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Spin-Seebeck effect in a strongly interacting Fermi gas
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We study the spin-Seebeck effect in a strongly interacting, two-component Fermi gas and propose an experiment
to measure this effect by relatively displacing spin-up and spin-down atomic clouds in a trap using spin-dependent
temperature gradients. We compute the spin-Seebeck coefficient and related spin-heat transport coefficients as
functions of temperature and interaction strength. We find that, when the interspin scattering length becomes
larger than the Fermi wavelength, the spin-Seebeck coefficient changes sign as a function of temperature, and
hence so does the direction of the spin separation. We compute this zero-crossing temperature as a function of
interaction strength and in particular in the unitary limit for the interspin scattering.
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I. INTRODUCTION

Spin caloritronics, the study of coupled spin and heat
transport, is a rapidly developing subfield of spintronics [1]. In
particular, the spin-dependent generalization of the Seebeck
effect, called the spin-Seebeck effect, has been intensively
studied in the solid-state environment [2]. Recently, there has
been broad interest in exploring spintronic phenomena in cold
atomic systems [3–5]. Spin transport in a strongly interacting,
two-component Fermi gas was investigated experimentally in
Ref. [6]. It is the purpose of this article to study the associated
heat transport, i.e., thermo-spin effects, in a similar setting.

In the ordinary Seebeck effect in metals, an electrochemical
potential gradient is generated by applying a temperature
gradient. Similarly, for a gas with two spin states, the spin-
Seebeck coefficient Ss determines the spin chemical potential
μs generated by a spin temperature gradient ∇Ts through the
relation ∇μs = Ss∇Ts , where μs ≡ μ+ − μ− and Ts ≡ T+ −
T−, μσ and Tσ being the spin-dependent chemical potential and
temperatures of the spin σ atoms, respectively, and we label
spin components by + and −. To measure the spin-Seebeck
coefficient, we propose relatively displacing the center of
mass of spin-up and spin-down atom clouds in a harmonic
trap by applying a spin-dependent temperature gradient, for
example, by selectively heating one spin component with a
laser, as illustrated in Fig. 1. The locations x± of the center
of mass of the spin-up and spin-down atoms are shifted to
the minimum of μ± + V , where V is the trapping potential,
resulting in a spin separation, xs = x+ − x− = Ss∇Ts/mω2,
where m is the mass of the atoms and ω is the trap frequency
in the direction of the temperature gradients. For an order of
magnitude estimate, we take Ss � 0.01kB , as verified below.
For ∇Ts = 10−5 K/cm [7], ω = 2π × 1.46, we find xs � 1
mm, which is well within experimental resolution.

We have computed the spin-Seebeck coefficient for a
two-component Fermi gas, plotted in Fig. 2, as a function
of temperature and for several values of the interaction
strength kF a, where kF is the Fermi wave vector and a

is the interspin scattering length. As seen from the figure,
for weak interactions (kF a < 1), Ss is small and negative,
while for strong interactions (kF a � 1), Ss is larger and
its sign changes as a function of temperature. In terms of
the experiment mentioned above, this means that the spin
displacement changes direction as a function of temperature,
which is an interesting qualitative effect. We also plot the

∇Ts

xs

FIG. 1. (Color online) Spin-up and spin-down atomic clouds are
spatially relatively displaced in the presence of a spin temperature
gradient. The distance between the center of mass of the different
spin components, denoted by xs , is proportional to the spin-Seebeck
coefficient.

zeros of Ss as a function of kF a in Fig. 3(d). The temperature
of the zero crossing reaches a universal value, T0, in the
unitary limit for the interspin scattering length kF a → ∞. We
find T0 � 0.378 TF in our calculation, where TF is the Fermi
temperature.

The thermodynamic reciprocal of the spin-Seebeck effect is
the spin-Peltier effect, in which a spin-dependent heat current
proportional to the spin-Seebeck coefficient is induced by a
spin current. This effect will heat up spin-up and spin-down
components differently and provides another way to measure
Ss . Furthermore, as discussed in Ref. [5], the spin-Seebeck
effect contributes to the total dissipation so that Ss can also be
measured through the heating.

We note that the spin-Seebeck coefficient was calculated for
a weakly interacting Bose gas in Ref. [5], but the Bose gas is
unstable toward the formation of molecules for large scattering
lengths, which makes the strongly interacting regime more
difficult to realize experimentally.

II. PHENOMENOLOGY

We are specifically interested in phenomena due to spin-
drag, the transfer of momentum between different spins due
to interspin scattering, which allows one to generate currents in
one spin species by applying forces on the other, and we define
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FIG. 2. (Color online) The Seebeck coefficient plotted as a
function of the reduced temperature T/TF , where TF is the Fermi
temperature, for values of kF a representing weak (kF a = 0.1)
and strong (kF a = 1) coupling and approaching the unitary limit
(kF a = 10).

a set of spin-heat transport coefficients which captures these
effects as follows. We consider a Fermi gas with two different
spin states selected from a larger half-integer spin multiplet,
which we will call “spin up” (+) and “spin down” (−), for
equal spin-up and spin-down densities n+ = n− ≡ n, i.e., in
the absence of spin polarization, and apply equal and opposite
forces and temperature gradients for the two spin species, i.e.,
F+ = −F− and ∇T+ = −∇T−. In linear response, the ensuing
spin current and spin-heat current defined by js = j+ − j− and
qs = q+ − q−, respectively, are given by(

js
qs

)
= σs

(
1 Ss

T Ss
κs

σs
(1 + ZsT )

)(
Fs

−∇Ts

)
, (1)

where Fs ≡ F+ − F− is the spin force, Ts = T+ − T− is
the spin temperature, T is the equilibrium temperature, σs

is the spin conductivity, κs is the spin-heat conductivity (at
zero spin current), ZsT = σsS

2
s T/κs, and Onsager reciprocity

is explicitly included in the matrix above. We note that Fs

is the thermodynamic force which includes forces coming
from pressure gradients, i.e., Fs = fext

s − ∇ps/n, where fext
s is

the external spin force, and ps = p+ − p− is the difference
in pressures of the spin-up and spin-down atoms. These
coefficients, computed with the Boltzmann equation described
below, are plotted in Fig. 3 as functions of T/TF for several
values of kF a.

As is well known, the spin conductivity σs rapidly increases
at low temperatures due to Pauli blocking. Our result for
σs , plotted in Fig. 3(a), includes corrections due to spin-heat
coupling, but they are negligibly small, so that one can safely
take σs = nτs/m with τs being the spindrag relaxation time [8]
measured in Ref. [6] and calculated in Ref. [9]. The downturn
of Ss at low temperatures is a quantum mechanical effect
that also occurs for bosons, where, in contrast to fermions,
the spin conductivity decreases sharply at low temperatures
due to bosonic enhancement of scattering [10]. The spin-heat
conductivity κs is plotted in Fig. 3(b), where it is seen to
increase with increasing T . The dimensionless figure of merit
ZsT [Fig. 3(c)] determines the thermodynamic efficiency of
engines based on thermo-spin effects [11].
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FIG. 3. (Color online) (a) A plot of the spin conductivity
normalized as h̄�σs , (b) the spin-heat conductivity normalized as
h̄�κs/kBεF , and (c) the figure of merit ZsT , for kF a = 0.1 (thick
blue), kF a = 1 (dashed purple), and kF a = 10 (dotted yellow). (d) A
plot of the temperatures T0 relative to TF where Ss = 0 as a function
of kF a.

A spin-dependent temperature gradient can only be estab-
lished when intraspin scattering is much greater than interspin
scattering. For fermions, the first nonvanishing intraspin
scattering amplitude is p wave. To make this large, one can tune
the p-wave scattering length by a Feshbach resonance [12].
Taking the unitary limit for intraspin scattering, the intra- and
interspin differential cross sections are given by

dσ++
d	

= dσ−−
d	

= 9(p̂r · p̂′
r )2

(pr/h̄)2
,

(2)
dσ+−
d	

= a2

1 + (pra/h̄)2
,

where pr = |pr | is the relative momentum of incoming parti-
cles with momenta p1 and p2, defined by pr = (p1 − p2)/2,
the hat superscripts denotes unit vectors, and a is the interspin
s-wave scattering length.

III. CALCULATION OF TRANSPORT COEFFICIENTS

Next, we present the computation of Ss using the Boltzmann
equation. We parametrize the nonequilibrium, steady-state
distribution by

npσ (r) = fpσ (r) − ∂εf
0
p φpσ (r), (3)

where f 0
p = {exp[(εp − μ)/kBT ] + 1}−1 is the equilibrium

Fermi distribution, μ is the chemical potential, εp = p2/2m,
fpσ (r,t) = (exp {[εp − μσ (r)]/kBTσ (r)} + 1)−1 is the local
equilibrium distribution, ∂εf

0
p = −f 0

p (1 − f 0
p )/kBT , and φpσ

is determined by solving the Boltzmann equation for the spin
distribution nps = np+ − np− in linear response,

∂εf
0
p

(
εp − w(T )

kBT

)
vp = Cp[φ], (4)
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FIG. 4. (Color online) Plots of the transport coefficients in the
high-temperature limit, T � TF , as a function of a/�. (a) The spin
conductivity normalized as h̄�σs . (b) The spin-heat conductivity
normalized as m�3κs/2πh̄kB , (c) Ss/kB , and (d) ZsT .

where w(T ) = μ + T s is the enthalpy per particle and s

is the entropy per particle [13]. We defined φps ≡ kBφp ·
(−∇Ts) and expressed the linearized collision integral in the
Boltzmann equation for the spin distribution as (∂nps/∂t)coll ≡
Cp[φp] · (−∇Ts). The spin current is given by

js = −
∫

d3p

(2πh̄)3
∂εf

0
p vpφps . (5)

We solve Eq. (4) using the method described in Ref. [5].
Applying the temperature gradient along the x axis, we
parametrize the response by a power series,

φps(a,T ) =
[
b0(a,T ) + b1(a,T )

(
εp

kBT

)]
px(−kB∂xTs).

(6)
The coefficients b0 and b1, determined by the approximate
solution to Eq. (4), are given by{

b0(a,T )
b1(a,T )

}
= 3nl(T )

C00C11 − C2
01

{−C01(a,T )
C00(a,T )

}
, (7)

where

l(T ) = 35

4

f7/2(z)

f3/2(z)
−

(
w(T )

kBT

)2

, (8)

z = eμ/kBT is the fugacity, fn(z) = −Lin(−z), Lin(z) are the
polylogarithmic functions, and Cnm are the 2 × 2 matrix
elements of the collision integral,

Cnm = 1

kBT

∫
dp1dp2

(2πh̄)6

|p1 − p2|
m

f 0
p1

f 0
p2

×1

4

∫
d	r

(
1 − f 0

p3

)(
1 − f 0

p4

)

×
∑
σ=±

{
dσ+σ

d	r

�+σ [(εp/kBT )np] · �+σ [(εp/kBT )mp]

}
,

(9)

2 1 1 2

px

pF

0.2

0.1

0.1

0.2

ns px, 0, 0

x Ts kF T

1 2 3 4 F

0.010

0.005

0.005

kF x Ts T

djs
d

(a) (b)

FIG. 5. (Color online) A plot of (a) the perturbed spin distribution
per spin temperature gradient, normalized as δns/(−∂xT /kF T )
along the px axis. A plot of (b) the spin current density along
the px axis, per dε per spin temperature gradient, normalized as
(djs/dε)(h̄/kF (∂xTs/T )), for kF a = 10 and temperatures at which
Ss is negative (T = 0.3TF , blue thick line) and positive (T = 0.5TF ,
purple dashed line).

where we define �++[φp] = φp3 + φp4 − φp1 − φp2 and
�+−[φp] = φp3 − φp4 − φp1 + φp2 for an arbitrary function
φp, and in the integrand momentum conservation is satisfied:
p1 + p2 = p3 + p4.

From Eqs. (5), (6), and (1), it follows that the Seebeck
coefficient is given in terms of b0 and b1, and the spin
conductivity σs by

Ss(a,T ) = n

σs

[
b0(a,T ) + b1(a,T )

w(T )

kBT

]
. (10)

The other transport coefficients are calculated similarly. In
order to make the numerics more tractable, we have omitted
the angular dependence in dσ++/d	 [c.f. Eq. (2)]. On the other
hand, in the high-temperature limit, the integrals in Eq. (9) in-
cluding the angular factor can be done analytically [14], which
allows us to calculate the coefficients in the high-temperature
limit. The result is shown in Fig. 4 plotted as a function
of a/�, where � =

√
2πh̄2/mkBT is the thermal deBroglie

wavelength. In this limit, the dependence of σs on the scattering
length a can be understood from classical considerations. The
spin conductivity is approximately related to the interspin
collision time τ+− by σs ∝ nτ+− and 1/τ+− = nσ̄+−vT , where
σ̄+− is the interspin cross section and vT ∝ 1/� is the
average thermal velocity. In the limit a/� → 0, σ̄+− ∝ a2,
thus �σs ∝ (�/a)2, and when a/� → ∞, σ̄+− ∝ �2, thus
�σs ∝ 1, in agreement with our result.

The behavior of the transport coefficients depends crucially
on the shape of the perturbed spin distribution δnps =
−∂εf

0
p φps and the associated spin current density, which

we plot for kF a = 10 in Fig. 5. The positive (negative)
parts of δnpσ may be regarded as particles (holes) having
group velocities ±p/m. Since δnpσ = −δnp−σ , every spin-up
particle is matched with a spin-down hole with the same
momentum, resulting in the spin current. Thus, the sign of
Ss is determined by the relative number of particles or holes
induced in response to the spin temperature gradient.

Next, we give a criterion that determines the sign of the
spin-Seebeck coefficient and show that it does not depend on
the form of the intraspin scattering at all. First, we note that
in our solution given by Eq. (7), we always have b0 < 0 and
b1 > 0 because l(T ) > 0, Cnm > 0, and det Ĉ > 0 [15]. Thus
for positive momenta, b1 (b0) corresponds to particles (holes)
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created above (below) the Fermi surface. Inspecting Eq. (10),
we find that the criteria to have Ss � 0 is∣∣∣∣b0

b1

∣∣∣∣ =
∣∣∣∣C01

C00

∣∣∣∣ � w

kBT
(11)

and the opposite inequality for Ss > 0. Thus Ss is positive when
b1 becomes large enough to violate Eq. (11) [16]. Furthermore,
it turns out that the only integral in Eq. (9) containing intraspin
scattering that is nonvanishing is C11, which does not enter in
Eq. (11).

The temperature dependence of b0 and b1 follows from
the temperature dependence of the collision matrix elements
in Eq. (9), which are given by integrals nonvanishing only
for pr ∼ √

4πh̄/�. Therefore, it is useful to express the
differential cross section Eq. (2) in terms of the rescaled
momentum p̃r = (�/

√
4πh̄)pr ,

dσ+−
d	

= 1

k2
F

(kF a)2

1 + (kF a)2(T/TF )p̃r ,
. (12)

From Eq. (12) we see that the change in the sign of Ss is
related to the crossover from hard-sphere scattering, dσ/d	 �

a2, when kF a � 1 or T/TF � 1, to momentum-dependent
scattering, dσ/d	 ∼ p̃r

−2, when kF a � 1 and T � TF .

IV. DISCUSSIONS AND OUTLOOK

We note that as the temperature is lowered, one expects
to enter the Fermi-liquid regime, for Tc < T � TF , where
Tc is the temperature for the superfluid transition, and one
should use Fermi-liquid scattering amplitudes in the collision
integral [9]. Near and above Tc, one should also take into
account the effects of pairing correlations on the interspin
interaction [17]. Both these regimes can be analyzed with the
formalism presented in this paper and will be relegated to
future work.
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