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Detecting d-wave pairing and collective modes in fermionic condensates with Bragg scattering
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We show how the appearance of d-wave pairing in fermionic condensates manifests itself in inelastic light
scattering. Specifically, we calculate the Bragg scattering intensity from the dynamic structure factor and the spin
susceptibility, which can be inferred from spin-flip Raman transitions. This information provides a precise tool
with which we can identify nontrivial correlations in the state of the system beyond the information contained
in the density profile imaging alone. Due to the lack of Coulomb effects in neutral superfluids, this is also an
opportunity to observe the Anderson-Bogoliubov collective mode.

DOI: 10.1103/PhysRevA.85.063619

I. INTRODUCTION

Ultracold atomic systems provide a way to build quantum
simulators, simulating a model with an experimental system
[1]. Studying models for strongly correlated systems can
shed light on outstanding problems in condensed-matter
physics, for example, whether the ground state of the doped
Hubbard or 7-J models supports d-wave superconductivity
[2]. Tt is important to have precise tools to identify and
characterize the resulting phases. Establishing unconventional
pairing symmetries requires new techniques in the setting of
ultracold gases. Traditional probes, such as phase-sensitive
measurements, transport, or scanning tunneling microscopy,
are all unavailable to condensates in optical systems. However,
techniques do exist which provide information beyond the
scope of what time-of-flight imaging can do, allowing precise
identification of new phases.

We calculate the zero-temperature response of a fermionic
d-wave superfluid to inelastic light scattering. There are many
experimental challenges which need to be addressed to realize
d-wave pairing, such as trap inhomogeneity and how to reduce
the effective temperature enough to achieve pairing, but these
complications should be considered on an individual basis for
specific experiments attempting the creation of this phase.

The primary emphasis in our work is that the inelastic
response functions we provide are specific enough to unam-
biguously identify the underlying d-wave symmetry. In the
two-dimensional repulsive Hubbard model extended-s and d,,
or d,»_,» pairing are not far apart in energy, as well as other
phases of the Hubbard model. We focus on just the d,2_ > order
parameter throughout this paper. Moreover, since the goal is
to learn how to identify an unconventional pairing phase, the
d-wave order parameter we employ stands as an example for
the more general result that information about unconventional
pairing is encoded in the details of the Bragg response. We
also have the opportunity to observe collective modes in a
neutral paired superfluid. To this end, we also look at s-wave
pairing. In solids, this mode is lifted to the plasma frequency by
the Coulomb interaction, and disorder can play an important
role, making the collective mode difficult to observe. In the
context of condensates, the complications from the Coulomb
interaction and disorder are absent. A disadvantage is the effect
of the confining potential, which is usually present even for
optical lattices.
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Previous studies have focused on identifying s-wave super-
fluidity [3—7] or using noise correlations to identify many-body
states [8] or using a periodic driving of the system and then
observing its response [9]. Collective modes in chiral p-wave
superconductors have also been examined [10]. We explore
the confluence of these ideas, focusing on identifying d-wave
superfluids and on the effect of their collective mode.

II. BRAGG SCATTERING

We recall the textbook [11] discussion of inelastic light
probes here for clarity. Bragg scattering is a two-photon
process that transfers momentum Q = k; —k; and energy
Q = w; — w; to the ground state and can be used to probe
density fluctuations of the system. The probing light can be
tailored to couple to density and between hyperfine degrees of
freedom. The intensity of the light from the laser beams takes
the form [ cos(Q - r — Q¢), and the atoms in the sample will
feel an optical potential due to the ac Stark effect. We label the
couplings to the density (d) or spin (s) degree of freedom as
Va.s. The perturbation is taken as [11,12]

. Vas b
A=Y %(m;,&()e % 1 He), (1)
d,s

where 80,4, is the variation in the density or spin density.
We will generalize this later in the paper.

The dynamic structure function S(Q,€2) is the Fourier
transform of the density-density correlation function, where Q
and 2 are, respectively, the momentum and energy transferred
by the probe. The excitation rate per particle is given by
Zn(%)ZS(Q,Q) [12]. The dynamic structure factor can be
measured in more than one way [12,13]. For example, after
the atomic sample is illuminated by the two laser beams, the
trap is switched off, and time-of-flight images can measure the
Bragg scattered atoms, which are distinguished because they
are displaced by the absorbed momentum. What is actually
measured in this experiment is the rate of momentum trans-
fer [14], which is 4¥ = Q(2)?Z[5(Q.Q) — S(—Q, — Q)] x
(1 — e ?95(Q,Q) — limy—g S(Q,K). In the end, Bragg scat-
tering provides a measurement of the imaginary part of
the density-density correlation function which we calculate.
Similarly, it has been suggested that the spin-flip rate ob-
served by Raman transitions can be used to study the spin
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FIG. 1. The Fermi surface for a square lattice in the tight-binding
limit including only nearest-neighbor hoppings at © = —¢. The nodal
lines and sign of the gap are marked.

susceptibility [6,13]. These two probes are specific enough
to confirm unconventional Fermi superfluid pairing when it
arises in condensates.

III. HAMILTONIAN AND RESPONSE FUNCTIONS

We limit our discussion to a dilute Fermi gas which
undergoes pairing in the BCS limit. The BCS Hamiltonian
generalized for anisotropic pairing is

A 4 & Ak [ G
H= Xk:(clLT ¢ky) (Ak —Ek) (éjki) . (2)

For a two-dimensional square lattice in the tight-binding
approximation, the dispersion is

&k = —2t[cos(ky) + cos(ky)] — p. 3)

The d-wave superconducting gap is
Ak = Aoxk, Xk = cos(ky) — cos(ky). “)
We chose the chemical potential to be u = —¢, and

Ao = 0.2¢. The resulting Fermi surface is shown in Fig. 1.
We note that particle-hole symmetry takes u = —t - u =1t
and is just a translation of the Fermi surface by (m,m).
The Bogoliubov quasiparticles have an excitation spectrum
given by Ex = V&2 + A}. The Green’s function for a d-wave
superconductor takes the well-known form in Nambu space,

G, iw,) = (iw,1 + &t + Axt) ™

_ 1 (iwn + &k Ay )
(- E+FAD\ A oy — &)
(5)

In this work, the inclusion of both the d-wave quasiparticle
and collective response is crucial. Following the pioneering
works of Kulik et al. [15], Wong and Takada [16], and
Ohashi and Takada [17,18], we calculate the physical response
by including fictitious interactions. To accomplish this we
generalize the density operators. The Pauli matrices in Nambu

space will be denoted by #;, with %) = 1. ‘ill = (élT C_ky)
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is a spinor in Nambu space. In this notation, the generalized
densities are

piqg = Z Vk+Q/2,i‘iﬁTﬁi Urqs Mizo.1.2.3 = (1, Xk Xk 1,

k
Poq = Zél:@kmﬁ - f]T( 10k+Q. 15 (6)
k

g = Z Xk+Q/2(6£¢éik,Ql +H.c), (7

k
P =Y dierg(itl,ély o, +He), ®)

k
P = D ok 1ékrqar + 0L Ccrguy- ©)

Physically, p3q =k,5dQ is the density operator, while piq
and grg can be thought of as, respectively, qualitatively
encapsulating the amplitude and phase of the order parameter.
The spin density, treated separately throughout this paper,
is 95 = Poq. By treating the spin density separately we do
not include the possibility of spin-phase, spin-amplitude, etc.,
modes. According to Buchler et al. [6], the contribution from
collective terms for Im[I1gg] vanish, so Im[ITpy] = Im[Hgo].
In Zou et al. [19] a self-consistent spin-spin interaction is
included in the random-phase approximation (RPA) for the
s-wave case, which goes beyond our analysis. For interactions,
we include the terms

A

-8, . . .
Hip = T(plqm,—q + 02002,-Q)- (10

The density and spin response of the system is calculated
using linear response theory. The density-density response has
been generalized to be a matrix of density responses in Nambu
space. The generalized response functions,

B
), = — /0 dre' " (T {pig()Bi—O)}), (1)

take the form

dk
7,(Q.Qu) = / ()l e Q2 Ve Q)2 Z

(27

« T8 G ko) Gk + Qo + )], (12)

28
The gap equation at zero temperature,
Ay
Ax = — V(Kk,K)—, 13
K ; k. K)5 (13)

is equivalent to 0 = 1 + %HSZ(O,O), where g is the BCS cou-
pling constant stemming from assuming a separable pairing
interaction V(K,K') = gxk XK. Zero-temperature Bragg scat-
tering would correspond to a measurement of Im IT33(Q, €2),
and a different experiment could measure Im ITo(Q,2), the
spin susceptibility.

The density-density response at 7 = 0 comes from the
following integrals:

d’k
ab ;
I57(Q.2) =i / deyk-kQ/lin-kQ/zsj

w(w + Q) + abkbkrq + bAKAkiq
(@ = EQ)[(0+ Q2 — Eg o]

(14)
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FIG. 2. (Color online) Plot of Im[IT,,(0,0) — TT»(Q, )]~ in the
s-wave state for (a) 2 = 0.5A, (b) 2 = 1.5A, and (¢) Q = 2.0A,.
The poles in the denominator of the second term in Eq. (18)
illustrate the Anderson-Bogoliubov mode. (b) shows the approximate
dispersion captured from (a) in the (1,0) and (1,1) directions
compared to the result Q = ”7‘% 0.

The upper indices are a,b = %1 and are determined by
which Nambu-space matrices occur in the lower indices
for the generalized densities. The spin susceptibility (i = 0,
Jj = 0) corresponds to a = 1, b = 1 and has been previously
calculated [20]. The density channel (i = 3, j = 3)hasa =1,
b = —1, and the phase channel (i =2, j =2) has a = —1,
b = —1. After completing the contour integral, it is helpful to
replace the terms E(E + €2) by a choice which cancels some
terms in the denominators, E(E + Q) = E(E + E' + Q) —
EE'.

a d*K Y1Q/2,i Vk+Q)2, )
HﬂQm=—/ j AR
2m) 4
A A
y <1 4 &bk, Ak k+Q)
ExExiq ExEx+q

1
X
<Q+Ek+Q+Ek+in
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The phase-density response function I3, = —IIp3 is also
needed:
13:(Q,€2)
d’k AgExiqQ + ExAx4q

=2 R .
2 T 4B g

1 1
x — .
<Q+Ek+Q+Ek+i77 Ek+Q+Ek_Q+i77)
(16)

The Feynman diagrams of the RPA are resummed for a
neutral superfluid. It is found by explicit calculation [15—17]
that the amplitude modes decouple from the density and phase
oscillations, ITj, = I1;3 = 0, so the density response is

_ ~1
H22 H23 ! i ng H(Z)S _ —g/2 O (17)
My, M)  \my, mf 0 o/
The full density-density response [16], after analytic continu-
ation 2,, — Q + in (for numerics n was 1073¢),

ng(Qv Q)H(z)?, (Q7 Q)
24+ 13,Q.9)

Note that the gap equation is used to eliminate g in terms of
119,(0,0).

The formula in Eq. (18) has a clear interpretation. The first
term is the ordinary density-density response. The second term
is a coupling between the density and phase response with a
phase mode in the denominator. A pole in the second term is
the Goldstone, or Anderson-Bogoliubov, mode for the neutral
superfluid.

The finite-temperature expression is required to obtain the
normal-state limit. This 7 = 0 result only contains the pair-
breaking terms because the scattering terms vanish for 7 = 0,
and both are necessary to recover the normal-state limit, which
follows directly from the result [21]. The calculation of the
inelastic neutron response, notably in cuprates [22,23], is very
similar to this calculation; frequently, in cuprate calculations
[24,25] the RPA analysis contains a magnetic structure J(q) =

M(Q,Q) = NH(Q,Q) — (18)

1 [cos(gy) + cos(gy)], bilayer effects, or Coulomb interactions,
+ — ). (15) )
ExrQ+ Ex —Q+in which are absent here.
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FIG. 3. (Color online) The imaginary part of the zero temperature spin susceptibility, Im[I13,], Eq. (12) in the d-wave state, for frequencies
(a) 2 =0.5A, (b) Ao, (c) 1.5A¢, with Ay = 0.2¢. Notice that there is zero response at Q = (0,0) consistent with the fact that the spin structure

factor vanishes in the zero momentum limit [6].
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FIG. 4. (Color online) The imaginary part of the zero-temperature density-density response, Im[I153], Eq. (18), in the d-wave states for
frequencies (a) 2 = 0.5A¢, (b) Ay, and (c) 1.5A,. We have artificially filled in the point (0,0) where the response exceeded the scale of the

plot Ay = 0.2¢.

IV. DISCUSSION

If the system were to condense into an s-wave superfluid,
we should see the effect of opening a gap on the Fermi surface.
The only low-energy feature present in the s-wave case is the
Anderson-Bogoliubov mode. All non-Goldstone excitations
are gapped below the scale 2 < 2Ay. In Fig. 2(a) we show
the remaining gapless collective excitations. Maxima in the
signal for various frequencies are compared to the exact result
Q= i’/—% 0 [26] in Fig. 2(b). The presence of a square lattice
dispersion causes anisotropy in the Anderson-Bogoliubov
mode’s dispersion near the pair-breaking frequency Q2 = 2A,,
shown in Fig. 2. In ordinary s-wave superconductors, the
presence of the Coulomb interaction is said to lift the energy of
this excitation to the plasma scale. In a neutral superfluid, the
absence of a Coulomb interaction and gapped quasiparticle
excitations means that the only low-energy mode is in this
collective mode.
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FIG. 5. (Color online) Momentum-resolved density of states for
fixed frequency 2. (a), (c) For 2 = 0.1A, we see nodal excitations.
(b), (d) For Q@ = Ay the region of highest DOS corresponds to minima
in Vi Ex. The solid black line is the equal-energy contour for the same
energies. k, and k, are measured in 1/a where a is the lattice constant
anda = 1.

The response functions calculated in this paper are compli-
cated “speckle” patterns in Q space, shown in Figs. 3 and

4. Define the coherence factor 7,,(k,Q) = (1 — ag‘fE—"lﬁl —
b%ﬂg). The response function can be interpreted from

Eq. (15) as a convolution proportional to

ImI* /dwldwz Z nab(K,Q)
X

X 8(2 — w1 — w2)8(w1 — Ex)d(wr — Exiq). (19)

The response function is a coherence-factor-weighted sum
over the § function. The single-particle density of states
(DOS) is D(w) = —% > ImG(k,w) = Y, 8(w — Ey). If the
frequency integrals in Eq. (19) are performed, then we can
also define a joint density of states (JDOS) for two-particle

FIG. 6. (Color online) (a), (b) Joint density of states Dy, (Q,2)
for two-particle excitations over the range (0,77) and (c), (d) contour
plots of the same.
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FIG. 7. (Color online) Plot of Im[I1»(0,0) — IT5,(Q,2)]~! in the d-wave state for (a) Q = A, (b) = 1.5A¢, and (c) Q = 2.0A,.
The poles in the denominator of the second term in Eq. (18) illustrate the Anderson-Bogoliubov mode. This result differs from the s-wave
Anderson-Bogoliubov mode (Fig. 2) due to the presence of a d-wave gap.

excitations as

Dyoin(Q,2) = Y 8(Q — Exyq — Ex). (20)
k

By examining the structure of the momentum resolved DOS
and JDOS, meaning D(K,w) = §(w — Ey) for fixed w without
a sum over k, and using reasoning analogous to the octet
model [27,28] from cuprate tunneling experiments [29], the
structure of the response functions becomes clear. We show
plots of D(k,w) for ad-wave superconductor defined by Eq. (5)
in Fig. 5. The essential observation is that the final observed
signal at wave vector Q will have a high transition probability
when D(k,w) = D(k + Q,w + 2). So we compare the two
densities of states. The available states in the D(k,w) convolve
to give rise to the JDOS (Fig. 6), which is then, in turn,
weighted by a coherence factor in the dominant contribution to
the response function. In tunneling experiments the scattering
was elastic in contrast to this inelastic process transferring
energy €2 from the state at Eyx to the state at Eyiqg, so
we compare D(k,w) = D(k 4+ Q,w). This differs from the
inelastic case, which blurs the DOS over a range of allowed
frequencies.

In Fig. 6, we have overlayed the JDOS for several fixed
external frequencies with the response function. There is an
overall qualitative agreement between the Q which nest the

Excitations near (r,7)

iz
3

n

0 30,

FIG. 8. (Color online) Positions of the maxima in ImIT5; around
the point (7r,7) in Q-2 space.

single D(k,w) and D(k + Q,w + 2) and the JDOS’s structure.
The gross features of the JDOS (Fig. 6) are contained in the
final response function (Figs. 3 and 4), which differs by a
coherence factor. In both Figs. 3 and 4, we see nodal excitations
low (£2,Q) along the diagonals as well as transitions at finite
Q resulting from the convolutions of the DOS.

The collective mode, shown in Fig. 7, has a structure
beyond the simple s-wave result due to it being d wave.
To check this, the poles in the second term in Eq. (18),
Im[I15,(0,0) — 15, (Q,2)]~", can be plotted by themselves
in Fig. 7. These excitations are the d-wave equivalent of the
Anderson-Bogoliubov mode. Unlike the s-wave Anderson-
Bogoliubov mode where all quasiparticle excitations are gap,
the d-wave Anderson-Bogoliubov mode is not isolated from
the gapless quasiparticle response in the full Im[IT33].

An additional observation can be made. In the inelastic
neutron response for cuprates, excitations around (77,7) have
played an important role [30]. We chose not to focus on the
(0,7) excitations, which are broader and weaker than the (7r,77)
excitations. Consequently, we are curious to see what comes
out of the RPA analysis performed here. We have tracked the
peak excitations which occur around the point (r,7) for a
limited range of frequencies. Within the limitations imposed
by sampling discrete frequencies, we find that clear peak
excitations around (,7) are absent for low energy, begin
along the zone diagonal, and split into two peaks as we
increase frequency. At the pair-breaking energy 2Ao = 0.4¢
those excitations are near the Brillouin zone boundary, and
above that energy they are difficult to identify amid all the
allowed excitations. This is shown in Fig. 8.

We have shown by taking apart Eq. (19) that a combination
of the geometry of the Fermi surface and the quasiparticle
dispersion determines the “speckle” patterns in Figs. 3 and
4. Notwithstanding the complicated nature of both the spin
susceptibility and density-density response, the detailed k-
space features should be specific enough to identify exotic
pairing in superfluids distinctly from other states.

V. CONCLUSION

In summary, we have provided an analysis of two response
functions, the spin susceptibility and the density-density
response, for the inelastic scattering of light off a d-wave
condensate.
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We included the effect of collective modes and examined
their dispersion in the s-wave and d-wave cases. In the s-
wave case, the collective mode is the only mode present below
the pair-breaking energy 24, unencumbered by effects from
the Coulomb interaction and disorder in the context of cold-
atom experiments. In the d-wave case, the collective mode is
superimposed with other gapless excitations and has a structure
beyond the simple s-wave case.

For the d-wave spin and density response, we provide
an interpretation of the detailed momentum-space structure.
The inelastic response functions reflect the opening of a
d-wave gap on top of the geometry of the Fermi surface. These
patterns are specific enough to unambiguously identify d-wave
superfluidity, were it to arise, providing a cold-atom analog

PHYSICAL REVIEW A 85, 063619 (2012)

to phase-sensitive experiments in solids. We also examined
the peak response near the point Q = (w,7), in analogy
to the hourglass in cuprate neutron experiments [30]. The
primary result of our work is a precise tool, the momentum-
space structure of inelastic light scattering, to identify and
characterize a d-wave paired Fermi superfluid which can be
generalized to any gap symmetry.
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