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Anderson localization of matter waves in tailored disordered potentials
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We show that, in contrast to immediate intuition, Anderson localization of noninteracting particles induced
by a disordered potential in free space can increase (i.e., the localization length can decrease) when the particle
energy increases, for appropriately tailored disorder correlations. We predict the effect in one, two, and three
dimensions, and propose a simple method to observe it using ultracold atoms placed in optical disorder. The
increase of localization with the particle energy can serve to discriminate quantum versus classical localization.
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The transport properties of a coherent wave in a disordered
medium are inherently determined by the interference of mul-
tiple scattering paths, which can lead to spatial localization and
absence of diffusion [1]. This effect, known as Anderson lo-
calization (AL), was first predicted for electrons in disordered
crystals [2] and then extended to classical waves [3], which per-
mitted observation of AL in a variety of systems (see Ref. [4]
and references therein). The most fundamental features of AL
are ubiquity and universality [5]. For instance, in conventional
cases, all states are known to be localized in one and two
dimensions, while in three dimensions the spectrum splits
into regions of localized states and regions of extended states,
separated by so-called mobility edges [6]. Nevertheless, the ob-
servable features of AL strongly depend on the system details.

Consider a wave propagating among randomly distributed
point scatterers (point-impurity disorder). In the absence of in-
terference, the propagation is dominated by normal diffusion.
It devises a diffusive medium characterized by the length scale
(the transport Boltzmann mean free path) lB = vτ , with v =
|∂ω(k)/∂k| the wave velocity [ω(k) is the dispersion relation]
and τ the scattering time. Then, localization arises from the
interference of the diffusive paths. The more the wavelength
exceeds the mean free path, the stronger interference affects
the transport. It can thus be inferred that the Lyapunov
exponent (inverse localization length), which characterizes
the localization strength, reads γ = l−1

B Fd (klB) where the
function Fd strongly depends on the spatial dimension d and
is a decreasing function of the interference parameter klB.
For a particle (scalar matter wave) in free space and a weak
point-impurity disorder, v ∝ k, τ is proportional to the inverse
of the density of states (ρ ∝ kd−2), as given by the Fermi
golden rule, and finally lB ∝ 1/kd−3. Then, for any d � 3, γ

is a decreasing function of k. In other words, the localization
gets weaker when the particle energy E = h̄ω(k) = h̄2k2/2m

increases, which conforms to natural intuition.
This decrease of γ (E) with E, however, relies on the

microscopic details of the system, namely, on the dispersion
relation and on the properties of the scattering time assumed
above, and can be altered in different ways. For instance, it does
not hold for lattice systems, such as electrons in disordered
crystals, because the band structure leads to a nonmonotonic
behavior of v versus E, which can lead to a function γ (E)
approximately symmetric with respect to the band center [7,8].
In other systems, such as light waves in dielectric media, τ

shows Mie resonances [9], leading to a strongly nonmonotonic

behavior of γ (E). In this paper, we discuss a different effect.
We show that the standard behavior of γ (E) for particles in
free space can be inverted (i.e., localization can get stronger
with increasing energy) by tailoring the disorder correlations.
The basic idea behind our paper is that for nonpoint scatterers,
the structure factor C̃(k) appears in the denominator of τ .
Then, if the disorder has strong spatial frequency components
around a particular value k0, the scattering strength may not
vary monotonously with E around E(k0), and γ (E) can
then increase with E. In contrast to the cases discussed
above (lattice electrons and light waves in dielectric media),
this effect is purely due to the disorder correlations. We
first study the one-dimensional (1D) case, which allows for
exact calculations of γ (E) and for an explicit test of an
efficient scheme to observe the effect with ultracold atoms. We
then extend our analysis to two-dimensional (2D) and three-
dimensional (3D) systems using the self-consistent theory of
AL. We finally discuss how the increase of γ (E) with E can
serve to discriminate quantum versus classical localization.

A key ingredient of our paper is the possibility of tailoring
the disorder correlations. Let us consider speckle potentials
[10–14]. A speckle field [15] is obtained from a coherent
laser beam diffracted by a ground-glass plate diffuser, which
imprints a spatially random phase on the electric field at
each point R of its surface [see Fig. 1(a)]. The diffracted
complex electric field E(r) at a given observation point r is the
sum of independent random variables, corresponding to the
components originating from every point R of the plate and
interfering in r. The atoms are subjected to a potential, which,
up to an arbitrary shift, is proportional to the light intensity
I ∝ |E |2. We define V (r) ≡ VR × {I(r)/I − 1}, so that V = 0
and V 2 = V 2

R (note that I2 = 2I 2 [15]). The sign of VR can be
positive or negative depending on the detuning of the laser with
respect to the atomic resonance. In the paraxial approximation
for the scheme of Fig. 1(a), the disorder power spectrum
(Fourier transform of the disorder correlation function1) in
the focal plane (y,z) of the lens is [15]

C̃(k) ∝
∫

dR ID[R − (λ0l/4π )k]ID[R + (λ0l/4π )k], (1)

where ID(R) is the pupil function (i.e., the intensity profile
right after the diffusive plate), λ0 is the laser wavelength, and

1Here, we use f̃ (κ) = ∫
du f (u) exp(−iκ .u).
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FIG. 1. (Color online) Tailoring correlations in speckle potentials. (a) Optical apparatus: A laser beam is diffracted by a ground-glass
plate diffuser (D) of pupil function ID(R), where R ≡ (Y,Z) spans the diffuser, which imprints a random phase on the various light paths.
The intensity field I(r), observed in the focal plane of a converging lens, is a speckle pattern, which creates a disordered potential V (r) for
the atoms. (b) One-dimensional speckle potentials realized with a pupil function obtained with two incident Gaussian beams of waist w and
centered at Z = ±	/2. The figure shows a sketch of ID (1st column), a realization of V (z) (2nd column), and the reduced disorder power
spectrum in k space, c̃(kσR) (3rd column), for various values of 	/w.

l is the focal length. The major constraints on C̃(k) follow
from Eq. (1) and from the fact that ID(R) is nonnegative and
of finite integral. First, the Cauchy-Schwarz inequality applied
to Eq. (1) shows that C̃(k) is a decreasing function of |k| for
small values of |k|. Second, in practice, ID(R) decays at long
distance so that C̃(k) also decays in the large |k| limit. Apart
from these constraints, control of ID(R) offers freedom for
tailoring the disorder power spectrum, which we will write
C̃(k) = V 2

Rσd
R c̃(kσR) with σR the correlation length. We now

show that it allows us to strongly affect the qualitative behavior
of AL for noninteracting particles.

To start with, consider the 1D case. Exact calculations
can be performed [16] within the Born approximation, valid
for weak disorder [i.e., for γ (E) � kE,σ−1

R where kE =√
2mE/h̄]. They yield the Lyapunov exponent

γ (E) � (
m2V 2

RσR/2h̄4k2
E

)
c̃(2kEσR). (2)

As can be explicitly seen in Eq. (2), if the disorder features no
particular correlations, i.e., if c̃(κ) is a constant or decreasing
function of κ , then γ (E) decreases monotonically with E,
and the localization is weaker for higher energy, as for
point-impurity disorder. In order to invert this behavior in a
given energy window, it is necessary to tailor the disorder
correlations so that c̃(2kEσR) increases with kE strongly
enough to overcome the 1/k2

E decrease of the prefactor in
Eq. (2). To do so, we propose to use speckle potentials realized
by illuminating the diffusive plate by two mutually coherent
Gaussian laser beams of waist w along Z and centered at
Z = ±	/2. 2 Using Eq. (1), we find

c̃(κ) =
√

π

4

[
e−(κ−κ0)2/4 + 2e−κ2/4 + e−(κ+κ0)2/4

]
, (3)

2One can also use a homogeneously illuminated double rectangular
aperture as proposed in Ref. [17] to realize atomic band-pass filters.
We have checked that the two methods lead to qualitatively similar
results. The two-Gaussian scheme allows for more compact formulas
and avoids slope breaks of the C̃(k) function.

with σR = λ0l/πw and κ0 = 2	/w, the values of which can
be independently controlled. The properties of the disordered
potentials obtained in this configuration are shown in Fig. 1(b)
for various values of κ0. For κ0 = 0 (lower row), the disordered
potential features structures of typical width σR in real space
(central column). The corresponding power spectrum C̃(k) has
a single Gaussian peak of rms width

√
2/σR centered in k = 0

(right column). For κ0 �= 0, the disordered potential develops
additional structures of typical width σR/κ0, corresponding
in C̃(k) to an additional peak centered in k � κ0/σR. For
κ0 large enough, C̃(k) shows a clear increase with k in a
significant range (upper rows). For κ0 � 5.3, we find that it is
strong enough that γ (E) is nonmonotonic, hence realizing the
desired situation where localization becomes stronger when
the particle energy increases. For instance, for κ0 = 8.88,
γ (E) shows a significant increase between kE � 2.3σ−1

R and
kE � 4.2σ−1

R [see Fig. 2(a)].
We now discuss how to observe this effect using ultracold

gases expanding in disordered potentials. In the long-time
limit, for vanishing interactions and an initial gas of negligible
width, the average spatial density reads [18,19] n(z,t → ∞) =∫

dE DE(E)P∞(z|E), where DE(E) is the energy distribution
of the atoms and

P∞(z|E) = π2γ

8

∫ ∞

0
du u sinh(πu)

[
1 + u2

1 + cosh(πu)

]2

× exp{−(1 + u2)γ |z|/2} , (4)

with γ = γ (E) given by Eq. (2), is the probability of quantum
diffusion [20]. Using the scheme of Ref. [10], for which the
energy distribution extends from E = 0 to E = Emax, does not
allow us to probe the region where γ (E) increases because the
long distance behavior of n∞(z) would always be dominated
by the energy components with the largest localization lengths,
i.e., those with the smallest γ (E) [18,19]. Instead, we propose
to use an atomic energy distribution strongly peaked at a given
energy Eat, so that n∞(z) � P∞(z|Eat). It can be realized by
either giving a momentum kick to a noninteracting initially
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trapped gas or using an atom laser, both with a narrow energy
width. The momentum distribution can be represented by a 1D
Gaussian function of width pw centered around a controllable
value pat [21]:

Dp(p) = (1/
√

2πpw) exp
[−(p − pat)

2/2p2
w

]
. (5)

For weak disorder, the corresponding energy distribution is
weakly affected by the disorder-induced spectral broadening,
so that it is strongly peaked at Eat � p2

at/2m [19].
We have performed numerical integration of the time-

dependent Schrödinger equation for a particle in the disordered
potential with the initial momentum distribution (5) and
disorder parameters as in Fig. 2(a). During the expansion,
back and forth scattering processes quickly redistribute left-
and right-moving atoms. The center of the cloud hardly moves
and the wings gradually form a nearly symmetrical stationary
density profile n∞(z), shown in Figs. 2(b) and 2(c) for two
values of pat and for six realizations of the disordered potential:
three with blue detuning (VR > 0) and three with red detuning
(VR < 0). The density profile averaged over the six realiza-
tions, n∞(z), is also displayed (black line). After averaging, we
fit ln[P∞(z)] as given by Eq. (4) to ln[n∞(z)] with γ as the only
fitting parameter. Although the fits are performed in a limited
space window (−300σR < z < +300σR, corresponding to an
experimentally accessible width of 1 mm for σR = 1.6 μm),
we find that they are good on the total space window (|z| up to
3000σR). As shown in Fig. 2(a), the extracted values γfit (black
dots) fairly agree with Eq. (2), except for low energy where
the Born approximation breaks down. The values extracted
in the same manner for each realization of the disordered
potential are also shown (blue squares and red diamonds). We
find nonnegligible difference between blue and red detunings
(see Fig. 2), which can be ascribed to higher-order terms in the
Born expansion.3 Nevertheless, this difference is small and
the strong increase of γ (E) appears for each realization in
approximately the same region as predicted by Eq. (2). The
parameters we used are relevant to current experiments as
regards disorder [10,12], observable space [10], and width of
atom lasers [21]. It validates our proposal to probe the energy
dependence of γ (E).

We now generalize the above results to higher dimensions
(d > 1), for which the localization scenario is more involved.
At an intermediate distance (between the transport mean free
path lB and the localization length Lloc = 1/γ ), where inter-
ference effects play a negligible role, the dynamics is diffusive
with the diffusion constant DB(E) = (h̄/m)kElB(E)/d [23].
For weak, isotropic disorder [i.e., for c̃(κ) = c̃(|κ |)], one
finds [24]

l−1
B = m2V 2

Rσd
R

(2π )d−1h̄4k3−d
E

∫
d�d (1 − cos θ ) c̃(2kEσR| sin(θ/2)|),

(6)

3We estimated the role of higher-order terms in the Born expansion
using the approach of Ref. [22]. The calculated corrections are
consistent with the numerical results of Fig. 2(a), including the change
of sign found around the local maximum of γ (E).
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FIG. 2. (Color online) Anderson localization in 1D speckle
potentials with the autocorrelation function (3), κ0 = 8.88, and
VR = ±0.72(h̄2/mσ 2

R). (a) Lyapunov exponent versus particle energy
as obtained from Eq. (2) (solid black line) and from fits of Eq. (4)
to the numerical data (points). (b), (c) Stationary density profiles
obtained numerically using the initial state (5) with pwσR/h̄ = 0.24
and two different values of pat. The figures show the results for six
realizations of the disorder [three with VR > 0 (blue upper data) and
three with VR < 0 (red lower data)], the averaged density profile
(black central data), and the fits of P∞(z) to the latter (green solid
line). The extracted values of γfit for each realization and for the
averaged profile are reported in (a). The figure shows a significant
increase of the Lyapunov exponent in the energy window such that
2.3 � kEσR � 4.2.

with �d the hyperspherical angle in dimension d. On length
scales larger than lB, interference effects induce AL, character-
ized by the Lyapunov exponent γ . The latter can be calculated
using the self-consistent theory of AL [25]. In two dimen-
sions, one finds, γ (E) = l−1

B exp(−πkElB/2). In three dimen-
sions, γ (E) is the unique solution of [1 − (π/3)(kElB)2] =
γ lB arctan (1/γ lB), which exists only below the localization
threshold (mobility edge), i.e., for kElB <

√
3/π [24]. In both

cases we can formally write γ (E) = l−1
B Fd (kElB) with Fd

a decreasing function of kElB, consistently with the scaling
discussed in the introduction. It follows from Eq. (6) that,
if c̃(κ) is as usual a constant or decreasing function of κ ,
then lB(E) increases with E, and γ (E) decreases when E

increases. As for the 1D case, this standard behavior can be
changed by tailoring the disorder correlations so that C̃(k)
increases strongly enough in a certain window, and observed
in the same way.

In two dimensions, we propose to use an isotropic speckle
potential created by a uniformly illuminated ring-shaped
diffuser of inner radius r and outer radius R (see inset of
Fig. 3). For a thin enough ring (0.77R � r < R), we find that
γ (E) is nonmonotonous with a marked local maximum, so
that localization increases with energy in a given window
(see Fig. 3). For the parameters of Fig. 3, γ (E) peaks to
about 5 × 10−4σ−1

R , with σR = λ0l/2πR. For σR = 0.25 μm,
it corresponds to Lloc � 500 μm, which is within experimental
reach [10]. Moreover, the width of the maximum is 	k ∼
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FIG. 3. (Color online) Lyapunov exponent versus energy in 2D
speckle potentials created with a ring-shaped diffuser of inner radius
r and outer radius R (see inset), for increasing values of r/R (from
the upper line to the lower line on the left-hand side of the figure) and
|VR| = 0.25(h̄2/mσ 2

R).

0.1σ−1
R , which can be probed with the same atom laser as used

in Fig. 2, the width of which is pw = 0.0375h̄σ−1
R (note that

σR is a factor 6.4 larger in the 1D case above).
In three dimensions, we consider an anisotropic scheme,

easier to realize in practice. Then, Eq. (6) does not hold,
but it can be anticipated that tailoring the correlations in
anisotropic models of disorder can also invert the standard
behavior of γ (E). Consider the 3D speckle potential obtained
by one Gaussian laser beam, of waist w (in both transverse
directions) [same scheme as in Fig. 1(a)]. Due to the anisotropy
of the disorder, the localization is described by an anisotropic
Lyapunov tensor of eigenaxes x, y, and z, and the Lyapunov
exponent in all directions increases monotonically with E,
as shown in Ref. [26]. If we now use two coherent parallel
Gaussian beams of same waist w and separated by a distance
	 along Z (similarly as for the 1D case), the interference
between the two speckles create two bumps in C̃(k) at k �
±k0k̂z with k0 = √

2π	/λ0l and k̂z the unit vector in the kz

direction. These two bumps are expected to strongly enhance
the localization around the energy E ∝ h̄2k2

0/2m. Figure 4
shows the Lyapunov exponents found using the self-consistent
theory of AL for anisotropic disorder [25–27]. As expected,
the maximum is found for approximately kE ∝ k0. For all
the configurations of Fig. 4, γ (E) exhibits, below the right
most mobility edge, a local maximum in each direction, hence
realizing the desired effect. For the parameters of the right
(purple) curve, γ (E) vanishes (i.e., the localization length
diverges) in a given energy window, thus opening a band of
extended states inside the localized region, delimited by two
new mobility edges.

In summary, we have shown that the AL of noninteracting
quantum particles (matter waves) induced by a correlated
disorder in free space can increase with the particle energy
in a given window. In contrast to other systems where this
behavior is more common, e.g., electrons in crystal lattices
or light waves in dielectric materials, it is here purely due to
appropriately tailored correlations of the disorder. We have
proposed suitable methods to tailor the correlations in optical
disorder, which require moderate modifications of existing
schemes in one dimension [10], two dimensions [12], and three
dimensions [13,14]. We have proposed a method to observe
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FIG. 4. (Color online) Lyapunov exponents along the transport
eigenaxes (x: diamonds; y: dots; z: squares) and their geometric
averages (solid lines) versus energy in a 3D speckle potential created
by two Gaussian beams (waist w and separation 	) for various
parameters (indicated in the figure). The arrows indicate the mobility
edges. We recall that σR = λ0l/πw.

it in any dimension, which conversely differs from standard
schemes used so far with ultracold atoms, and explicitly
demonstrated its efficiency in the 1D case.

Let us finally discuss how the increase of γ (E) with E can
serve as a smoking-gun evidence of quantum versus classical
localization of particles. For any experiment on localization,
AL should be discriminated from other possible effects. For
light waves for instance, it is necessary to distinguish it
from absorption, which also produces an exponential decay
of the intensity. This can be done by analyzing the statistics
of transmission [28,29]. In contrast, ultracold atoms are not
subjected to absorption, but they can be classically localized
(trapped) in potential wells, below the localization threshold.
Then, absence of diffusion and exponential decay of density
profiles can hardly be viewed as indisputable proof of AL.
For instance, classical localization in some nonpercolating
media can lead to qualitatively similar effects, for instance,
in 2D speckle potentials [30]. For any model of disorder,
however, the classical localization length, defined as the
average size of the classically allowed patches [31], increases
with the particle energy. Hence, the decrease of the quantum
localization length with the particle energy discussed in this
paper has no classical equivalent, and can be viewed as
a smoking gun of quantum localization. This effect could
be useful to demonstrate AL, in particular, for 2D speckle
potentials, which have a percolation threshold significantly
higher than their 3D counterparts. From a practical point of
view, it does not require accumulation of much statistical
data, in contrast to standard methods used for classical waves
[28,29].
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