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Shock waves in strongly interacting Fermi gas from time-dependent density functional calculations

F. Ancilotto,1,2 L. Salasnich,1 and F. Toigo1,2

1Dipartimento di Fisica e Astronomia “Galileo Galilei” and CNISM, Università di Padova, Via Marzolo 8, 35122 Padova, Italy
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Motivated by a recent experiment [Phys. Rev. Lett. 106, 150401 (2011)], we simulate the collision between
two clouds of cold Fermi gas at unitarity conditions by using an extended Thomas-Fermi density functional.
At variance with the current interpretation of the experiments, where the role of viscosity is emphasized, we
find that a quantitative agreement with the experimental observation of the dynamics of the cloud collisions is
obtained within our superfluid effective hydrodynamics approach, where density variations during the collision
are controlled by a purely dispersive quantum gradient term. We also suggest different initial conditions where
dispersive density ripples can be detected with the available experimental spatial resolution.
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A Fermi gas of atoms at unitary conditions, i.e., when
the s-wave scattering length diverges [1], is predicted to
obey universal hydrodynamics, where the shear viscosity
and other transport coefficients are universal functions of
density and temperature. Experiments on the expansion of
rotating, strongly interacting Fermi gas in the normal fluid
regime reveal extremely low viscosity hydrodynamics [2],
thus making a strongly interacting Fermi gas in the normal
fluid regime a nearly perfect fluid with almost frictionless
mass flow. Remarkably, the superfluid behaves in rotating
cloud experiments almost identical to the normal fluid one.
Consistent with such observations, theory predicts [3] that the
unitary Fermi gas has zero bulk viscosity in the normal phase,
whereas in the superfluid phase two of the three bulk viscosities
vanish [4,5].

Nonlinear evolution of trapped cold gases is often charac-
terized by the appearance of wavelike localized distortion of
the trapped gas cloud. In addition to the well-known sound
waves, shock waves often appear, which are characterized
by an abrupt change in the density of the medium [6,7].
Shock waves are ubiquitous and have been studied in many
different physical systems [6,7]. Very recently the observation
of nonlinear hydrodynamic waves has been reported in the
collision between two strongly interacting Fermi gas clouds of
6Li atoms at unitarity [8]. During the collision, which has been
experimentally imaged in real time [8], when regions of high
density move with faster local velocity than regions of low
density, large density gradients develop when the two clouds
merge with each other. Unlike the case of collision between two
initially separated BEC in a cigar-shaped trap, where the shock
waves were interpreted as purely dispersive [9], the authors
of Ref. [8] invoke dissipative forces to avoid the “gradient
catastrophe” in the unitary Fermi system. To describe their
experimental data, they use an effective one-dimensional (1D)
model based on time-dependent nonlinear hydrodynamical
equations, with a phenomenological kinematic viscosity term
added to describe dissipative effects, whose strength is used
as a fitting parameter. A quite high value of the viscosity
coefficient is necessary in the description of the collision in
order to reproduce the experimental data. The origin of such
viscosity, however, is not clarified in Ref. [8]. In fact the role
of dissipation itself in cold Fermi gas at low temperature is

questionable, since the ultracold unitary Fermi gas is known
as an example of an almost perfect fluid, as discussed above.
In this paper we offer an alternative explanation, where the
collision process is dominated by dispersion effects [10].
Evidence supporting the notion that shock waves in ultracold
Fermi gas at unitarity are dispersive rather than dissipative can
be found in the simulations reported in Ref. [11], based on
the self-consistent solution of coupled Bogoliubov–de Gennes
(BdG) equations derived from the zero-temperature time-
dependent superfluid local density approximation [12]. Our
calculations are based on a single-orbital density functional
(DF) approach to the properties of unitary Fermi gas at low
temperatures, which has been used recently to successfully
address a number of properties of such a system [13–18].
The advantage in using a single-orbital DF approach is that
systems with a very large number of particles can be treated
using only a single function of the coordinate, i.e. the particle
density. Thus, it might represent a viable alternative to the
much more computationally expensive approaches (like, e.g.,
the Bogoliubov–de Gennes method) often used to describe
superfluid Fermions. This is especially true in the case of 3D
geometries, like the ones investigated here, where the BdG
method would be prohibitively costly.

In our extended Thomas-Fermi (ETF) density functional
approach [13,14] the total energy of the unitary Fermi gas is
given by

E[n] =
∫

d3r E(n,∇n), (1)

where

E(n,∇n) = λ
h̄2

8m

(∇n)2

n
+ ξ

3

5

h̄2

2m
(3π2)5/3n5/3 + U (r) n .

(2)

Here n(r) is the fermion number density and U (r) is the
confining external potential. The total energy functional E
contains a term proportional to the kinetic energy of a uniform
noninteracting fermion gas, plus a gradient correction of the
von Weizsacker form [19]. In recent papers [13–15,17], we
have determined the parameters ξ and λ by fitting Monte
Carlo results [20,21] for the energy of fermions confined in a
spherical harmonic trap close to unitary conditions. The main
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conclusion of that work is that the values

ξ = 0.40 and λ = 1/4 (3)

fit quite well Monte Carlo data of the unitary Fermi gas. In
particular the chosen value for ξ almost coincides with the
experimental determination of Ref. [22].

The density functional (1) describes various static and
dynamical properties of the unitary Fermi gas trapped by an
external potential. The gradient term in the previous equation
is found to be crucial to describe accurately the surface effects
of the system, in particular in systems with a small number of
atoms, where the Thomas-Fermi (local density) approximation
fails [13,15]. As a key result of the present paper, we show that
when fast dynamical processes occur and/or when shock waves
come into play, such a term is necessary also in the large-N
limit.

The extended nonviscous and irrotational hydrodynamics
equations deriving from the functional (1) are given by

∂n

∂t
+ ∇ · (nv) = 0 , (4)

m
∂v
∂t

+ ∇
(

m

2
v2 + ∂E

∂n
− ∇ · ∂E

∂(∇n)

)
= 0 , (5)

where n(r,t) is the time-dependent scalar density field and
v(r,t) the time-dependent vector velocity field. If λ = 0,
then Eqs. (4) and (5) reproduce the equations of superfluid
hydrodynamics [23] by construction.

Notice that Eqs. (4) and (5) can equivalently be written in
terms of a superfluid time-dependent nonlinear Schrödinger
equation (NLSE) involving a complex order parameter [13].
We will numerically solve this NLSE equation to obtain the
long-time dynamics of the collision between two initially
separated Fermi clouds, as described in the following. Our
goal is to simulate the experiments of Ref. [8]. We have used
the Runge-Kutta-Gill fourth-order method [24] to propagate
in time the solutions of the NLSE. To accurately compute the
spatial derivatives appearing in the NLSE, we used a 13-point
finite-difference formula [25].

Since the confining potential used in the experiments
is cigar-shaped, we have exploited the resulting cylindrical
symmetry of the system by representing the solution of our
NLSE on a two-dimensional (r,z) grid (of 500 × 2500
uniformly spaced points). Of course, this choice, which greatly
reduces the computational cost of the simulations, would not
be able to describe possible, azimuthal-dependent, transverse
instabilities and vortex formation (like those observed in the
collision between BEC clouds [9]). Although such features
are apparently not observed in the collision experiments of
Ref. [8], we cannot rule out the possibility of transverse
instabilities and vortex formation in Fermi gas clouds for
different initial conditions than those investigated here. To
describe the details of such structures, a full 3D simulation is
needed.

In our simulations we tried to reproduce as closely as
possible the experimental conditions of Ref. [8], which we
summarize briefly in the following. A 50:50 mixture of the two
lowest hyperfine states of 6Li is confined by an axially sym-
metric cigar-shaped laser trap, elongated along the z axis. The
resulting trapping potential is U (r,z) = 0.5m[ω2

r r
2 + ω2

zz
2],

with ωr = 2π × 437 Hz and ωz = 2π × 27.7 Hz. The trapped
Fermi cloud is initially bisected by a blue-detuned beam that
provides a repulsive knife-shaped potential. This potential is
then suddenly removed, allowing the two separated parts of
the cloud to collide with each other. The system is allowed
to evolve for a given hold time t , then the trap is removed in
the radial direction, and the system is allowed to evolve for
another 1.5 ms during which the gas expands in the r direction
(during this extra expansion time, the confining trap frequency
along the z axis is changed to ωz = 2π × 20.4 Hz), and finally
a (destructive) image of the cloud is taken. The process is
repeated from the beginning for another different value for the
hold time t . The experimental results are eventually plotted
as 1D integrated density profiles for the different hold times
investigated: In Fig. 2 of Ref. [8], the experimental 1D density
profiles at different times t are shown along the long trap axis.

We simulated the whole procedure within the framework
discussed above. As in Ref. [8], we chose the initial density
profile in the form of a static solution of hydrodynamic
equations:

n(r,z,t = 0) = ñ

(
1 − r2

R2
− z2

R2
z

− Vrep(z)

μG

)3/2

, (6)

where ñ = [(2mμG/h̄2)/ξ ]3/2/(3π2). Vrep represents an op-
tically generated knife-shaped repulsive potential used to
initially split the Fermi cloud into two spatially separated
components that are led to collide with each other upon re-
moval of such potential. Vrep = V0exp[−(z − z0)2/σ 2

z ], where
V0 = 12.7 μK, σz = 21.1 μm, and z0 = 5 μm. In Eq. (6) we
use the same values as in Ref. [8], which provide a fit
to the observed initial experimental cloud density profile
immediately after the removal of the knife potential. Here
Rz = 220 μm and R = 14 μm. In particular, the chosen value
for the chemical potential μG = 0.53 μK corresponds to a
total of N = 2 × 105 6Li atoms.

During the time evolution of our system, when the two
clouds start to overlap, many ripples whose wavelength is
comparable to the interparticle distance are produced in the
region of overlapping densities. These ripples also propagate
backward toward the trap boundaries, affecting a larger and
larger portion of the simulated cloud. We stress that these
effects are quite similar to those found in a recent experiment
[9] by merging and splitting Bose-Einstein condensates.

In order to properly compare our results with the experi-
mental data of resonant fermions [8], which are characterized
by a finite spatial resolution, we smooth the calculated profiles
at each time t by local averaging the density within a space
window of ±5 μm centered around the calculated point. This
procedure will give smoothed density profiles with a spatial
resolution close to the one characterizing the experimental
setup of Ref. [8].

The effect of smoothing is shown in Fig. 1, where the
simulated density profile during the time evolution of the
colliding clouds is shown before and after the local averaging
procedure is applied. We wish to stress that this smoothing
procedure is just a postprocessing of the data obtained by the
time evolution of the NLSE corresponding to Eqs. (4) and (5),
and therefore it does not affect the time evolution itself.
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FIG. 1. Density profile after t = 1.5 ms. The two curves show
the smoothed and nonsmoothed calculated profiles, respectively. The
normalized density is in units of 10−2/μm per particle.

The results of our simulations (solid lines), for the whole
time duration of the experiments, and after the smoothing
procedure is applied to the (y-averaged) density profile at each
time, are shown in Fig. 2 plotted along the long trap axis, for
the same time frames as in the experiment. The experimental
results (dotted lines) are also shown for comparison.

The time value shown in each frame corresponds to the
time evolution of the initial profile, Eq. (6), before the trap
in the radial direction is removed to let the system evolve
for another 1.5 ms in the axial trap only, as done in the
experiment.

FIG. 2. 1D density profiles at different times t showing the
collision of two strongly interacting Fermi clouds. Solid lines: our
calculations with no adjustable parameter. Dotted lines: experimental
data from Ref. [8]. The normalized density is in units of 10−2/μm
per particle.

Note the striking correspondence between the experimental
data and our simulation. We emphasize the fact that our
simulations do not have an adjustable parameter to be used to fit
the experimental data, at variance with the model calculations
presented in Ref. [8]. Even after the smoothing procedures
is applied, our simulated density profiles exibit short-scale
structures superimposed to the body of the cloud profiles.
Such ripples are indeed present also in the experimental data,
whereas in the model profiles used in Ref. [8] to fit the observed
images such oscillations are completely absent, due to the
presence of a strong viscosity term in their model.

The numerical results shown in Fig. 2 have been obtained
by using λ = 1/4, as previously discussed. In order to check
the dependence of our results against a different choice for λ,
we have performed various time-dependent calculations with
the same initial conditions but using different values for λ. It
turned out that changing λ from the optimal value λ = 1/4
has profound consequences on the long-time evolution of the
colliding clouds, providing density profiles that are completely
different from the experimental ones.

This finding is not simply a numerical result, but has an
important physical bearing. In fact, a strong dependence on
λ of the time evolution of a Fermi cloud made of a large
number of atoms is at first sight surprising, given the fact
that the gradient term should become less and less important
with increasing N . We believe that such dependence is due
to the presence of shock waves (i.e., regions characterized
by large density gradients) in the colliding clouds. To check
this hypothesis one should perform experiments with different
initial conditions, which do not evolve into shock waves. As
an example, we have simulated a “soft” collision, where shock
waves are not expected, by considering a system with a smaller
density of fermions (N = 4000 in the same trap used in the
simulations of Fig. 2) and where the two initial clouds are
largely overlapping at the beginning of the simulation (this

FIG. 3. “Soft” collision. The initial density profile is shown with
dashed lines.
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FIG. 4. Ripple wavelength l as a function of gradient coefficient
λ of the density functional. The solid line shows the

√
λ.

could be obtained experimentally by reducing the height or
width of the “knife potential”), thus reducing the velocity of
the impinging clouds. It turns out that the long-time behavior
of such a system is indeed independent from the chosen value
of λ. However, even for such a system, shock waves will
eventually occur. As expected, such waves break into ripples
whose wavelength depends on λ. This is illustrated in Fig. 3,
where the initial overlapping clouds are shown, together with
the profile after t = 10 ms. For t < ts � 9 ms the shape of

the time-evolved cloud is exactly the same for all values of λ.
After the shock time ts , however, the density profile develops
a steep density gradient at the cloud boundaries, visible in the
figure, which eventually breaks into a train of ripples. The
three images shown in Fig. 3 are taken just after the ripples
have been produced.

These ripples are characterized by a well-defined wave-
length l, which we estimated from the computed profiles. We
plot in Fig. 4 the calculated ripple wavelength l as a function of
λ. We note that the calculated values for l follows very closely a√

λ law, which is expected on the basis of dimensional analysis
by balancing the energy associated with dispersion to that of
the nonlinearity.

In conclusion, we have numerically studied the long-time
dynamics of shock waves in the ultracold unitary Fermi
gas. We have described the system by using an extended
density functional approach, which has been used recently
to successfully describe a number of static and dynamical
properties of cold Fermi gases. Two main results emerge
from our calculations: (a) At zero temperature the simplest
regularization process of the shock is purely dispersive,
mediated by the quantum gradient term, which is one of the
ingredients in our DF approach; (b) the quantum gradient term
plays an important role not only in determining the static
density profile of small systems, where surface effects are
important, but also in the fast dynamics of large systems, where
large density gradients may arise.

Finally, we stress that dispersive shock waves with a
characteristic wavelength should be observable, according to
our simulations, by using a soft-collision setup.

We thank James Joseph and John E. Thomas for useful
comments and suggestions, and for having sent us their
experimental data.
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