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Induced interactions in dilute atomic gases and liquid helium mixtures
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In dilute mixtures of two atomic gases, interactions between two minority atoms acquire a contribution due to
interaction with the majority component. Using thermodynamic arguments, we derive expressions for this induced
interaction for both fermions and bosons for arbitrary strength of the interaction between the two components.
Implications of the work for the theory of dilute solutions of 3He in liquid 4He are discussed.
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I. INTRODUCTION

Induced interactions are responsible for a variety of
phenomena in condensed matter physics, ranging from the
superconductivity of metals, to the stability of the A phase of
superfluid liquid 3He, to the effective interactions between 3He
atoms in liquid 4He [1]. Recently, following the work of Mora
and Chevy [2], it was shown that such processes are important
in dilute mixtures of atomic gases [3]. In this paper, we expand
on Ref. [3], which considered two fermionic species, and
extend the results to boson-fermion and boson-boson mixtures.
In addition, we draw a number of conclusions relevant to dilute
solutions of 3He in liquid 4He.

II. FERMION-FERMION MIXTURES

We begin by giving a compact derivation of the basic result
that the Landau quasiparticle interaction for two minority
atoms (denoted by 2) in a Fermi gas consisting of a majority
species 1 has a momentum independent contribution of the
form

f = ν2 ∂μ1

∂n1
. (1)

Here,

ν = ∂n1

∂n2

∣∣∣∣
μ1

(2)

is the number of majority atoms that must be added per
minority atom in order to keep the chemical potential of the
majority species fixed and ∂n1/∂μ1 = N1(0) = m1pF1/2π2

is the density of single-particle states at the Fermi surface for
species 1. (We use units in which h̄ is equal to unity.) The
density of species i is denoted by ni , the mass of an atom by
mi , and the Fermi momentum by pFi . Physically, the quantity
ν is the number of majority atoms in the dressing cloud of a
minority atom.

To derive the result (1), it is simplest to work in terms
of an effective low-energy theory, in which high-lying states

are eliminated, and only low-lying states are retained. The
effective low-energy Hamiltonian is

H =
∑

p1

p2
1

2m1
a†

p1
ap1 + ε2N2 +

∑
p2

p2
2

2m∗
2

b†p2
bp2

+ g

V

∑
p1p2q

′
a
†
p1+qb

†
p2−qbp2ap1 , (3)

where V is the volume of the system, N1 is the total number of
1-atoms, ε2 is the energy to add a single 2-atom to the 1-atoms,
m∗

2 is the effective mass of a single 2-atom and g is the strength
of the effective interaction between different atoms. The prime
on the sum indicates that the q = 0 term is omitted, since this
is included in the ε2 term. We shall assume that the momentum
scale for variations of the coupling strength are large compared
with the Fermi momentum, and therefore the momentum
dependence of the coupling may be neglected. Also, we
have not written explicitly the direct interaction between two
2-atoms or between two 1-atoms because this is short ranged
and, consequently, the direct and exchange contributions to
the interaction energy cancel. We shall consider only the
isotropic part of the interaction and neglect the momentum
dependence of the interaction which leads to contributions to
Landau parameters other then that for l = 0.

The coupling constant g gives the change in the interaction
energy between small long-wavelength density disturbances
in the medium. In the limit of small concentrations of 2-atoms
the contribution to the energy from the Fermi motion of the
2-atoms is negligible and therefore the interaction energy may
be replaced by the total energy. Thus one sees that [4]

g = ∂2E (n1,n2)

∂n1∂n2
= ∂ε2

∂n1
= ∂μ2

∂n1
, (4)

where E(n1,n2) is the energy density as a function of the
densities of the two components.

The induced interaction is always at least of second order
in g and we evaluate it by calculating the g2 contribution to
the energy, which is given by

E(2) = − g2

V 2

∑
p1p2q

′ (1 − fp1+q)(1 − fp2−q)fp2fp1

(p1 + q)2/2m1 − p2
1

/
2m1 + (p2 − q)2/2m∗

2 − p2
2

/
2m∗

2

, (5)
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where fp is the particle distribution function, the index on the
momentum variable indicating whether it refers to 1-atoms or
2-atoms. From Eq. (5) one may calculate the corresponding
contribution to the Landau effective interaction between two
2-quasiparticles,

f = δ2(E(2)/V )

δfp2δfp′
2

, (6)

where p2 and p′
2 are taken to be vanishingly small. Thus one

finds

f = g2

V

(∑
p1

fp1 − fp1+q

(p1 + q)2/2m1 − p2
1

/
2m1

)
q→0

=g2N1(0).

(7)

This is positive, since although the contribution to the
total energy is negative, one of the distribution functions
corresponds to a hole line, which carries a factor 1 − fp2−q,
and therefore the second functional derivative of the energy
with respect to the distribution function for 2-atoms is
positive. Expressed in the language of Ref. [2], Pauli blocking
reduces the magnitude of the negative contribution to the
energy, thereby giving a positive contribution to f . An
equivalent description is that, while the induced interaction
is intrinsically negative, its contribution to the Landau
quasiparticle interaction comes from an exchange term,
which gives an additional minus sign [3]. Contributions of
higher order in g will contain additional powers of the Fermi
momentum of the minority component and are therefore
negligible in the limit of a low concentration of minority atoms.

III. A BOSE GAS WITH A DILUTE FERMI COMPONENT

An analysis similar to that in Sec. II may be carried through
for a majority Bose component. The elementary excitations
in the Bose system are phonons and the low-energy effective
Hamiltonian is

H = E0(N1) +
∑

q

sqα†
qαq + ε2N2 +

∑
p2

p2
2

2m∗
2

b†p2
bp2

+ g

V

∑
qp2

′
Mq(α†

q + α−q)b†p2−qbp2 , (8)

where the operator α
†
q creates phonons in the Bose system

and E0(N1) is the energy of N1 bosons including the effects
of interactions. Again we neglect the momentum-dependent
part of the effective interactions due to, for example, coupling
of fermions to the superfluid velocity of the bosons. The
energy of a long-wavelength phonon of wave number q in the
Bose system is sq, where s2 = (n1/m1)∂μ1/∂n1. The matrix
element Mq for the density operator to create or destroy a
phonon of momentum q is given by Ref. [5],

Mq =
(

N1q

2m1s

)1/2

. (9)

There are no terms with higher powers of α and α† since
phonons in a Bose-Einstein condensed gas exhaust the
frequency-weighted sum rule for the density-density corre-
lation function. The contribution to the energy calculated in

second-order perturbation theory is

E(2) = − g2

V 2

∑
qp2

|Mq |2
(

(1 + nq)(1 − fp2−q)fp2

(p2 − q)2/2m∗
2 + sq − p2

2

/
2m∗

2

+ n−q(1 − fp2−q)fp2

(p2 − q)2/2m∗
2 − sq − p2

2

/
2m∗

2

)
, (10)

where nq is the phonon distribution function. Thus for two
fermions on the Fermi surface, the effective interaction given
by Eq. (6) is

f = g2n1

2m1s2
= g2 ∂n1

∂μ1
. (11)

This result is valid regardless of the strength of the boson-
boson interaction. The only difference compared with the case
of a majority gas of fermions is that N1 = ∂n1/∂μ1 in Eq. (7)
must be replaced by the expression for a Bose gas. For a weakly
interacting Bose gas, μ1 = n1U11, where U11 = 4πa11/m1 is
the effective low-energy interaction, a11 being the scattering
length, and therefore ∂μ1/∂n1 = U11.

IV. MINORITY BOSE COMPONENT

Analogous arguments may be carried through for a mixture
with a minority Bose component. We consider the case when
the bosons are in a Bose-Einstein condensate and do not treat
the case where bosons form fermionic diatomic molecules
with the majority fermions [6,7]. The bosons may thus be
described by their density n2 and the boson superfluid velocity
vs . For a spatially uniform system consisting of bosons, its
ground-state energy is a function only of the boson density n2,
so the effective interaction is defined by the relation

f = 1

V

δ2E(2)

δn2
2

. (12)

For moving condensates, there will also be effective interac-
tions involving the superfluid velocity, but we shall not take
these into account explicitly here. One difference compared
with the case of minority fermions is that the direct boson-
boson interaction does not vanish. As defined in Eq. (12),
there is no exchange term since the 2-atoms are in a Bose
condensate. Consequently, the exchange process is identical
to the process without exchange and to include it explicitly
would be double counting. A second difference is that the
induced interaction contribution to f is negative, because the
wave function for bosons is symmetric under interchange of
particles and, consequently, the extra minus sign acquired in
the case of fermions is absent. The result is

f = f dir − g2 ∂n1

∂μ1
, (13)

where the direct part is f dir = ∂μ2/∂n2.
The collective modes of the Bose system may be calculated

by the Bogoliubov approach in which the effective interaction
between bosons is given by f , provided the frequency
dependence of the interaction may be neglected. This condition
is satisfied provided the velocity of the Bogoliubov mode is
much less than the Fermi velocity or the sound speed of the
majority component. Thus the sound speed s2 in the Bose gas
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is given by

s2
2 = n2f

m∗
2

. (14)

If f is negative, the sound speed is imaginary and density
modes in the system are unstable. This corresponds to the ther-
modynamic stability condition (see, e.g., Ref. [8], Sec. 12.1.1])

det

(
∂μi

∂nj

)
� 0, (15)

since f dir = ∂μ2/∂n2.

V. DYNAMICAL EFFECTS

Here we show how density modes are affected by the
induced interaction. For definiteness, let us consider the
response of the density of a minority fermion component to a
potential acting on the minority atoms. We assume the wave
vector q of the perturbation to be small. The contributions
to the effective interaction between minority atoms have the
forms shown in Fig. 1: the left-hand diagram corresponds
to the contribution to the effective interaction that we have
calculated earlier, while the second term is due to the response
of the majority atoms at wave vector q. Summing up all
bubble diagrams, the density-density response function for
the minority atoms is given by

χ2(q,ω) = χ
(0)
2 (q,ω)

1 + [f − f (q,ω)]χ (0)
2 (q,ω)

, (16)

where

χ
(0)
2 (q,ω) = m∗

2pF2

2π2

(
1 − ω

2qvF2
ln

[
ω + qvF2

ω − qvF2

])
(17)

and

f (q,ω) = g2χ1 (q,ω) . (18)

If the majority atoms are fermions, χ1(q,ω) is given by

χ1 (q,ω) = m1pF1

2π2

(
1 − ω

2qvF1
ln

[
ω + qvF1

ω − qvF1

])
, (19)

p + q p '+q

p p '

p

p '+q

p '

p + q

FIG. 1. Diagrams representing the induced contribution to the
effective interaction f (left) and the corresponding diagram for the
crossed channel (right). The wavy line represents exchange of an
excitation in the majority component; either a phonon in the case of
a Bose gas or a particle-hole pair in a Fermi gas.

while if they are bosons it is given by

χ1(q,ω) = n1q
2

m1

1

s2
1q

2 − ω2
. (20)

In the limit ω/q → 0, f (q,ω) tends to f . The cancellation
of the two terms is a consequence of the antisymmetry under
interchange of two fermions in the same internal state and the
fact that for ω/q → 0 the contributions of the two processes
shown in Fig. 1 are equal in magnitude. Consequently, effects
of the 1-2 interaction disappear in the density response.
However, at nonzero frequency, there will in general be effects
due to the interaction because the ratio of the energy transfer
to the momentum transfer is different in the two particle-hole
channels for the 2-atoms. In words, while the Pauli principle
forbids two atoms in the same internal state being at the same
point in space at a given time, it does not forbid two such
particles being at the same point at different times.

The frequency dependence of the interaction has striking
implications for the scattering rate of 2-atoms by 2-atoms,
since for ω = 0 the effective interaction vanishes and conse-
quently the scattering rate will grow with temperature as T 4,
in contrast to the T 2 behavior predicted by standard Landau
theory [9]. Related effects occur for quark-gluon plasmas,
where again the frequency dependence of the scattering
amplitude plays a decisive role in determining scattering rates
at low temperature [10]. However, the rate for scattering of
2-atoms by majority fermionic atoms will still have the usual
T 2 dependence.

For a minority Bose gas, the frequency dependence of
the effective interaction affects the dispersion relation of the
Bogoliubov mode, which is given by

ω2 = n2

m∗
2

[f dir − g2χ1(q,ω)]q2. (21)

For a majority Bose gas, χ (q,ω) increases for small ω and
consequently the sound speed is less than the result (14)
predicted on the basis of the static interaction (13). The
situation for a majority Fermi gas is different, and for small
ω/vF1q,

χ1(q,ω) � N1(0)

(
1 + iπ

2

ω

vF1q

)
. (22)

The leading effect of dynamics at low frequencies is an
imaginary contribution to χ1 due to Landau damping. Thus
sound waves in the Bose gas can decay into particle-hole pairs
of the majority species. The time τ for decay of the intensity
of the wave is given by

1

τ
= −2 Im ω = q

4π

n2g
2m2

1

m∗
2

, (23)

which is small compared with the real part of the frequency
for small concentrations of the minority component. In the
appendix we present on the basis of a functional integral
approach an alternative derivation of a number of results in
this section for the case of dilute gases.
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VI. IMPLICATIONS FOR DILUTE SOLUTIONS
OF HELIUM ISOTOPES

Our considerations above have implications for the theory
of dilute solutions of 3He in liquid 4He. The standard approach
adopted by Bardeen, Baym, and Pines [1] (BBP) is to assume
that the interaction between two 3He impurities may be
modeled by a potential that is local in time but of nonzero range
in space [1]. This potential includes effects of the induced
interaction between 3He atoms due to exchange of excitations
in the 4He. The parameters of the potential are typically
obtained by assuming a particular form for the spatial Fourier
transform of the interaction and then fitting parameters to
obtain agreement with measured transport coefficients. In this
approach, the dynamics of the 4He atoms is taken into account
implicitly, since it is assumed that the 4He atoms respond on a
time scale short compared with characteristic times for the 3He.
In the Landau theory of the dilute solutions, the response of the
4He is taken into account through its effect on contributions to
the Landau parameters. This effective interaction corresponds
to the definition

f BBP = 1

V

δ2E

δfpδfp′

∣∣∣∣
μ4

, (24)

where fp is the distribution function for 3He quasiparticles and
μ4 is the 4He chemical potential. With this definition, the local
density of 4He atoms adjusts to the local density of 3He atoms,
and it is this interaction that should be used in formulating a
theory of the static properties of mixtures, such as the magnetic
susceptibility or the 3He contribution to the bulk modulus, if
one wishes to avoid treating explicitly the response of the 4He.

For calculating dynamical effects, the 4He density must be
treated as a dynamical variable, and therefore the appropriate
definition of an effective interaction is

f = 1

V

δ2E(fp,n4,v4)

δfpδfp′

∣∣∣∣
n4,v4

. (25)

This corresponds to the natural generalization of the original
Landau definition of a quasiparticle interaction to allow for a
second component. For the case of a majority Fermi gas rather
than 4He, the density n4 and the superfluid velocity v4 would
be replaced by the distribution function for the majority com-
ponent. Dynamical processes may then be described in terms
of, for example, the kinetic equation for 3He quasiparticles and
the equations of superfluid hydrodynamics for the 4He.

We now consider the relationship of the two different
definitions of effective interaction to microscopic theory [11].
The standard definition of the quasiparticle interaction in a
normal Fermi system is [12]

fp,p′ = lim
q→0

lim
ω/vF q→∞

z2�(p,p′,q,ω), (26)

where z is the wave function renormalization parameter,
and �(p,p,′′q,ω) is the two-particle vertex function for bare
particles. The momenta p and p′ are those of the incoming
particles, vF is the Fermi velocity, q is the momentum transfer,
and ω the energy transfer. In the case of mixtures, the vertex
function depends not only on the distribution of fermions
but also has contributions from interactions of fermions with
bosons. If one applies the definition (26) to helium mixtures,
contributions to the vertex function for scattering of two 3He

atoms due to exchange of phonons in the Bose system carrying
momentum q will vanish, because the phonon propagator
behaves as n4q

2/m4ω
2 [cf. Eq. (20)]. In physical terms, the

4He does not respond because of the high frequency. For
a low concentration of 3He, vF is very much less than s.
The effective interaction used by BBP includes the effects of
phonon exchange in the particle-hole channel with momentum
q and in the microscopic theory it corresponds to the quantity

f BBP
p↑,p′↓ = lim

q→0
lim

vF 	ω/q	s
z2�(p ↑,p′ ↓,q,ω). (27)

In physical terms, ω/q must be much less than s in order that
the response of the 4He atoms be given by its zero-frequency
value. In the BBP approach, exchange is taken into account
explicitly and therefore in defining an effective interaction, the
two 3He atoms are taken to be in different spin states.

In the standard definition of effective interactions for
a Fermi liquid, the two particle-hole channels are treated
differently in the case of two fermions in the same spin state.
For the channel with momentum transfer q, the limit taken is
the high-frequency one, while for the channel with momentum
transfer p + q − p′, it is the low-frequency one, since the
energy transfer is zero. The effective interaction vanishes for
p = p′ in the Born approximation but not when many-body
processes involving particle-hole pairs are taken into account.
This problem has been investigated in detail in Ref. [13].

VII. CONCLUDING REMARKS

In this paper we have shown how the contribution to the
effective interactions between minority atoms induced by
interactions with a majority component may be expressed in
terms of thermodynamic quantities. An important remark is
that the results are not limited to cases where the majority gas
is weakly interacting. Experimentally, an interesting case to
explore would be a Bose gas with weak, repulsive interactions.
In this case the sound speed is small and therefore the effects
of the induced interaction can be correspondingly large.

In addition to the interaction mediated by coupling to
density fluctuations in the majority component, there is also
an interaction between minority atoms due to coupling via
a current-current coupling [1] or, in the case of a fermion
majority component, distortions of the majority Fermi surface
that are not spherical. In general these too should be included,
but they are generally much smaller than the interaction
induced by the density-density coupling. This interaction does
not contribute to the effective interaction between two fermions
at the Fermi surface in a majority Bose component because
the current operator for transitions of a fermion between two
states on the Fermi surface is transverse, and therefore it cannot
create a phonon in the Bose gas, which is longitudinal.
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APPENDIX: FUNCTIONAL-INTEGRAL APPROACH
TO FERMI-BOSE MIXTURES

Here we give a derivation of some of the results in Sec. V
based on a functional-integral approach. We consider a binary
mixture consisting of a fermion species and a boson species at
zero temperature and we shall assume that the densities of the
two components are so low that binary interactions dominate.
The Hamiltonian is

H =
∫ {

φ†
(

− ∇2

2mB

− μB

)
φ + ψ†

(
− ∇2

2mF

− μF

)
ψ

}

+ gBB

2

∫
φ†φ†φφ + gBF

∫
ψ†φ†φψ, (A1)

where the field operators are φ for the bosons and ψ for
the fermions and the integral is over coordinate space. The
interactions between bosons are repulsive. The couplings are
given by gBB = 4πaBB/mB > 0 and [6]

1/mrgBF + �/π2 = 1/2πaBF . (A2)

Here the reduced mass is 1/mr = 1/mB + 1/mF , � is the
momentum cutoff, and aBB and aBF are the s-wave scattering
lengths.

To simplify the discussion, we assume that the Bose gas
is dilute, in the sense that a3

BBnB 	 1. In the case that the
fermions are the minority and the Fermi momentum kF → 0,
the induced interactions between the minority fermions me-
diated by the majority bosons gives rise to a nonzero Landau
parameter as discussed in Sec. III. In the case that the bosons
are the minority, we shall consider situations where bound
states of bosons and fermions (fermionic diatomic molecules)
need not be taken into account. This could be due to either
the boson-fermion interaction being so weak that there are
no bound states or to the state under consideration being a
metastable one in which there are no such molecules. When
bound states are present, the perturbation-theory treatment
given here needs to be extended to allow for the presence
of molecules. In the path integral representation, after the
fermions have been integrated out and terms up to the second
order in gBF retained, the partition function is given by

Z = Z (0)
f

∫
Dφ exp(Seff[φ,μB,μF ]). (A3)

Here the effective action for the bosons is given by

Seff = i
∫

d1

{
φ† (1)

(
i

∂

∂t1
+ ∇2

1

2mB

+ μB − gBF n
(0)
F

)
φ (1)

− 1

2

∫
d2 [gBBδ (1 − 2) + Vind (1 − 2)]

φ†(1)φ†(2)φ(2)φ(1)

}
, (A4)

where the symbol 1 stands for {r1,t1}. The integral over imag-
inary time t is from 0 to −iβ, and n

(0)
F = (2mF μF )3/2/(6π2).

The induced interaction has the form

Vind (1 − 2) = −ig2
BF G

(0)
F (1,2) G

(0)
F (2,1) , (A5)

where G
(0)
F is the free-fermion Green function.

We apply the Bogoliubov approximation for the bosons and
obtain for the frequency � of bosonic modes the dispersion
relation

�2 = P 2

2mB

(
P 2

2mB

+ 2nB [gBB + Ṽind(P,�)]

)
, (A6)

where P is the momentum of the mode and Ṽind is the
Fourier transform of Eq. (A5). In the long-wavelength limit
P/kF → 0,

Ṽind (P,�) ≈ −g2
BF

∂n
(0)
F

∂μF

{
1 − �

2PvF

log

[
�/PvF + 1

�/PvF − 1

]}
.

(A7)

Here vF = kF /mF is the Fermi velocity. The sound speed c ≡
�/P for P → 0 and � → 0 + iδ and in the regime c/vF 	 1
is

Re c = c0

(
1 − g2

BF

gBB

∂n
(0)
F

∂μF

)1/2

, (A8)

Im c = −πg2
BF nB

4vF

∂n
(0)
F

∂μF

, (A9)

with c0 = √
gBBnB/mB . The reduction of the sound speed,

Re c < c0, is due to the attractive induced interactions between
bosons mediated by fermions [14,15]. The small imaginary
part of c indicates that the modes decay into particle-hole
pairs of the majority fermions (Landau damping).

Equation (A8) implies dynamic instability for gBB −
g2

BF ∂n
(0)
F /∂μF � 0. The same instability condition can be

deduced from the energy density of the mixture

E = 3
5nF EF + gBF nBnF + 1

2gBBn2
B, (A10)

where the first term is the energy of a filled Fermi sea and
EF = (6π2nF )2/3/(2mF ), by requiring that the variation of E
to second order in the density variations be negative [8]. Note
that Eq. (A10) takes into account the interaction energy only
at the mean field level.

Equations (A6)–(A9) correspond to the weak interaction
limits (gBF → 0) of Eqs. (21)–(23) in Sec. IV. When gBF

is no longer small, a similar dynamic instability condition
can be derived following the above argument. We can still
formally integrate out the fermions in the partition function
and obtain an effective action for the bosons. Since nB → 0,
in the effective action for the bosons, the interaction effects
due to gBF can be taken into account in two steps. The
first step is to modify the properties of a single boson, such
as the effective mass m∗

B , the single boson energy μB (as
for polarized fermions), and the quasiparticle residue z(<1).
The second step is to change the interactions between these
bosonic quasiparticles. In the low-energy and long-wavelength
limit, induced interactions between the bosons are given
by the diagrams shown in Fig. 1 with the vertex replaced
by ∂μB/∂n

(0)
F . Within the Bogoliubov approximation, we

conclude that, if

gBB −
(

∂μB

∂n
(0)
F

)2(
∂n

(0)
F

∂μF

)
� 0, (A11)

the system becomes dynamically unstable.
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