27]. To find the explicit
expression for a specific set of in-gap solutions, we apply
the following transformation:

ξ = exp[−ix], (A3)

ψ(x) = exp[−
√

2n′
1 cos x]ξλφ(ξ ), (A4)

with

λ =
√

2n′
1 − n′

2 cos θ − in′
2 sin θ

2
√

2n′
1

.

Apparently, the parameter −λ denotes a complex wave
number. From the Schrödinger Eq. (A2), we have

ξ 2 d2φ

dξ 2
+

[√
2n′

1 −
√

2n′
1ξ

2 + (2λ + 1)ξ

]
dφ

dξ

+
[
λ2 − β − n′

1 −
(√

2n′
1 − n′

2 cos θ

)
ξ

]
φ = 0. (A5)

By writing the solution for φ(ξ ) as a standard power-series
expansion,

φ(ξ ) =
∞∑

n=0

dnξ
n, (A6)

one can easily find that the coefficients dn are determined by a
three-term recurrence relation,

c0(n)dn + c1(n)dn+1 + c2(n)dn+2 = 0, (A7)

with the initial condition d0 = 1 and d−1 = 0, where

c0(n) = n′
2 cos θ −

√
2n′

1(n + 1),

c1(n) = (n + 1)(n + 2λ + 1) + λ2 − n′
1 − β,

c2(n) =
√

2n′
1(n + 2).

Usually, the solution (A6) is an infinite series. However,
similar to the procedure of obtaining the Hermite polynomials
for a harmonic oscillator, one can impose the truncation
condition dj = 0 with j � N + 1 and then the solution (A6)
becomes a finite series. If dN+1 = 0 and dN+2 = 0, we can get
all following dj = 0 with j > N + 2.

To obtain dN+1 = 0, from the three-term recurrence relation
(A7) with n = N − 1, we have

c0(N − 1)dN−1 + c1(N − 1)dN = 0. (A8)

For a given periodic lattice, due to dN is a polynomial of degree
N in β, this equation requests that the propagation constant β

must be a solution for a polynomial of degree N + 1 in β.
To obtain dN+2 = 0, from the three-term recurrence relation

(A7) with n = N , the coefficient c0(N ) should satisfy

c0(N ) = n′
2 cos θ −

√
2n′

1(N + 1) = 0. (A9)

Clearly, this equation requires a special relation between the
lattice parameters n′

1, n′
1, and θ .

Therefore, under the conditions (A8) and (A9), the series
solution φ(ξ ) becomes a polynomial,

φN (ξ ) =
N∑

n=0

dn

(
β

m1
N

)
ξn. (A10)

After some mathematical calculation, we get the following
in-gap solution

ψ(x) = exp

[
i

(
N

2
+ i

n′
2 sin θ

2
√

2n′
1

)
x −

√
2n′

1 cos x

]

×
N∑

n=0

dn

(
β

m1
N

)
exp [−inx]. (A11)

Here, β
m1
N denotes m1-th real zero of dN+1 = 0 in ascending

order. It is clear that ψ(x) are Bloch-wave solutions with the
complex wave numbers k = −λ = N/2 + i

n′
2 sin θ

2
√

2n′
1

. If
√

2n′
1 =

2η, n′
2 cos θ = 2η(N + 1), and n′

2 sin θ = 2η
, we have n′
1 =

2η2, n′
2 = 2η

√
(N + 1)2 + 
2 and θ = arctan[
/(N + 1)].

The complex wave number is given as

k = N

2
+ i




2
. (A12)

Due to V (x) is a real function, we can take the real part of
ψ(x) as a solution of Eq. (A2)

ψ
m1
N (η,
,x)

= exp

[
i

(
N

2
+ i




2

)
x − 2η cos x

]

×
N∑

n=0

(
an

(
β

m1
N

)
2

{exp[−inx] + exp[−i(N − n)x]}

+ i
bn

(
β

m1
N

)
2

{exp[−inx] − exp[−i(N − n)x]}
)

,

(A13)

where dn(βm1
N ) = an(βm1

N ) + ibn(βm1
N ). This completes the

derivation of Bloch-wave solutions (A1).
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In the following, we show how to give the in-gap waves for
the cases of N = 0 and N = 1. For the case of N = 0, from
Eq. (A8) with N = 0, we have

c1(−1)d0 = λ2 − n′
1 − β

= −
2

4
− 2η2 − β = 0. (A14)

This equation has only one real root, β1
0 = −(
2 + 8η2)/4.

From Eq. (A1) with N = 0, the corresponding in-gap state is
given as

ψ1
0 (η,
,x) = exp

[
−


2
x − 2η cos x

]
. (A15)

For the case of N = 1, from Eq. (A8) with N = 1, we have

c0(0)d0 + c1(0)d1 = 0. (A16)

Given c0(0) = 2η, c1(0) = −(
 + i)2/4 − 2η2 − β, and d1 =
(β + (
 − i)2/4 + 2η2)/2η, we have

[β + (
 + i)2/4 + 2η2][β + (
 − i)2/4 + 2η2] − 4η2 = 0.

(A17)

This equation have two real roots, β1
1 (η,
) = (1 − 
2 −

8η2 − 2
√

16η2 − 
2)/4 and β2
1 (η,
) = (1 − 
2 − 8η2 +

2
√

16η2 − 
2)/4. For β1
1 (η,
), we have a0 = 1, b0 = 0,

a1 = −
√

16η2 − 
2/4η, and b1 = −
/4η, therefore the cor-
responding in-gap state reads as

ψ1
1 (η,
,x)

= exp

(
−


2
x − 2η cos x

)
×

[
4η −

√
16η2 − 
2

4η
cos

(x

2

)
− 


4η
sin

(x

2

)]
.

(A18)

Similarly, for β2
1 (η,
), we have a0 = 1, b0 = 0, a1 =√

16η2 − 
2/4η, and b1 = −
/4η. The corresponding in-
gap state reads as

ψ2
1 (η,
,x)

= exp

(
−


2
x − 2η cos x

)
×

[
4η +

√
16η2 − 
2

4η
cos

(x

2

)
− 


4η
sin

(x

2

)]
.

(A19)
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