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Effects of smooth boundaries on topological edge modes in optical lattices
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Since the experimental realization of synthetic gauge fields for neutral atoms, the simulation of topologically
nontrivial phases of matter with ultracold atoms has become a major focus of cold-atom experiments. However,
several obvious differences exist between cold-atom and solid-state systems, for instance the small size of the
atomic cloud and the smooth confining potential. In this article we show that sharp boundaries are not required
to realize quantum Hall or quantum spin Hall physics in optical lattices and, on the contrary, that edge states in a
smooth confinement exhibit additional interesting properties, such as spatially resolved splitting and merging of
bulk bands and the emergence of robust auxiliary states in bulk gaps to preserve the topological quantum numbers.
In addition, we numerically validate that these states are robust against disorder. Finally, we analyze possible
detection methods, with a focus on Bragg spectroscopy, to demonstrate that the edge states can be detected and
that Bragg spectroscopy can reveal how topological edge states are connected to the different bulk bands.
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I. INTRODUCTION

Ultracold atoms in optical lattices provide a unique exper-
imental setup for studying properties of solid-state systems
in a very clean and well-controlled fashion [1,2]. Particularly
interesting in this context is the experimental implementation
of artificial gauge fields for neutral atoms [1,3–6], simulating,
for instance, time-reversal-symmetry-breaking magnetic fields
[7–12] or a coupling of the atom’s internal spin degree to its
angular momentum [13–16]. The realization of these effects
will open a path for precise simulations of a large class of
topologically nontrivial systems such as quantum Hall (QH)
or quantum spin Hall (QSH) phases. Creation of topological
states of matter with cold atoms is particularly attractive
because of the precise control of physical parameters such as
the hopping amplitude and interaction strength, allowing the
possibility to observe strongly interacting topological phases in
lattice experiments. However, the implementation of artificial
gauge fields for neutral atoms is only one experimental
challenge in simulating topological phases in optical lattices
[17–20]. Experiments must overcome the difficulties provided
by the finite size of the lattice and the soft boundary of
the system, caused by a trapping potential that is smoothly
varying in space. The finite size leads to a finite overlap
of spatially separated counterpropagating edge states and
therefore to possible backscattering processes, decreasing the
robustness of the edge states against external perturbations
[21,22]. While this is not a very serious restriction for optical-
lattice potentials, which are relatively pure, the effects of the
soft boundary of the optical-lattice system may significantly
change the properties of the edge states characterizing topolog-
ical insulators in finite systems. Whereas recent publications
identify the soft boundaries as an unwanted restriction or
propose ways to avoid them by implementing artificial sharp
boundaries in their systems [23], we demonstrate in this article
that soft boundaries will lead to interesting additional features,
either not present or at least not visible in systems with
sharp boundaries. For this purpose, we investigate different
trap shapes and geometries, which are realizable in optical
lattices, and discuss their specific influence on the cold-atom
system.

This article is organized in the following way. First, in
Sec. II, we present the theoretical model under consideration,
a QH Hamiltonian in the tight-binding approximation for
spin-polarized fermions confined in an additional trapping
potential. In Sec. III, we present our results for the stripe
geometry, discussing in detail the properties of the edge states
in systems with a hard-wall boundary, a harmonic trap, and a
quartic trapping potential. In Sec. IV, we study the shape of
the edge states in a completely trapped system and investigate
the suitability of several detection methods as tools to probe the
system experimentally, including Bragg spectroscopy. Finally,
in Sec. V, we provide some conclusions.

II. THE MODEL

The model we consider is similar to the ones proposed in
Refs. [7,11], experimentally realizing time-reversal symmetry
breaking topological insulators with ultracold atomic gases.
This model describes a two-dimensional (2D) system of
spin-polarized fermionic atoms subjected to a square optical
lattice, experiencing an artificial Abelian gauge field A that
induces an artificial uniform magnetic field perpendicular
to the lattice, B = Bez, which is similar to the celebrated
Hofstadter Hamiltonian [24] on the lattice. In our system, the
gauge field A enters the first-quantized Hamiltonian of the
system in the form of the minimal coupling p → p − e

c
A,

which leads to the Hamiltonian

H =
(

p − e

c
A

)2/
2m + W (x) + V (x). (1)

The Hamiltonian (1) contains the optical lattice potential W

and a spatially dependent scalar potential V which allows for
the inhomogeneity of the lattice, caused by the finite width
of the laser beams creating the lattice or additional external
potentials such as a harmonic trap or an artificial hard-wall
boundary. For the moment we leave the detailed shape of V

arbitrary, and assume only that the nonlocal matrix elements
of V are negligible (i.e., 〈l|V |m〉 = δl,m〈l|V |l〉, where 〈l| is
the Wannier state at lattice site l), which is reasonable in our
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case since the potential is either varying slowly compared to
the lattice spacing a or a step function.

The second-quantized form of Hamiltonian (1) in the tight-
binding approximation then reads

H = −t
∑
l,m

c
†
l e

i2πφl,mcm +
∑

l

Vlc
†
l cl . (2)

The operator c
†
l here denotes the fermionic creation operator

at lattice site l, with its corresponding annihilation operator
cl . The first term is the well-known nearest-neighbor hopping
with amplitude t , and is complex due to the Peierls phases
2πφl,m that are a result of the gauge field [24]. The second
term corresponds to the inhomogeneity V with the local matrix
elements Vl ≡ 〈l|V |l〉. The phases φl,m = 1

2π

∫ m

l
A · dl are not

uniquely defined by the magnetic field and depend on the gauge
chosen. In this paper, we choose the common Landau gauge
A = (0,Bx,0), which leads to φl,m = αxl(δyl ,ym+1 − δyl ,ym−1),
where xl and yl are the coordinates of lattice site l with lattice
spacing a = 1 and α = �

�0
represents the flux per plaquette

in units of the magnetic flux quantum �0 = h/e. Setting e =
h̄ = 1, we obtain α = B

2π
for the square lattice. Throughout

the rest of this article we choose the hopping t as the natural
energy unit of our system.

In the following sections we will restrict our analysis to the
case where α = 1/6 or 2/5. Our results for these two cases
can easily be generalized to other cases where α = p/q, with
p,q ∈ N, and where topological edge states are predicted [25].

The experimental realization of a similar model was
proposed in Ref. [23], where the authors consider a spinful
fermionic system subjected to an artificial gauge field that
simulates a magnetic field of the form B = Bσ ez, where σ =
±1 is the spin quantum number. This model preserves time-
reversal invariance and therefore allows for the realization of
QSH phases in optical lattices. Because of the time-reversal
symmetry, our analysis also applies to this model when spin
remains a good quantum number, and we will mention the
corresponding QSH phases throughout the text. So far, we
have not accounted for a Zeeman splitting due to an external
magnetic field, a spin-orbit coupling, or a staggering potential,
all realizable in optical lattices [23]. The physics caused by
these additional effects are indeed very interesting and leaving
them out may seem quite restrictive, but the results we discuss
in this article are quite general and require only that the states
are topological and do not rely on the detailed nature of the
edge states.

III. EDGE STATES IN CYLINDRICAL GEOMETRIES

The defining property of topological insulators in a semi-
infinite system is the emergence of gapless edge states which
are localized at one edge and robust against perturbations of the
system, e.g., potential or magnetic disorder. Furthermore, the
presence of these states is the origin of the currents measured in
QH [25–27] and QSH samples [28–30] which are well known
to be strictly quantized when Sz is a good quantum number.
Topological phases are typically distinguished by the transport
properties of the edge states, specifically by the quantized
charge (or mass for neutral atoms) that is transported at a single
edge [31,32]. One method of determining the topological

quantum number for a given system is therefore to calculate the
energy spectrum on a cylindrical geometry and to evaluate the
transport properties of the edge states directly. Alternatively,
one may determine the topological quantum numbers from the
dispersion relation of filled bands [35] or the corresponding
eigenstates [32–34] in the corresponding infinite system.

In this section we will focus on a cylindrical geometry and
determine the spectral functions of the system of interest via
exact diagonalization of the Hamiltonian for a finite system
of size 100 × 100 [36]. We discuss the properties of the
edge states of the system by analyzing the integrated spectral
function in quasimomentum space and real space for several
kinds of boundaries and show the robustness of the edge states
against perturbations by switching on a disordered potential.

A. Identification of topological invariants

Topological phases can be characterized either by analyzing
the band structure properties of the infinite system, or in
terms of the transport properties of the system in a confined
geometry. While the first approach is insensitive to the specific
shape of the confining potential, the latter may in principle
strongly depend on these details. In this section we discuss the
properties of edge states at an infinite wall boundary, realized
by open boundary conditions at the edges of the cylinder,
henceforth referred to as stripe geometry. For this kind of
boundary the topological quantum number of the infinite
system is equivalent to the transport coefficient ν of the finite
system, a relation known as the bulk-boundary correspondence
[34,35]. The coefficient ν counts the difference in number
of forward-moving and backward-moving states at the Fermi
edge, which represents the net transport for low-energy
excitations and hence the quantized edge current IE [25].
Explicitly, we have [37]

νm =
∑
αm

sgn
[
∂ky

εαm
(ky)

]
, (3)

where αm labels the states at the Fermi edge with energy
εαm

(ky) = εF and m = L,R for the left and right edge,
respectively. Equation (3) can be obtained by applying the
well-known Laughlin argument to a cylindrical geometry and
subsequently following the procedure described in Ref. [34],
where no details of the trapping potential are required. For
the gauge A = (0,Bx,0), the single-particle Hamiltonian (1)
obeys the symmetry H (x,p) = H (−x,−p), which leads to
νL = −νR . Throughout this article we will only consider the
Hall transport coefficient for the left edge ν ≡ νL, which is
identical to the topological Z quantum number of the infinite
system and determines the Hall conductance σxy = νe2/h.
The topological Z2 quantum number ν2, which indicates QSH
phases in the corresponding spin-1/2 system [23], can then be
obtained, if Sz is a good quantum number, by Refs. [38,39]

ν2 = |ν| mod 2. (4)

If ν2 = 1 the system will exhibit a QSH phase.
In this paper we make an explicit distinction between an

“edge state” and an “edge mode.” An edge state always refers
to an eigenstate of the Hamiltonian that is localized to one
edge, whereas an edge mode refers to a series of edge states
that are smoothly connected in momentum space. Although

063614-2



EFFECTS OF SMOOTH BOUNDARIES ON TOPOLOGICAL . . . PHYSICAL REVIEW A 85, 063614 (2012)

FIG. 1. (Color online) Integrated spectral function for a system described by Eq. (2) with flux α = 1/6 and stripe geometry with 100 × 100
lattice sites [36]. Three experimentally relevant confinements of the form V (x) = V0(x/L)δ are shown: (a) hard-wall confinement, δ → ∞,
(b) quartic confinement, δ = 4, and (c) harmonic confinement, δ = 2. The spectra in the upper row, ρL(ky,ω), show the ky dependence along
the periodic direction, integrated over the left half of the confinement direction (see text), and the real-space spectra of the lower row, ρ̃(x,ω),
show the x dependence along the confinement direction. To the right of the figure are the transport coefficients, calculated using (3) with the
Fermi edge set to the corresponding dotted line. For hard-wall and quartic confinement there is an appreciable number of bulk bands and the
edge states are clearly distinguishable, whereas within harmonic confinement we consider almost all of the states to be edge states. In each
case we indicate left-edge states in red, while the remaining bulk states are shown in black, corresponding to the left half of the cylinder in
real space (see lower plots). Two possible approaches exist for designation of edge and bulk states in softly confined systems. As seen in the
upper row, energy regions with well-defined topological quantum numbers can be identified in the spectrum. The corresponding states can
be designated as part of the edge, and the remaining ones as the bulk. Alternatively, we can define the edge as the point at which no states
have energies within the range of energies covered by states at the center of the trap. We use the latter designation, although there is little
difference between the two methods.

this distinction is not necessary for hard-wall systems, it is
required for soft-boundary systems.

B. Cylindrical geometry with open boundary conditions

We first consider a system described by Eq. (2) with a step
potential V that is zero for |x| � Lx/2 and infinite elsewhere,
with Lx sufficiently large, providing a hard-wall boundary at
the edges of the cylinder. Since the quasimomentum in the
y direction is a well-defined quantum number and we are
interested in transport coefficients for this direction, it is con-
venient to represent the spectrum of the system in terms of the
integrated spectral density ρL(ky,ω) ≡ ∫ 0

−L/2 dx ρ(x,x,ky,ω),
where the spectral function is defined as

ρ(x,x ′,ky,ω) = −2Im〈x,ky | 1

ω − H + i0+ |x ′,ky〉. (5)

We integrate only over the left half of the system in real
space, so as to separate the left from the right edge states
[40]. In Fig. 1(a), upper panel, the integrated spectral density
ρL(ky,ω) is shown for α = 1/6. One can identify the bulk
states, which are grouped into six thick bands, and the edge
states, which close the gaps between the bands. To determine

the transport coefficients and possible topological phases, we
place the Fermi edge in a bulk gap and apply (3) to the
dispersion of the edge states.

There are several phases visible in this system. If the Fermi
edge lies within a bulk band, the system is in a trivial metallic
phase. If the Fermi edge lies between the third and fourth
bands, there is a set of Dirac points with a linear dispersion and
the phase is a semimetal. In the bulk gaps, which lie between
the other bands, the edge modes place the system in a quantum
Hall state with ν = −1 and −2 for the first and second bulk
gaps, respectively, and inverted for the third, fourth bulk gap.
In shorthand, we can specify the phases between the bands
by gap1/6 = {−1,−2,D,2,1}, where D represents the Dirac
points. In the analogous spin-1/2 system, ν = ±1 indicates a
QSH phase whereas ν = ±2 corresponds to a normal insulator,
due to lack of topological protection.

In addition we also investigate the case where α = 2/5
(see Fig. 2) for which we find gap2/5 = {2,−1,1,−2}. Note
that there are no Dirac points for α = 2/5. The differences
between gap1/6 and gap2/5 appear as different real-space
behaviors within soft confining potentials that are not visible
within a hard-wall confinement, as we demonstrate in the next
section.
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FIG. 2. (Color online) Integrated spectral function ρL(ky,ω) for
a system described by Eq. (2) with flux α = 2/5 and hard-wall (left)
and quartic (right) confinement. Edge states are shown in red, while
bulk states are shown in black.

C. Cylinder with soft boundaries

With soft boundaries, it becomes relevant to look at the
spectra of the system in real space along the x axis, ρ̃(x,ω) =∫

dky ρ(x,x,ky,ω), as well as the partially integrated spectra
in quasimomentum space along the ky axis, ρL(ky,ω). The
quasimomentum spectra allows us to extract transport coef-
ficients and discuss the dispersion of the edge modes. On
the other hand, the real-space spectrum exhibits some unusual
features for different trapping conditions. We consider a lattice
of size 100 × 100 [36] and trapping geometries of the form
V (x) = V0(x/L)δ , where V0 = 10t and L = 50a is chosen
such that V (x = 50a) = V (x = −50a) = 10t which is larger
than the energy spanned by the infinite system ∼8t . Three
particular values of δ are relevant to experiment: δ → ∞,
which reproduces hard-wall boundary conditions, δ = 4 for
quartic confinement, and δ = 2 for harmonic confinement. In
most optical-lattice experiments, the confining potential is a
result of the Gaussian envelope of the finite beamwidth of the
lasers and in the center of the trap we may approximate this
confinement by its leading-order harmonic term. However, it
is has been suggested [41] that one can remove the harmonic
term by superimposing an antitrapping Gaussian beam of
different detuning on the trapping beam, which then promotes
the quartic term to the leading-order approximation of the
trapping potential, i.e., V (x) ∝ x4. This scheme was realized

in optical-lattice experiments to improve quantum phase
diffusion experiments [42,43]. We investigate these trapping
geometries below in further detail.

1. General features and preservation of topological invariants

In Fig. 1, we show a comparison between ρL(ky,ω) and
ρ̃(x,ω) for α = 1/6 and hard-wall, quartic, and harmonic
confinements that are relevant to experiment. One can see
that the potential does not gap the system, and edge modes
continue to connect the bands. The transport coefficients of
the soft-boundary systems, indicated to the right of Fig. 1, are
insensitive to the trapping potential. In other words, there exist
energy ranges in which we can identify a transport coefficient,
which is identical for all confinements we consider.

Comparing the ky-dependent soft-boundary spectra of the
upper row in Fig. 1, we make two observations: (1) we can
readily identify highly degenerate regions of bulk bands in
the hard-wall and quartic confinements, and (2) we find that
the dispersion of edge modes that are present within quartic
confinement does not change noticeably whenthe confinement
is changed to the harmonic trap. In contrast, the rest of the
spectrum is significantly modified, such that the ratio of bulk
to edge states is very small. To define such a bulk region in
the soft-boundary system, we assume that the edge begins at
a distance from the trap center where none of the states at
this point overlaps in energy with any of the states in the very
center of the trap (i.e., at x = 0).

Analogously, we can clearly identify a bulk region from
the x-dependent spectra in the bottom row of Fig. 1 for
the quartic trap, but not in the case of the harmonic trap.
From this we conclude that the quartic trap is likely the best
trapping potential for observing effects of both the bulk system
and topological edge states in an experimental setup, if it is
not feasible to artificially implement hard-wall boundaries
as proposed, for example, in Ref. [23]. Furthermore, we
observe no overlap between states of different edges, which
has been proposed to destroy edge states via couplings between
the edges [21]. This again shows that the edge states are
topologically protected and robust against external changes
in the potential.

FIG. 3. (Color online) False color diagram of the integrated spectral density ρL(ky,ω) for a system described by Eq. (2) with flux α = 1/6,
stripe geometry, and a confining potential V (x) = V0(x/L)δ . Bulk bands are indicated in black and edge modes as colored curves, also marked
as (a), (b), (c), (d). There exist several true crossings and avoided crossings in the spectra which combine to preserve the topological invariants
for any confinement exponent δ. Auxiliary states of the corresponding edge modes are shown with dashed curves. The auxiliary states do not
influence the topological phases of the system, since they always come in pairs with opposing velocities.
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In Fig. 2, we also show a comparison of ρL(ky,ω) for the
case where α = 2/5 between a hard-wall (left column) and
a quartic confined system (right column). We again calculate
the transport coefficients of both systems and list these next
to the plots to show that these also coincide for all trapping
potentials.

To better understand the details of the rather complicated
spectra of the quartic trap, we choose to follow the edge modes
of the hard-wall confinement by smoothly varying the trapping
exponent δ. We show plots for δ = 60,16,8 and α = 1/6
in Fig. 3, where we have artificially colored the spectra to
indicate each edge mode. δ = 60 represents a very steep trap,
and is almost identical to the hard-wall case: with the color
designation, one sees that the blue and yellow edge states are
present only in the second and third bulk gaps, respectively,
whereas the red (marked as (a)) and green edge states (d) span
two bulk gaps. As the confinement is made softer, we see
that an edge mode may cross the Brillouin zone more than
once, and that the energy range of the edge states changes,
e.g., with δ = 8 the red state (a) now extends into the third
bulk gap. However, whenever this occurs, the state forms
an avoided crossing at some higher energy with a different
edge state and is forced downward in energy, a process which
preserves the value of the topological invariants. We represent
this in the false color diagram by a dotted line for parts of
the edge states that are nontopological, i.e., not connecting
different bulk bands. For δ = 16,8, we can consistently see
this occurring in the most energetic edge mode (colored green,
(d)), which extends above the highest bulk band, and forms an
avoided crossing with the nontopological edge state created
by the effect of the trapping on the highest bulk band.

Note that, due to the trapping potential, several edge states
that belong to the same edge mode may exist for one value of
energy.

2. Merging and splitting of edge states

When the number of edge modes changes, as the Fermi edge
crosses a bulk band in the hard-wall boundary system, either
an edge mode must be created, or an edge mode must merge
either into the bulk band itself or with another edge mode.
In the soft-boundary system we can see some very nontrivial
behavior that shows the complexity of these processes.

We first focus on the real-space spectra of the α = 2/5 flux
system under quartic confinement; see Fig. 4. In the lowest gap,
we see that two different edge modes, which evolve between
the first and second bulk bands, merge into a single edge mode,
which evolves between the second and third bulk bands. In the
hard-wall system, this mode is localized to a single site in
the x direction and can be observed only in quasimomentum
space. In the quartic trap, the edge states leaving the first bulk
band follow the shape of the quartic potential and one may
expect the same for the states leaving the second bulk band.
As one sees in Fig. 4, this is not the case. The states leaving
the second bulk band immediately start to merge with the edge
states from the first bulk band, and the result is only a single
mode at each edge, evolving between the second and third
bulk band. Although it is not possible to determine topological
invariants from real-space spectra, we can link this merging
behavior to the ky-space spectra of Fig. 2 and see that it leads

FIG. 4. (Color online) Integrated spectral density ρ̃(x,ω) for a
system described by Eq. (2) on a 100 × 100 lattice with quartic
confinement V . In the left figure, the flux is chosen to be α = 2/5,
while in the right figure α = 1/6. In the left figure, the edge states
leaving the second bulk band immediately merge with the edge states
of the first bulk band to form a state spatially localized between the
bulk bands with the correct transport coefficient. In the right figure,
the states leaving the second bulk band split up, i.e., they localize
to more than one point in space. The inner part of these states
merges with the edge states of the third band at higher energies.
Similar behavior is observed for the third, fourth, and fifth bands. As
pointed out in the text, this nontrivial behavior is an indication of the
topological origin of the edge states.

to the correct topological quantum number ν = −1. The same
effect is again observable between the fourth and fifth bulk
bands. Interestingly, the merging of these modes does not take
place via a simple overlap of the states, but a gap in real
space with negligible spectral weight exists between the states
originating from the bands and the newly formed edge mode.

In the α = 1/6 flux system, we also see the opposite effect:
the splitting of a single bulk band, to connect edge modes
of different bands which are energetically well separated. In
Fig. 1, the integrated spectral density ρ̃(x,ω) shows that the
modes leaving the second and fifth bulk bands each split into
two curves, where a single eigenstate has large amplitudes on
two spatially separated lattice sites. We interpret this splitting
as a process that facilitates the connection between different
bands which we observe in Fig. 3. For example, the outer
part of the mode leaving the second bulk band can be seen to
merge at higher energies with the mode that is a product of
the third and fourth bands. This connection between the bands
is analogous to the avoided crossings that we observe in the
ky-dependent spectra in Fig. 3. This very nontrivial behavior of
modes within the outer region of the system, combined with
transport coefficients which are identical to the topological
quantum numbers, given by the transport coefficients of
the infinite system, indicates that the soft edge states are
of topological origin. To further verify this, we address in
Sec. III D the robustness of these states against perturbations
in terms of a disordered background potential.

3. Relation of edge states and bulk bands

When we look more closely at the dispersion of the edge
modes, we can see an interesting connection to the bulk bands
of the system. We focus on the quasimomentum spectra for
the case α = 1/6 shown in Fig. 3 for increasing confinement
exponent δ.
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The dispersion of an edge mode leaving a given bulk band
can be described on two different quasimomentum scales. For a
small range of ky , the dispersion mimics that of its associated
bulk band, and this behavior becomes more prominent for
smaller δ. This can be seen for the lowest edge modes, colored
red (a) and blue (b), e.g., the red (a) mode has a locally flat
dispersion, mirroring the flatness of the lowest band. However,
when avoided crossings have occurred, such as for the yellow
(c) and green (d) edge modes, the dispersion of an edge mode
cannot simply be described by one band alone and corresponds
to a mixture of bands.

On the other hand, considering the Brillouin zone as a
whole, the edge modes become more flat in momentum space
the smoother the confining potential is in real space. This
flattening is a direct result of the number of accessible sites at
the edge. The number of lattice sites, nedge, that are available for
an edge state between, e.g., the first and the second bulk bands,
is the number of sites i that fulfill ε1 − ε0 � V (xi) � ε2 − ε0,
where ε1 (ε2) are the maximum (minimum) energies of the first
and second bulk band, respectively, and ε0 is the minimum
energy of the first bulk band [22]. In the hard-wall system,
nedge = 1, but becomes larger as the confining potential
becomes smoother in real space. An interesting result for
the α = 1/6 flux per plaquette is that the flatter the potential
becomes, the flatter the lowest gap edge modes become, with
a corresponding increase of the effective mass of the system’s
excitations:

m∗ ≡
(

∂2

∂k2
y

ε(ky)

)−1

→ ∞. (6)

This is generally true for soft confinements, as pointed out
in Ref. [22], but the edge-state structure in the case α = 1/6
allows this feature even for relatively steep potentials.

D. Robustness of soft edge states in stripe geometries

One of the most important properties of topological edge
states is their robustness against even large perturbations,
which leads to clearly detectable quantized Hall conductance
in impure experimental setups. In optical-lattice experi-
ments, which are, by construction, very clean realizations
of condensed-matter Hamiltonians, perturbations such as
disorder are usually not an issue. However, since disordered
potentials can be implemented in a controlled manner [44–46],
it is of interest to thoroughly investigate how robust the edge
states are against these kinds of perturbation. Here, we address
this question for soft boundaries. The general argument, which
illustrates the robustness of edge states in condensed-matter
systems, is the lack of possible backscattering processes
[32]. Counterpropagating edge states are localized on op-
posite edges of the system and are very well separated
spatially. Therefore, in huge condensed-matter systems, these
states have vanishing spatial overlap and backscattering from
impurities is completely suppressed. In contrast, in finite
systems different edge states from opposite edges will have
a finite overlap in real space, which theoretically allows for
backscattering processes, and therefore disorder may lead to
the opening of a gap in the spectrum. However, as we will
see from our numerical results, even in very small systems

FIG. 5. (Color online) Integrated partial spectral density ρL(kx,ω)
of a system described by Eq. (2) on a 120 × 60 lattice with α = 1/6
[36]. Right: with an additional binary disordered potential, given by
Eq. (7) and max = 0.5t . Left: with the disordered potential being
set to zero. The robust edge states are still clearly pronounced and
gapless, while the former bulk bands are smeared out and show a
mobility gap (not shown here but obtainable from the Anderson-
localized bulk eigenstates).

(≈60 lattice sites in the y direction) this effect is not
observable.

To verify the robustness of the soft edge states numerically,
we perturb the system described by Eq. (2) by adding a
disordered background potential

Vdisorder =
∑

l

lc
†
l cl , (7)

where l is distributed randomly, either by a binary dis-
tribution, l ∈ {0,max},∀ l, or by a uniform distribution,
l ∈ [0,max],∀ l [47]. For all realizations, we found that the
edge states stay robust and still connect the different bulk band
regions without opening a gap up to disorder strengths of about
max ≈ 0.5t for binary disorder and even larger strengths for
uniform disorder.

For example, in Fig. 5 the integrated partial spectral density
ρL(ky,ω) is shown for a 120 × 60 lattice system with uniformly
distributed l and max = 0.5t . There is clearly no gap in the
spectrum and although quasimomentum is no longer a good
quantum number, the edge states in momentum space are very
sharply centered around a particular value of ky and remain de-
localized in the y direction as they were for the system without
disorder [48]. In contrast, some of the bulk states now consist of
many quasimomentum components (not shown in our figure)
and therefore become localized to a region much smaller than
the system size, which can be termed Anderson localization.

We have also addressed larger systems with larger boundary
regions. These systems contain more and more edge states
in a given bulk gap, which may possibly lead to different
backscattering processes between edge states located at the
same edge and therefore open gaps in the spectrum after
disorder is introduced. To exclude these possibilities, we
studied system sizes of up to 60 × 240 lattice sites without
finding any indication of gaps in the spectrum or localization
of the edge states up to disorder strengths of max = 0.5t .

IV. DETECTION METHODS

So far we have focused on a semi-infinite system with
stripe geometry. However, realistic systems in optical-lattice
experiments are confined to a finite region in all dimensions by
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FIG. 6. (Color online) Wave function |�(x,y)|2 as a function of the lattice spacing a of different eigenstates of the system within complete
quartic confinement. The real-space spectral density shown to the left is a cross section of the complete system: ρ(x,y = 0,ω). Three particular
eigenstates have been shown, and their energies indicated by arrows to the spectral density. The wave functions belong to (a) a bulk region and
(b) and (c) to a pair of edge states splitting up after leaving the second bulk band.

the finite beamwidth of the lasers. In this section, we determine
the spatial wave functions of a 2D system trapped in both the
x and y directions and discuss possible detection methods of
the resulting edge states.

A. Eigenstates of the completely trapped system

We determine the eigenstates of a system with a confining
potential V that varies in the x and y directions

V (x,y) = V0

[(
x

L

)δ

+
(

y

L

)δ]
. (8)

The parameter δ determines the shape of the trap and the
possible eigenstates. For δ → ∞ the system is again confined
by hard walls in both directions, while for δ = 4 and δ = 2
the system is in a quartic and a harmonic confinement, respec-
tively. For harmonic confinement, we expect the eigenstates
that are extended over various lattice sites to be circularly
symmetric, whereas in the quartic case the potential is no
longer circularly symmetric and the states take on a shape that
is sometimes referred to as a squircle [49]. For this analysis
we again will restrict ourselves to a system with 100 × 100
lattice sites and a trapping potential with a minimum value of
V0 = 10t along each edge of the lattice. We again focus on
α = 1/6.

In Fig. 6, we clearly see the different real-space distribution
of edge states compared to bulk states. The bulk states are
delocalized over a region of about 30 × 30 lattice sites,
while the edge states for a given energy follow the isolines
of the quartic potential, and are strongly confined to these

regions. Comparing Figs. 6(b) and 6(c) for the completely
trapped system one can see the splitting of the edge states
leaving the second bulk band as the two states have a weak
overlap with one another. The shape of the edge states in the
quartic confinement looks similar to that which one would
expect in the hard-wall system (like those explicitly shown in
Ref. [50]) and differs only at the very corners of the system.
We therefore expect similar single-particle excitations for the
quartic confinement as for the hard-wall confinement when
probing the edge states in experiment.

The situation slightly changes for the harmonically confined
system. There, the confining potential is circularly symmetric
and one may expect that the eigenstates reflect this symmetry.
The wave functions of the harmonically confined system are
shown in Fig. 7. As already seen from the spectral density
plotted in Fig. 1, the former bulk region is tightly confined
to very few lattice sites in the center of the trap, which
makes it difficult to define a bulk region in the harmonic trap.
On the other hand, the edge states chosen reflect the radial
symmetry of the trapping potential and again are localized
along the isolines of the trapping potential. This already
indicates that for the harmonic confinement we expect very
different excitation dynamics than for the quartic and hard-wall
confinement, where significant parts of the eigenstates are
quasi-one-dimensional.

For harmonic confinement, one can solve the continuum
model analytically in the absence of the lattice [51,52] and
the resulting wave functions are quite similar to those from
the lattice calculation. The major difference in the continuum
case is that no edge states from different bulk bands merge,
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FIG. 7. (Color online) As in Fig. 6 but with complete harmonic confinement. The three states are shown from (a) a bulk region and (b) and
(c) edge states of states belonging to different bulk bands. Spatial coordinates in units of the lattice spacing a.

since the Hall conductivity always increases by 1 when passing
a bulk band and the different bulk bands are not connected.
Additionally, angular momentum is a good quantum number
only in the continuum case.

B. Bragg spectroscopy

An important question concerning topological nontrivial
phases in ultracold atoms is whether the edge states are
detectable with existing experimental tools. Due to the lack
of stationary transport in optical-lattice experiments, it is
not feasible to directly measure the Hall conductance, and
one has to consider alternative approaches [22,53]. Several
possibilities for detecting edge states or topological quantum
numbers in optical-lattice experiments have been proposed.
Some require careful experimental implementation such as
Bragg [54,55] or Raman spectroscopy [56], and others take
advantage of easily accessible observables like time-of-flight
(TOF) patterns or density profiles.

Density profile measurements were proposed by Umu-
calilar et al. [57] to directly separate the bulk and edge densities
between different bands. However, as already pointed out in
Ref. [22], these profiles do not show the required structure, as
can be seen in Fig. 1 (lower panels): the bulk bands all occupy
approximately the same real-space extent. Hence, this method
is not applicable to topological systems in general.

Alternatively, TOF measurements have been proposed by
Zhao et al. [58] to exhibit minima and maxima that depend on
the topological number of the system. While this is true for the
specific cases they were investigating and also for our system in
the case of α = 1/6, we found that it is not valid in the case of
α = 2/5 and therefore cannot be reliably used as a detection

method in experiment. In contrast, Alba et al. [59] propose
using TOF measurements as a method to identify skyrmions,
by focusing on topological properties of pseudospin vectors
within the Hamiltonian on the Bloch sphere. However, this
method focuses on bulk properties rather than the edge modes
that we consider here.

We choose to focus instead on Bragg spectroscopy, which
probes the dynamical structure factor S(q,ω) of the underlying
system. Bragg scattering of topological insulators in optical
lattices has been previously considered for the case of the
quantum anomalous Hall effect [54]. However, no inhomo-
geneity of the lattice was considered. Recently, Goldman
et al. [55] have investigated Bragg spectroscopy theoretically,
considering shaped lasers to probe angular momentum states
within circularly symmetric traps. While this is a novel
implementation to enhance the detection of edge states, we
demonstrate that one is able to observe edge states using
a simple linear Bragg coupling which, due to technical
limitations, may be the only option available to a particular
experiment. Furthermore, one can observe differences in Bragg
spectroscopy between the various bands that we show is not
due to chirality considerations. We do not propose an explicit
experimental setup and simply assume that one can measure
the dynamical structure factor directly. One such proposal to
measure this precisely in an optical lattice is the so-called
shelving method [55].

When performing Bragg spectroscopy, the system is illu-
minated by two laser beams, described by wave vectors p1, p2
and frequencies ω1 = p1c, ω2 = p2c, respectively, and the
differences in these quantities, q = p1 − p2 and ω = ω1 −
ω2, allow for transitions between different eigenstates of the
original system. The Hamiltonian describing the interaction of
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FIG. 8. (Color online) Dynamical structure factor for a system with quartic confinement and Fermi energy in the first bulk gap (εF = −2t).
Left: S(q,ω) for fixed momentum q as a function of ω. The first peak belongs to edge → edge scattering and its position is sensitive to q and
can be written, for small ω, as ωq = vF,edgeq. The second and third peaks belong to edge → bulk scattering from edge states into the third
and fourth bulk bands, located around ε = 0, and to bulk → bulk scattering from the first to the second bulk band, where the frequency is
independent of q. No signal appears of scattering from edge states to the second bulk band, located at ω = 0.5t , indicating a disconnection
between these states, i.e., these states have vanishing matrix elements of the Bragg operator. Right: S(q,ω) for fixed frequency as a function of
momentum transfer q for (a) edge → edge scattering at ω = 0.2t , and (b) bulk → bulk scattering processes at ω = 1.5t .

the system with the laser beams is then given by

HBragg = �

2

∫
d2p[e−iωt�†(q + p)�( p) + H.c.], (9)

where �†( p) is a field operator creating a particle with real
momentum p and � is the coupling strength of the lasers
[60–62].

The dynamical structure factor in linear response theory for
an infinite homogeneous system is directly connected to the
density-density correlation function χq,q(ω),

S(q,ω) = − 1

π
Imχq,q(ω), (10)

via the fluctuation-dissipation theorem [63]. For our case, we
have to evaluate S(q,ω) for the inhomogeneous system, where
the quasimomentum is no longer a good quantum number.
Within the linear response approximation and accounting for
the finite size of the system and finite time of the measurement
process, we find

S(q,ω) = |�|2
∑
μ,λ

nλ(1 − nμ)|Aλ,μ(q)|2
(ω − ωμ + ωλ)2 + 2

. (11)

Here, λ,μ label the single-particle eigenstates of the system,
and nν and ων are the occupation number and energy, respec-
tively, of the state ν. We introduce a Lorentzian broadening
factor , to allow evaluation in a system of finite size. The
scattering amplitude Aλ,μ(q) is the probability of a particle in
state μ to scatter into the state λ by gaining momentum q and

is given by the integral

Aλ,μ(q) =
∫

d3r e−iqrψ∗
μ(r)ψλ(r). (12)

After determining the single-particle eigenstates of the system,
we can directly calculate the dynamical structure factor.
Because we are focusing on the detection of edge states, we
investigate a system with a Fermi energy located in a bulk gap
at εF = −2t (see Fig. 1), where an edge state is located. There
are now four general scattering processes possible, edge →
edge, edge → bulk, bulk → edge, and bulk → bulk. Edge →
edge scattering is clearly distinguishable by analyzing the
dynamical structure factor. Given a frequency ω, the set of
possible momentum transfers allowed to another edge state
is very limited because the edge states are well localized in
momentum space. For the case of edge → bulk scattering,
many different momenta are accessible and therefore we see a
signal regardless of the value of q. This means that, for a fixed
momentum transfer q, S(q,ω) as a function of ω consists of a δ

peak approximately around ω = qvF [64] and a smeared-out
region where the bulk bands are located. This can be seen
in Fig. 8 (left), where the first peak indicates edge → edge
scattering and the second and third peaks correspond to
edge → bulk and bulk → bulk scattering.

On the other hand, for a fixed frequency ω, the response
in momentum space describing edge → edge scattering looks
quite different from that obtained from edge → bulk scatter-
ing, as one can see from Figs. 8(a) and 8(b), respectively.
For the quartic confinement, the edge states form squircles in
real space (Fig. 6), which means that low-energy excitations
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are most favourable in the x or y direction, resulting in the
squarelike structure of S(q,ω) in Fig. 8, which is approx-
imately described by {qallowed} = {(qx,qy)| max{|qx |,|qy |} ≈
q0 = vF /ω}. In contrast, the dynamical structure factor of
bulk → bulk scattering from the first to the second band
is smeared out and depends on the Fermi surface of the
occupied level at εF and the Fermi surface of the unoccupied
band ε̃F = εF + ω. The allowed momenta are approximately
described by {qallowed} = {(qx,qy)||qx | + |qy | ≈ ε̃F /ṽF } and
form a rough square which is rotated by ϕ = π/4 compared
to results for edge → edge scattering. Note that as a result
of the structure of Aμ,λ(q), where a minimal spatial overlap
of the two spatial wave functions is needed to obtain a finite
scattering amplitude, high-frequency edge → edge scattering
is exponentially suppressed because the presence of the trap
causes energetically separated edge states to be localized to
different distances from the center of the trap. This does not
occur in the equivalent hard-wall system.

For the harmonically confined system, S(q,ω) as a function
of ω for fixed q is qualitatively the same as in the quartic
system. In contrast, S(q,ω) as a function of q for fixed ω for
edge → edge scattering looks quite different than for quartic
confinement. As seen in Fig. 7, the edge states have a circular
symmetry and therefore no momentum transfer direction is
preferred, which leads to the set of allowed states forming
a circle {qallowed} = {(qx,qy)|

√
q2

x + q2
y ≈ ω/vF }, shown in

Fig. 9.
An important result of our calculations is that there is an

obvious absence of spectral weight at frequencies where we
expect signals of edge → bulk scattering. To highlight this, we
calculate an artificial Bragg response where we allow only ini-
tial states in the energy range −2.5t < ε < −2t for transitions
to states of higher energy. This means any signal due to possible
bulk → edge or bulk → bulk transitions is suppressed. The
spectra shown in Fig. 10 demonstrate an edge → edge signal
for the first bulk gap and an edge → bulk signal to the third
and fourth bulk bands, but conspicuously absent is the signal
for the edge → second bulk band transitions, which would be
expected for Bragg frequencies 0.5 < ω < 1.5. This implies
that the first edge and second edge or bulk are disconnected,

FIG. 9. (Color online) S(q,ω) for a fixed frequency ω = 0.2t as
a function of momentum transfer q, for a Fermi energy εF = −2t .
Left: S(q,ω) for the quartic confined system. The system shows a
strong response when one component of q = (qx,qy) has an absolute
value |qx,y | = q0 = ω/vF because excitations along the x and y axes
are most favorable (see Fig. 6). Right: S(q,ω) for the harmonically
confined system. Here, the response is close to circularly symmetric in
q space, reflecting the shape of the eigenstates. No particular direction
is favorable anymore, as long as the absolute value of |q| = q0 is
fixed.

FIG. 10. (Color online) Dynamical structure factor S(q,ω) for
fixed momentum q as a function of frequency, for a Fermi energy
εF = −2t , as seen in Fig. 8 but with artificially suppressed bulk →
bulk scattering processes. The first peak belongs to edge-to-edge
scattering processes and is sensitive to the momentum transfer q with
approximate frequency ωq = vF,edgeq. The broadened peaks around
ω = 1.5t belong to edge → bulk scattering to the third and fourth
bulk bands. It is clearly visible that there is no scattering from the
edge states to the second bulk band, which is located at ω = 0.5t .

i.e., have a vanishing matrix element of the Bragg operator. It
is possible to predict this behavior from the dispersion of the
edge states (see Fig. 3), as one can see that the lowest edge
mode, colored in red (a), passes unimpeded through the second
bulk band, and never displays an avoided crossing with the blue
(b) edge mode of the second band or the second band itself,
while it always merges with the third or fourth band (with
which we find nonvanishing matrix elements of the Bragg
operator). For higher energies and strong confinements, we
see the opposite behavior of avoided crossings between red (a)
edge modes and yellow (c) edge modes, indicating that one can
expect a finite Bragg response from transitions between these
states.

Note that the lack of edge → bulk scattering is not a result
of the soft-boundaries inhibiting real-space overlap. We have
performed equivalent hard-wall boundary calculations where
real-space overlap is guaranteed but we again observe an
absence of signal for disconnected edge → bulk transitions.
Note also, that we do not expect to observe a clear signal
for large frequency edge → edge transitions regardless of the
type of trap, as there is larger range of states beneath the
Fermi-edge that can be accessed with the Bragg laser. Hence,
many different values of ky will contribute, leading to a blurred
signal.

V. CONCLUSION

In this article, we analyzed the properties of 2D topological
edge states in softly confined systems with a confinement in
one direction of the form V (x) = V0(x/L)δ . By varying the
confining potential from a hard-wall to a quartic or harmonic
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potential, we showed that the topological properties of the edge
states in specific bulk gaps do not depend on the steepness
of the confining potential, while a confinement sharper than
harmonic is required to achieve an appreciable bulk region of
the lattice. We suggest that quartic confinement is suitable to
observe both edge-state and bulk properties, which may be
realized by superimposing attractive and repulsive Gaussian
beams. Furthermore, we observed the emergence of robust
auxiliary edge states, which provide additional structure to
edge modes but do not influence the topological quantum
numbers. The main feature of these auxiliary states is that
they connect edge states which are spatially separated to
bulk bands of the system. This provides a mechanism to
preserve topological invariance, as soon as the edge states
and bulk bands become spatially separated. In these cases
the band structure exhibits a series of avoided crossings that
act to preserve the topological invariant. An analysis of the
spectral density of softly confined systems in real space
revealed the splitting and merging of edge states from different
bulk bands, which is also indicative of their topological
nature.

We also determined the wave functions of eigenstates
in a completely trapped system and showed how these

depend on the confining potential. With these, we calculated
the dynamical structure factor which can, for instance, be
measured by Bragg spectroscopy. We found that the dynamical
structure factor can reveal the edge and bulk states of the
system and their overlap.

In summary, we demonstrated that topological properties
in ultracold-atomic systems with artificial gauge fields are not
sensitive to the trapping potentials available in optical-lattice
experiments and that the edge states of these systems can be
clearly detected via Bragg spectroscopy. We believe that soft
boundaries provide more detailed insight into details of the
behavior of edge states that cannot be observed in hard-wall
systems, and are therefore worth investigation in their own
right.
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