
PHYSICAL REVIEW A 85, 063417 (2012)

Multipeak envelope of the above-threshold-ionization energy spectrum in a
strong circularly polarized laser field
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We develop a well-known strong-field approximation in the length gauge for a two-dimensional model atom
in a strong circularly polarized laser field. For excited initial states (with the principal quantum number n = 2)
outgoing photoelectrons usually show energy spectra with an envelope having two or three peaks: one always
below and one always above the ponderomotive energy UP . In contrast, for the ground state (with n = 1) there is
always a single peak near UP . Our numerical calculations show that the multipeak effect appears for sufficiently
high laser intensities I and is more pronounced for higher laser frequencies ω. We believe that the field parameters
ω and I , for which the multipeak envelope in the energy spectrum of above-threshold ionization exists, will enable
its experimental observation in the near future.
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I. INTRODUCTION

Let us consider a light charged classical (point) particle
initially moving steadily along a circular orbit around a center
of the Coulomb force (a motionless heavy particle with an
opposite electric charge). Suppose that an incoming electro-
magnetic plane wave propagates in the direction perpendicular
to the plane of the circular orbit. Let the electromagnetic field
be circularly polarized (CP). If the motion of the light particle is
nonrelativistic, one can forget (this is an approximation) about
the magnetic-field component of the Lorentz force coming
from the plane wave. Furthermore, if one also neglects a light
pressure (a momentum carried by light) the Lorentz force of
the CP field is acting as a vector of a constant length F ,
rotating with a constant frequency. A motion of the light
particle is determined by two forces: the latter one (which
depends only on time) and the above-mentioned Coulomb
force (which depends only on a position of the particle). One
can imagine two physically different situations: initially the
charged particle could rotate in the same or in the opposite
direction with respect to the rotation of the electric-field
vector of the incoming plane wave. In other words, along
the propagation axis, angular momentum components of the
particle and the field could have the same or opposite signs.
Therefore, one should expect a different behavior of the
particle in these two cases. In both situations the motion
would remain in the initial plane of motion, because there
is no force perpendicular to the plane. Classical equations of
motion for this problem might be solved only numerically.
However, if F (times the charge) is of the order of the
initial Coulomb force or even greater, one can expect that
the initial trajectory will be destroyed, and the light particle
will run away from the Coulomb center. Far away from it, in
the moving frame of reference, the light particle will move
clockwise or anticlockwise (according to a helicity of the CP
electromagnetic field).

Although electrons are not classical particles, manifes-
tations of a classical dynamics should be present in an
ionization of atoms and molecules in intense laser fields.
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Indeed, according to classical considerations [1,2], in strong
CP laser fields, ionized electrons should have a kinetic energy
peak (in Ref. [2] the kinetic energy that we mean is called
“the drift energy”) near its ponderomotive energy UP (the
latter is a result of an interaction of a free electron with
the electromagnetic field). In the present work we will use
atomic units (a.u.): h̄ = e = me = 1, and we will substitute
explicitly −1 for the electronic charge (with the exception of
Appendix C, where we will use cgs units). In such units I =
2F 2 (1 a.u. ∼= 3.51 × 1016 W/cm2) and UP = F 2/(2ω2) for
the CP field. In any real above-threshold (ATI) [3] experiment,
the situation is more complicated, because one deals with a
laser pulse, where the frequency has some finite spectral width,
and one also has to average over various intensities. Among
models describing ATI, S-matrix theories [4–7], sometimes
also called the strong-field approximation (SFA) [7], are
significant. The latter may be applied in the length gauge
(LG) [4,8] or in the velocity gauge (VG) [7]. Extensive studies
of gauge aspects by others [9–13] as well as by us [8,14–17]
has led us to a present belief of superiority of the LG in the
context of S-matrix and strong laser fields. Our present results
amplify this conviction.

This work is organized as follows. In Sec. II we develop
the SFA in two spatial dimensions for the CP laser field in
both gauges. In Sec. III we present results of our numerical
calculations with regard to photoelectron energy spectra from
the ionization of an atom with the principal quantum number
n = 1 or n = 2 in the initial state. Discussion and conclusions
are given in Sec. IV. In Appendix A we describe details of our
analytical and numerical LG calculations. In Appendix B we
describe such details of our VG calculations. In Appendix C
we give chapter and verse of the superiority of the above-
mentioned LG formulation of the SFA (for more details see
Ref. [16], and references therein).

II. LG SFA IN TWO DIMENSIONS

In the present work we assume that a one-electron atom
is placed in the intense plane-wave laser field such that
UP � EB (the binding energy of the atom in its initial state),
but the electronic motion is nonrelativisic and one can drop
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the magnetic-field component of the laser (i.e., one can use the
dipole approximation; for the justification see, e.g., Ref. [18]).
If the field is CP, as we assume throughout this work, the effect
of the Coulomb potential on the final state of the outgoing
electron should indeed typically be very small. The azimuthal
dipole selection rule �m = ±1 forces the angular momentum
quantum number l to increase steadily during excitation of
the real three-dimensional (3D) atom by the CP light [3]. A
similar effect is present in the two-dimensional (2D) simpler
model and the CP light, and we assume that the typical number
of photons absorbed is large (N � 1). Therefore, here we
use nonrelativisic Gordon-Volkov wave functions [19,20] as
final states of the ionized electron. Instead of the hydrogen
atom, we consider its 2D model [21], but with the same
Coulomb potential V (�r) = −Z/r (r is the distance from the
nucleus with the electric charge Z). The advantage of this 2D
model in a context of the ionization in strong laser fields is a
possibility of being tested numerically by the very accurate and
efficient alternate-direction implicit algorithm [22] (we plan to
continue this task in the future). Moreover, as follows from the
present work, the 2D ATI energy spectra qualitatively look
very similar to analogous spectra in the polarization plane of
the 3D ATI. In the real experiment most electrons are emitted
in the polarization plane.

The laser field is described by the following vector
potential:

�A(t) = a√
2

[x̂ cos(ωt + ϕ0) ± ŷ sin(ωt + ϕ0)], (1)

where x̂ and ŷ are unit vectors along the respective axes, ϕ0

is an arbitrary initial phase, and the electric field is given by
�F (t) = −(1/c)(∂ �A/∂t). The signs ± correspond to the right

and the left circular polarization, respectively. After Keldysh’s
and Reiss’ examples, let us introduce the following intensity
parameters γ [4], z, and z1 [7], such that

γ = ω
√

2EB

F
, (2)

z = UP

ω
= a2

4c2ω
= I

4ω3
= F 2

2ω3
, (3)

z1 = 2UP

EB

= F 2

ω2EB

= 2

γ 2
. (4)

We refer the reader to Refs. [4,7] or our work [14]
(Secs. III–V therein) for more details about the SFA and its
basic assumptions. For all calculations presented here γ � 1
and z1 � 1. A general expression describing the ionization
probability amplitude in the LG SFA is

(S − 1)LGSFA
f i = i

∫ ∞

−∞
dt�̃i

(
�p + 1

c
�A(t)

)

×
[

1

2

(
�p + 1

c
�A(t)

)2

+ EB

]

× exp

[
i

2

∫ t

−∞

(
�p + 1

c
�A(τ )

)2

dτ + iEBt

]
,

(5)

where �p is the asymptotic momentum of the ionized elec-
tron [ �p = (px,py) = (p cos φ,p sin φ)], and �̃i( �p) is the

initial-state wave function (a bound state) in the momentum
representation

�̃i( �p) =
∫

d2r

2π
exp(−i �p�r)�i(�r). (6)

�i(�r) is a solution to the following eigenvalue equation
(r = |�r|): (

−1

2
∇2 − Z

r

)
�(�r) = E�(�r), (7)

with the total energy E = En and

En = − Z2

2(n − 1/2)2
, for n = 1,2,3, . . . . (8)

In Eq. (5) we assume that limt→±∞ �A(t) = �0. Instead
of a well-known three (omitting spin) quantum numbers
(n,l,m) for the 3D atom, here we have only two quantum
numbers (n,l) for the 2D atom. n is a principal quantum
number, and l is an orbital quantum number such that
l = −(n − 1), − (n − 2), . . . ,−1,0,1, . . . ,(n − 1). There are
analytic solutions to Eq. (7), for both positive and negative
E, in Ref. [21]. In Appendix A we give expressions for
bound states (E = −EB < 0) with n = 1 and n = 2. There
is the ground state with (n,l) = (1,0) and the first excited
state, which is triply degenerated: (n,l) = (2, − 1), (2,0), and
(2,1). A formula for the energy of bound states [Eq. (8)] is
similar to its 3D counterpart −Z2/(2n2) and depends only on
the principal quantum number n. However, for the same Z,
the 2D energy has a greater absolute value. For Z = 1 one
has E1 = −0.5 in three dimensions and E1 = −2.0 in two
dimensions.

To calculate the ionization probability amplitude (5) we
proceed in the way applied already in Refs. [8,14]. There are
three time-dependent factors in the main integrand upon time.
(The integral in the exponential factor can be easily calculated
analytically.) Each of them is time periodic with the period
equal to a laser cycle. We expand the product of the first two
factors in the first Fourier series

�̃i

(
�p + 1

c
�A(t)

)[
1

2

(
�p + 1

c
�A(t)

)2

+ EB

]

=
∞∑

k=−∞
Ak( �p) exp[ik(ωt + ϕ0 ∓ φ)], (9)

because this product is a function of

1

2

(
�p + 1

c
�A(t)

)2

= p2

2
+ zω + √

2zωp cos(ωt + ϕ0 ∓ φ).

(10)

The third factor in Eq. (5) we expand in the second Fourier
series

exp

[
i

2

∫ t

−∞

(
�p + 1

c
�A(τ )

)2

dτ + iEBt

]

= eiC

∞∑
n=−∞

Jn

(√
2z

ω
p

)
exp

[
i

(
p2

2
+ zω + EB + nω

)
t

+ in(ϕ0 ∓ φ)

]
. (11)
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In Eq. (11) we put into use the well-known Fourier-Bessel
expansion with the ordinary Bessel functions Jn(x) (below x

and y are any real numbers),

exp(ix sin y) =
∞∑

n=−∞
Jn(x) exp(iny). (12)

The phase factor eiC (C is some real number, constant
in time) will be dropped next because, in the end, only
|(S − 1)LGSFA

f i |2 matters. Utilizing Eqs. (9) and (11) in Eq. (5)
we obtain

(S − 1)LGSFA
f i = 2πi

∞∑
N,k=−∞

Ak( �p)JN−k

(√
2z

ω
p

)

× exp[iN (ϕ0 ∓ φ)]

× δ

(
p2

2
+ zω + EB + Nω

)
, (13)

where instead of n we set N = n + k, and we have adopted
the well-known representation of the Dirac δ function: δ(E) =
(2π )−1

∫ ∞
−∞ exp(iEt)dt . The differential ionization rate γ ( �p),

which is the transition probability per unit time and unit volume
in the �p space, can be found from

γ ( �p) = lim
t→∞

|(S − 1)f i |2
t

. (14)

To obtain the total ionization probability per unit time �, we
integrate the differential ionization rate over all the possible
final momenta of the outgoing electron

�LGSFA =
∫

d2p γ ( �p) =
∞∑

N=N0

�N, (15)

where the number N is a multiphoton order and N0 =
[z + EB/ω] + 1 may be treated as a minimal number of
photons absorbed. (Here the symbol [x] denotes the integer
part of the number x.) The final kinetic energy EN of
the ionized outgoing electron is quantized according to the
following formula:

EN = p2
N/2 = Nω − zω − EB. (16)

Consecutive terms �N form the ATI energy spectrum, if
we plot a curve connecting the points (EN,�N ) in the OXY

plane. These points are in a sequence separated by the photon
energy ω along the OX axis. Final expressions for �N in the
LG SFA and some further details regarding their derivation are
given in Appendix A. We have chosen the sign “ + ” in Eq. (1)
(corresponding to the right circular polarization) in the final
expressions (A18)–(A21). Of course, the sign “ + ” and (n,l) =
(2,1) mean that both the electric-field vector and the electron
rotate counterclockwise. The sign “ − ” and (n,l) = (2, − 1)
mean that both the electric-field vector and the electron rotate
clockwise. Equation (A21) describes partial ionization rates
in these two cases. Equation (A20) concerns a situation when
the field and the electron rotate in opposite directions [“ + ”
and (n,l) = (2, − 1) or “ − ” and (n,l) = (2,1)]. Analogous
expressions for the VG SFA are given in Appendix B.

III. NUMERICAL RESULTS

In this section we present results of our numerical calcu-
lations based on Eqs. (A18)–(A21) and (B2), namely, partial
ionization rates. Total ionization rates, as a function of the
laser frequency and intensity, could also be calculated [see
Eq. (15)], but in the present work we are only interested in
energy spectra of photoelectrons. (In the 2D case considered
here, total ionization rates qualitatively resemble the 3D case;
see Figs. 1–4 and 10 from Ref. [8].) In Figs. 1–10 there
are the LG SFA energy spectra (solid red lines), which, as
we believe, show real physical effects; for example, those
discussed in our introduction. Each line is, in fact, a set of
points separated by the photon energy, as Eq. (16) shows. For
some of the plots, particularly if the line is not a smooth curve,
we have added solid circles to underline their discontinuous
character. For a comparison we also show the analogous VG
SFA energy spectra (dotted blue lines and, at a pinch, open
circles). Each of the latter spectra have been normalized to
get the same area under both (LG SFA and VG SFA) curves.
(Usually the total VG SFA ionization rates are much smaller
than the total LG SFA rates.) However, in our humble opinion,
the VG SFA spectra might have something in common with
the physical reality only in the cases when they qualitatively
agree with their LG SFA counterparts. Therefore, in our further
discussion, we will concentrate only on the LG results. [The
VG results from Figs. 1–10 may be summarized as follows:
(i) there is always only a single peak in the ATI envelope;
(ii) the peak is for an energy <UP ; (iii) the peak moves
towards UP with increasing the laser intensity.] The large
number of plots in Figs. 1–10 is connected with our main
goal: to investigate photoelectron energy spectra for the total
applicability range of the nonrelativisic SFA. (The range is
described by two conditions: z1 � 1 and zf = 2UP /c2 � 1.)
However, we are aware that for higher laser frequencies and
intensities the presented results are beyond current possibility
of experimental tests. Thus, we have chosen three intensities
and three frequencies for each excited initial state. For the
ground state there is only one intensity (Fig. 1), because
for the other two intensities the situation looks very similar.
The intensities correspond to z1 = 50,250, and 1250, for
which γ = 0.20,0.089, and 0.040, respectively. The value of
UP = z1EB/2 is also shown on each plot by a straight vertical
(dashed) line. For each initial state (including the ground
one) we have chosen the following set of laser frequencies:
ω = EB/5, ω = EB , and ω = 3EB .

In Fig. 1 we present data for the ground state of our 2D
atom. There is only a single maximum (or a single peak) for
any frequency in either curve. An interesting observation is
the following: the LG curves have their maxima closer to the
ponderomotive energy than the VG curves. The latter diverge
from UP with increasing the laser frequency towards lower
energies in Fig. 1. Nonetheless, both distributions qualitatively
look alike. In Fig. 2 we present data for the excited state
with (n,l) = (2,0) of our 2D atom in the low-frequency case
(ω = EB/5). Figures 2(a) and 2(b) resemble Fig. 1. However,
in Fig. 2(c) we observe two additional small peaks in the ATI
envelope: one below and one above UP . In Fig. 3 we increase
the frequency to ω = EB . Two additional peaks appear already
for z1 = 50. Their relative height (with respect to the central
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FIG. 1. (Color online) The LG SFA and the VG SFA differential
ionization rates of the 2D atom in its ground state [i.e., (n,l) = (1,0)]
in the (right) circularly polarized plane-wave laser field for three
different laser frequencies (one low, one medium, and one high). In
each panel [(a), (b), and (c)] the Reiss intensity parameter is the same
(z1 = 250), what corresponds to the Keldysh parameter γ = 0.089.
Here the ponderomotive energy is UP = 250 a.u. (see the main text
and text frames above for more details).

peak near UP ) increases with increasing the laser intensity
[cf. Figs. 3(a)–3(c)]. Both peaks are asymmetrical regarding
their height and width. At the same time the height of the
central peak decreases and the peak finally disappears [see
Fig. 3(c)]. In Fig. 4 we further increase the frequency to ω =
3EB . Initially, we have three peaks in the ATI envelope with
a very small one near UP [see Fig. 4(a)]. With increasing the
intensity the central peak becomes a local minimum and two
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FIG. 2. (Color online) The LG SFA and the VG SFA differential
ionization rates of the 2D atom in its first excited state [with (n,l) =
(2,0)] in the (right) circularly polarized plane-wave laser field for three
different laser intensities [corresponding to z1 = 50, 250, and 1250
(or equivalently to γ = 0.20, 0.089, and 0.040) for panels (a), (b),
and (c), respectively]. For these intensities UP = 5.56 a.u., UP =
27.8 a.u., and UP = 139 a.u., respectively. In each panel [(a), (b),
and (c)] the laser frequency is ω = EB/5 (see the main text and text
frames above for more details).

other peaks remain, on both sides of the straight vertical line
showing UP [cf. Figs. 4(b) and 4(c)].

In Fig. 5 we present data for the excited state with (n,l) =
(2, − 1) in the low-frequency case (ω = EB/5). In Fig. 5(a)
there is only one maximum in the ATI envelope at the energy
visibly smaller than UP . It appears that with increasing the
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FIG. 3. (Color online) As Fig. 2, but for ω = EB .

intensity another maximum develops at the energy larger than
UP . Initially the peak is very small [see Fig. 5(b)], but becomes
clearly visible at z1 = 1250 [see Fig. 5(c)]. The main peak still
remains at the energy smaller than UP . In Fig. 6 we increase the
frequency to ω = EB . Figure 6 qualitatively resembles Fig. 5,
but the additional peak (at the energy greater than UP ) is more
visible. It is present already at z1 = 50 [see Fig. 6(a)], unlike
in Fig. 5(a). What happens if we further increase the frequency
to ω = 3EB? This is shown in Fig. 7. This figure qualitatively
resembles Figs. 5 and 6, but the additional peak (at the energy
greater than UP ) is yet more visible. As a result, to make the
second (smaller) peak as high as possible, one should take the
highest frequency and intensity for the (n,l) = (2, − 1) initial
state. This is exemplified in Fig. 7(c).
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FIG. 4. (Color online) As Fig. 3, but for ω = 3EB .

Figures 8–10 are analogous to Figs. 5–7, but correspond
to the (n,l) = (2,1) initial state. Comparing Fig. 8(a) with
Fig. 5(a), Fig. 8(b) with Fig. 5(b), and so on to Fig. 10(c)
with Fig. 7(c), we observe nearly mirror-reflection symmetry
between the respective curves. The symmetry is, of course,
only approximate. For example, the ratio of heights of smaller
and larger peaks is greater for the (n,l) = (2,−1) state than for
the (n,l) = (2,1) state [cf. Figs. 7(c) and 10(c)].

IV. DISCUSSION AND CONCLUSIONS

We have observed additional peaks at energies different
than UP for most of the photoelectron energy spectra presented
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FIG. 5. (Color online) As Fig. 4, but for (n,l) = (2, − 1) and
ω = EB/5.

here. In some cases the central, classically expected peak
near UP has disappeared. These phenomena are absent in
the VG SFA. Let us compare again probability amplitudes
of the ionization in the LG [Eq. (5)] and in the VG
[Eq. (B1)]. It is obvious that the phenomena are connected
with the preexponential factor in the LG. The factor is time
dependent and hangs on the initial-state wave function. We can
conjecture, looking at Eqs. (A7)–(A10), that the multi-peak
ATI envelope is caused by a non-trivial dependence on �p,
either in a radial part [when (n,l) = (2,0), Eq. (A8)] or in an
angular part [when (n,l) = (2,−1), Eq. (A9) or (n,l) = (2,1),
Eq. (A10)] of the initial-state wave function. As a result, one
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FIG. 6. (Color online) As Fig. 5, but for ω = EB .

should expect similar phenomena in higher excited (bound)
states of the 2D atom, because their wave functions �̃nl( �p) are
yet more complicated.

Some of the bound states (n,l,m) of the 3D atom have their
analogs in the shape of the (n,l) states of the 2D atom. The 1s

(ground) state (n,l,m) = (1,0,0) corresponds to (n,l) = (1,0),
the 2s state (n,l,m) = (2,0,0) corresponds to (n,l) = (2,0),
and the states 2p± (n,l,m) = (2,1,±1) correspond to (n,l) =
(2, ± 1). The state 2p0 (n,l,m) = (2,1,0) has no counterpart
in two dimensions. Therefore, one should expect a similar
multipeak behavior of the ATI envelope in the 3D case in the
polarization plane. In fact, we found such behavior for the
states 2p± in Ref. [17] and for the 2s state [23]. Figures 5–10
show generally that when the electron initially rotates against
the laser field one should expect a smaller final kinetic energy
than for the corotated electrons. Of course, this is true only
on average and for the same laser frequency and intensity.
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FIG. 7. (Color online) As Fig. 6, but for ω = 3EB .

Figures 1–4 show that one should expect some intermediate
final kinetic energy (only on average) very close to UP , if the
electron initially does not rotate (l = 0). On the other hand,
vanishing of the central peak (near UP ), and the formation
of two other peaks [see, particularly, Figs. 3(b), 3(c), 4(b),
and 4(c)] for (n,l) = (2,0), have given us a great surprise.
The asymmetry of the ATI spectra (among states with n = 2)
seems to be understood, if we take into account that the final
(Volkov) state is the same in these three cases (l = −1,0,
and 1). It describes the ionized electron corotating with the
laser field. However, further insight into the nature of the
observed peaks in the ATI envelope requires, for instance,
some kind of a saddle-point analysis (see, for example,
Refs. [24–26]). We believe that it is possible, although it may
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FIG. 8. (Color online) As Fig. 7, but for (n,l) = (2,1) and ω =
EB/5.

be quite complicated because of the preexponential factor in
the ionization amplitude of the LG SFA [Eq. (5)]. In the VG
SFA a single saddle point is sufficient to describe well, at the
qualitative level, the ATI envelope [23]. We are aware that SFA
should be modified to include Coulomb corrections in the final
(Volkov) state for lower intensities and shorter pulses [24]. On
the other hand, in the Landau-Dykhne approach [27,28], the
effect of the initial-state wave function on the photoelectron
energy spectra is completely neglected. One can show that
for superstrong laser fields effects predicted by the LG SFA
appear for lower intensities than relativistic effects in the
Landau-Dykhne approach. Furthermore, unlike the latter, the
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FIG. 9. (Color online) As Fig. 8, but for ω = EB .

LG SFA shows the multipeak ATI envelope in a full solid angle
(see Figs. 12 and 13 in Ref. [8]).

We note that different total ionization rates were predicted
for a nonadiabatic tunneling in the CP laser field for the 4p

(excited) state of krypton [26]. There is a slight relative shift in
the single-peak ATI envelopes between p− and p+ initial states
for the parameter z1 ≈ 2.2 [26]. The direction of this shift is in
agreement with relative shifts of our main peaks [cf. Figs. 5(a)
and 8(a): the low-frequency case, but we have z1 = 50 here
and n = 2 instead of n = 4 (principal quantum numbers)].
We also note that for the CP field and the 2p hydrogen
atom (in three different initial states with m = −1,0,and 1)
by a 20-cycle sine-square laser pulse (with ω = 2EB) the
ionization depends on the azimuthal quantum number m in
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FIG. 10. (Color online) As Fig. 9, but for ω = 3EB .

Ref. [29]. In this ab initio calculation the asymmetry between
the initial states (2,1, − 1) and (2,1,1) also appeared in the
photoelectron energy spectra after switching off the laser field
(thus these results are gauge invariant). The highest peak field,
applied therein, corresponded to z1 ≈ 72 [cf. Figs. 11 and 13
in Ref. [29]].

In conclusion, the 2D LG SFA (nonrelativistic) photoelec-
tron energy spectra usually show the multipeak ATI envelope
for CP laser fields. This is probably a typical situation for
most of the excited states (with the principal quantum number
n > 1), although we have verified this statement only for
n = 2. A similar existence of a multipeak envelope was found
previously in the 3D case (both in the full solid angle [8] and
in the polarization plane [17,23]). On the whole, we connect

063417-8



MULTIPEAK ENVELOPE OF THE ABOVE-THRESHOLD- . . . PHYSICAL REVIEW A 85, 063417 (2012)

this phenomena with a nontrivial functional dependence (on
�r or �p) of the initial-state wave function (respectively, in
the spatial or the momentum representation). The 2D wave
functions (n,l) resemble some of the 3D wave functions
(n,l,m) in the polarization plane. Therefore, one can expect
similar phenomena in 2D and in 3D. Only LG SFA results
show the multipeak ATI envelope for CP laser fields, because
(in fact) these results are gauge invariant. In the ATI spectrum
one can see only this part of the energy absorbed from the field,
which is connected with a drift of the ionized electron. The
rest of the energy is connected with the circular motion (with
frequency ω, and radius α0 = F/ω2) in phase with the laser
field. (If the field is switched off slow enough, as for long laser
pulses, one does not observe finally any effect in the energy
spectrum.) For the initial state (n,l) = (2,−1) the main peak
exists below UP , because some amount of the energy absorbed
from the laser field should be taken to make the ionized electron
rotate in the direction opposite than before. For the initial
state (n,l) = (2,1) the main peak exists above UP , because
roughly the same amount of energy need not be taken from
the field because the ionized electron initially already rotates
in the same direction as the laser field. For the initial state
(n,l) = (2,0) the main peak exists near UP , if the field intensity
is not too high. If the latter increases, two additional peaks
arise, but in such a way that the mean energy is still very close
to UP . Although differences in the angular momentum (among
states with n = 2 and l = −1,0, and 1) are small, intense laser
fields create large differences in shapes of ATI envelopes.
[Note that initial kinetic energy probability distributions are
identical for (n,l) = (2,−1) and (n,l) = (2,1), but are quite
different for (n,l) = (2,0). �̃20( �p) has an additional node at
p = k = 2Z/3, which does not exist for other initial states
considered here.] Similar high sensitivity to initial quantum
number m in 3D was observed in Refs. [26,29]. A further
detailed explanation of positions and widths of peaks in ATI
envelopes requires an analysis, which is beyond the scope of
the present work. Perhaps saddle-point or classical-trajectory
Monte Carlo methods could be useful here. We would like
to get some more physical insight into the process studied
here by applying one of these methods in the future. However,
there is no room for doubt about the very existence of the
phenomena shown in Figs. 1–10. In our humble opinion, the
results presented in this work give another exemplary answer
to the question formulated by Bauer et al. in Ref. [10]: “Which
gauge is better suited for above-threshold ionization of atoms
and molecules as well as nonsequential double ionization?”.
Presented results are valid in the limit of an infinite flat pulse
(its spectral width is zero). It is also of interest studying
photoelectron energy spectra (resulting from the SFA) for a
finite pulse in the adiabatic approximation. We plan to test the
present 2D model for both SFA gauges by exact (numerical)
solutions of the time-dependent Schrödinger equation [22],
regarding both total ionization rates and photoelectron energy
spectra.
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APPENDIX A

In this work we use (in the spatial representation) the
following initial-state wave functions, which are solutions to
Eq. (7). Introducing βn = 2Z/(n − 1/2), for n = 1 and 2, one
obtains �nl(r,φ′)—the first two bound states [r and φ′ de-
note the polar coordinates of �r = (x,y) = (r cos φ′,r sin φ′)]
[21]:

�10(r,φ′) = β1√
2π

exp(−β1r/2), (A1)

�20(r,φ′) = β2√
6π

(1 − β2r) exp(−β2r/2), (A2)

�2,−1(r,φ′) = β2
2√

12π
r exp(−β2r/2) exp(−iφ′), (A3)

�2,+1(r,φ′) = β2
2√

12π
r exp(−β2r/2) exp(iφ′). (A4)

The above wave functions obey the normalization condition∫
|�nl(r,φ

′)|2r dr dφ′ = 1. (A5)

They can be Fourier transformed in the 2D space

�̃nl( �p) =
∫

r dr dφ′

2π
�nl(�r) exp(−i �p�r) (A6)

by integrations first over r and then (with the help of the
residue theorem) over φ′. To simplify further equations let us
introduce two new notations: β = β1/2 = 2Z and k = β2/2 =
2Z/3 (here k is a real number and should not be confused with
the index of previous summations). Let us note that EB =
β2/2 = 2Z2 for (n,l) = (1,0) and EB = k2/2 = 2Z2/9 for
(n,l) = (2,−1), (n,l) = (2,0), and (n,l) = (2,1). If p and φ

denote polar coordinates of the momentum �p, one obtains the
following momentum-space wave functions for the ground
state:

�̃10(p,φ) =
√

2

π

β2

(p2 + β2)3/2
, (A7)

and for the first excited state

�̃20(p,φ) =
√

6

π

k2(p2 − k2)

(p2 + k2)5/2
, (A8)

�̃2,−1(p,φ) =
√

12

π

k3p

(p2 + k2)5/2

exp(−iφ)

i
, (A9)

�̃2,+1(p,φ) =
√

12

π

k3p

(p2 + k2)5/2

exp(iφ)

i
. (A10)

The above momentum-space wave functions obey the
normalization condition∫

|�̃nl(p,φ)|2p dp dφ = 1. (A11)

The Fourier coefficients Ak( �p) from Eq. (9) are cal-
culated as follows. Multiplying both sides of Eq. (9) by
exp[−im(ωt + ϕ0 ∓ φ)] and integrating both sides upon time
from 0 to T = 2π/ω, utilizing the relation (m and s are integer
numbers) ∫ 2π

0
dx exp(isx) = 2πδs0, (A12)
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one obtains for (n,l) = (1,0) the formula

Am( �p) = β2√
2π3(p2 + β2 + 2zω)

∫ π

0

dx cos mx√
1 + q cos x

,

(A13)

where q = √
8zωp/(p2 + β2 + 2zω) and 0 < q < 1. For

(n,l) = (2,0) one obtains the following analogous Fourier
coefficient:

Bm( �p) =
√

6k2

π3/2(p2 + k2 + 2zω)3/2

×
∫ π

0

dx(a + b cos x) cos mx

(1 + q ′ cos x)3/2
, (A14)

where q ′ = √
8zωp/(p2 + k2 + 2zω) (and 0 < q ′ < 1), a =

p2 − k2 + 2zω, and b = √
8zωp. For the states (n,l) =

(2,−1) and (n,l) = (2,1) all calculations, leading to the final
result, are more laborious. In this case we make the following
Fourier expansion:

[p2 + k2 + 2zω + √
8zωp cos(ωt + ϕ0 ∓ φ)]−3/2

=
∞∑

k=−∞
Ck( �p) exp[ik(ωt + ϕ0 ∓ φ)]. (A15)

Multiplying both sides of Eq. (A15) by exp[−im(ωt+
ϕ0 ∓ φ)] and integrating both sides upon time from 0 to T ,
utilizing the relation (A12), one obtains

Cm( �p) = 1

π (p2 + k2 + 2zω)3/2

∫ π

0

dx cos mx

(1 + q ′ cos x)3/2
.

(A16)

Let us notice that the left-hand side (LHS) of Eq. (A15) is
only a denominator of the expression from the LHS of Eq. (9)
for the states (n,l) = (2,−1) and (n,l) = (2,1).

The crux of the matter, in the calculation of ionization rates
for these states, lies in the fact that the LHS of Eq. (9) also
contains factors proportional to the length | �π (t)| and the phase
factor exp[±iθ (t)] of the time-dependent kinetic momentum
vector �π (t) = �p + �A(t)/c, where

| �π(t)| =
√

�π (t)2

=
√

p2 + 2zω + √
8zωp cos(ωt + ϕ0 ∓ φ) (A17)

and �π (t) = x̂|π (t)| cos θ (t) + ŷ|π (t)| sin θ (t). To calculate
(S − 1)LGSFA

f i we have to increase or decrease (±1) indices
of some summations in Eq. (13). This is possible, because
both summations extend from −∞ to +∞. Finally we get the
following expressions for partial ionization rates �

(n,l)
N :

�
(1,0)
N =

⎡
⎣2π

∞∑
j=−∞

(−1)jAj (pN )JN+j

(√
2z

ω
pN

)⎤
⎦

2

, (A18)

�
(2,0)
N =

⎡
⎣2π

∞∑
j=−∞

(−1)jBj (pN )JN+j

(√
2z

ω
pN

)⎤
⎦

2

, (A19)

�
(2,−1)
N = 210Z6π

35

⎧⎨
⎩

∞∑
j=−∞

(−1)jCj (pN )

[
pN

2
JN+j

(√
2z

ω
pN

)

−
√

zω

2
JN+j−1

(√
2z

ω
pN

)]⎫⎬
⎭

2

, (A20)

�
(2,1)
N = 210Z6π

35

⎧⎨
⎩

∞∑
j=−∞

(−1)jCj (pN )

[
pN

2
JN+j

(√
2z

ω
pN

)

−
√

zω

2
JN+j+1

(√
2z

ω
pN

)]⎫⎬
⎭

2

. (A21)

In the LHS of Eqs. (A13), (A14), and (A16) the Fourier
coefficients depend on �p. However, the integration upon time
leading to the right-hand side of these equations removes
their φ dependence. So, finally, they become functions of
p only. The integrands in Eqs. (A13), (A14), and (A16) are
rapidly oscillating functions of x for |m| � 1. It is possible
to calculate these integrals analytically, expressing them by
a hypergeometric function. However, in this work we have
chosen another method. The integrals are calculated by a
special method for rapidly varying integrands, namely, by
some extension of the Filon method [30]. To increase accuracy
in the respective FORTRAN code we have used numbers with a
precision of approximately 33 decimal digits (the type of REAL

16) and about 1000 points dividing the interval of integration
[0,π ].

APPENDIX B

In the VG SFA one starts from the ionization probability
amplitude [7,8,14]

(S − 1)VGSFA
f i = i

∫ ∞

−∞
dt�̃i( �p)

(
1

2
�p2 + EB

)

× exp

[
i

2

∫ t

−∞

(
�p + 1

c
�A(τ )

)2

dτ + iEBt

]
.

(B1)

Let us note that (S − 1)LGSFA
f i [Eq. (5)] is a function of the

kinetic momentum �π (t) = �p + �A(t)/c of the ionized electron
only. (S − 1)VGSFA

f i does not have this property. It depends
partly on the canonical momentum �p and partly on �π (t). The
lack of time dependence in the first two factors in the above
integrand makes all the calculations much easier. Instead of
two Fourier expansions for the LG SFA, now only a single
one [namely, that from Eq. (11)] is sufficient to calculate the
ionization rate. Applying analogous steps we finally obtain

�
′(n,l)
N =

[
2π

(
p2

N

2
+ EB

)
|�̃nl(pN )|JN

(√
2z

ω
pN

)]2

, (B2)

where we put the prime on � to distinguish the VG SFA partial
ionization rate from its LG SFA counterpart. In Eq. (B2) EB =
2Z2 for (n,l) = (1,0) and EB = 2Z2/9 for (n,l) = (2,−1),
(n,l) = (2,0), and (n,l) = (2,1). In particular, it follows from
Eqs. (B2), (A9), and (A10) that �′(2,−1)

N = �
′(2,1)
N . Moreover, let

us consider a more general initial state (a quantum-mechanical
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superposition) given by

�initial = α�2,−1 + β�2,1, (B3)

where α and β are arbitrary complex numbers such that
|α|2 + |β|2 = 1. Substituting Eq. (B3) into Eq. (B1) one
gets the same result (B2) [with (n,l) = (2,±1)] for �initial

(regardless of α and β). This is the result of the integration upon
φ [we are reminded that �p = (px,py) = (p cos φ,p sin φ)]
and Eq. (A12), which causes those terms containing the
product �̃∗

2,1�̃2,−1 or its complex conjugate �̃2,1�̃
∗
2,−1 to not

contribute to the final expression.

APPENDIX C

Let us assume that the laser field, which is adiabatically
turned on and off at asymptotic times (t → ±∞), changes
somehow in time. (In the S-matrix theory a monochromatic
laser field of constant amplitude is considered, but here this
condition is superfluous.) The laser field can be described by
the vector potential �A (in the Coulomb gauge, in the dipole
approximation), for which one usually assumes that

lim
t→±∞

�A(t) = �0. (C1)

The magnetic-field component of the laser field is zero and
the electric-field component is given by

�F (t) = −1

c

∂ �A
∂t

. (C2)

(We use cgs units throughout Appendix C.) Let us note [see
Eq. (C2)] that the condition (C1) is stronger than the condition
limt→±∞ �F (t) = �0. The one-electron atom or ion in the laser

field is described by the following Hamiltonian:

H = HA + HI ≡ �̂p2

2m
+ V (�r) + HI , (C3)

where HA is the atomic Hamiltonian, and the interaction
Hamiltonian is given either in the �p �A (or VG) form:

H
pA

I = −e

mc
�A(t) �̂p + e2

2mc2
�A(t)2 (C4)

(e < 0 is the charge of an electron and �̂p = −ih̄ �∇) or in the
�d �E (or LG) form:

HdE
I = −e�r �F (t). (C5)

Using the usual rules of quantum mechanics for both wave
functions and operators (� ′ = Û�, Ô ′ = ÛÔÛ−1), the time-
dependent Schrödinger equation (TDSE), for the atom in the
laser field, can be transformed from either form to the other
one by a certain unitary transformation. It is very well known
that within the dipole approximation of the laser field the
above-mentioned two descriptions are equivalent. Let �(�r,t)
be the exact solution of the TDSE with the Hamiltonian (C3)
in either form, and �(�r,t) be the exact solution of the TDSE
with Hamiltonian HA. If the subscripts i,f denote initial and
final states, one can define two equivalent forms of the exact
S matrix:

Sf i = lim
t→+∞(�f ,�

(+)
i ), where lim

t→−∞ �
(+)
i = �i, (C6)

Sf i = lim
t→−∞(�(−)

f ,�i), where lim
t→+∞ �

(−)
f = �f , (C7)

which are called the direct time form and the reversed time
form, respectively (the round brackets denote the overlap of
two wave functions). We will use the form (C7) here. In this
case, making use of the boundary condition for t → +∞ [the
second of Eqs. (C7)], one obtains

(S − 1)f i = Sf i − δf i = lim
t→−∞(�(−)

f ,�i) − lim
t→+∞(�(−)

f ,�i) =
∫ −∞

∞
dt

∂

∂t
(�(−)

f ,�i)

= −
∫ ∞

−∞
dt

(
∂

∂t
�

(−)
f ,�i

)
−

∫ ∞

−∞
dt

(
�

(−)
f ,

∂

∂t
�i

)
= −

∫ ∞

−∞
dt

(
1

ih̄
(HA + HI )�(−)

f ,�i

)
−

∫ ∞

−∞
dt

(
�

(−)
f ,

1

ih̄
HA�i

)

= − i

h̄

∫ ∞

−∞
dt(�(−)

f ,HI�i), (C8)

where the hermiticity of HA and HI has been used. The
crucial point of this derivation is the following observation:
only in the LG equations (C6) and (C7) are there true
probability amplitudes of the ionization (or detachment), if
the wave functions �f and �i denote the “textbook” [for
example Coulomb, if V (�r) = −Z/r] wave functions without
any additional phase factors. The reason is as follows. The
asymptotic reference states should be eigenstates of the gauge-
invariant energy operator in the absence of the laser field. One
can show (see the Appendix in Ref. [16]) that this implies
that only in the LG do these asymptotic reference states have
the form of “textbook” wave functions �f or �i . To get the

probability amplitude of the ionization in the VG, first one has
to transform these wave functions to this gauge according to
the above-mentioned quantum-mechanical rule

�pA(�r,t) = Û (�r,t)�dE(�r,t), (C9)

where Û (�r,t) = exp[(ie/̄hc)�r �A(t)] is the unitary operator
which assures gauge invariance. This exponential operator
transforms the TDSE with the Hamiltonian (C3) (both wave
functions and operators) from the LG to the VG. Therefore,
one has to multiply the wave function �pA(�r,t) by the
operator Û+(�r,t) = exp[(−ie/h̄c)�r �A(t)] before projecting on
an eigenstate of the atomic Hamiltonian. In such a way one
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obtains the overlap, which is gauge invariant and can be treated
as an instantaneous probability amplitude of ionization (or
detachment). This is equivalent to multiplying of the wave
function �dE(�r,t) by the operator Û (�r,t), when working in
the VG. For sufficiently weak electric fields described by �A(t)

one can sometimes approach Û (�r,t) by unity, but for strong
fields setting Û (�r,t) ∼= 1 is certainly not justified. For example,
for the H (1s) atom, if |�r| ∼= 1a.u. the exponent in Eq. (C9) is
of the order of i

√
z1. The counterparts of Eqs. (C6) and (C7)

in the VG are the following equations:

Sf i = lim
t→+∞

(
Û�f ,�

(+)pA

i

) = lim
t→+∞

(
�f ,Û+�

(+)pA

i

)
, where lim

t→−∞ �
(+)pA

i = Û�i, (C10)

Sf i = lim
t→−∞

(
�

(−)pA

f ,Û�i

) = lim
t→−∞

(
Û+�

(−)pA

f ,�i

)
, where lim

t→+∞ �
(−)pA

f = Û�f . (C11)

To obtain a correct and exact result in the VG (for the reversed time S matrix) we have to start from Eqs. (C11).

(S − 1)f i = Sf i − δf i = lim
t→−∞

(
�

(−)pA

f ,Û�i

) − lim
t→+∞

(
�

(−)pA

f ,Û�i

) =
∫ −∞

∞
dt

∂

∂t

(
Û+�

(−)pA

f ,�i

)

= −
∫ ∞

−∞
dt

(
∂Û+

∂t
�

(−)pA

f ,�i

)
−

∫ ∞

−∞
dt

(
Û+ ∂�

(−)pA

f

∂t
,�i

)
−

∫ ∞

−∞
dt

(
Û+�

(−)pA

f ,
∂�i

∂t

)

= −
∫ ∞

−∞
dt

(
1

ih̄
HdE

I Û+�
(−)pA

f ,�i

)
−

∫ ∞

−∞
dt

(
Û+ 1

ih̄

(
HA + H

pA

I

)
�

(−)pA

f ,�i

)
−

∫ ∞

−∞
dt

(
Û+�

(−)pA

f ,
1

ih̄
HA�i

)
.

(C12)

Using Eqs. (C2), (C5) and the hermiticity of HA, we can add the last three integrals in Eq. (C12) and obtain

(S − 1)f i = 1

ih̄

∫ ∞

−∞
dt

((
HdE

I Û+ + [Û+,HA] + Û+H
pA

I

)
�

(−)pA

f ,�i

)
. (C13)

The calculation of a commutator in the above equation is
elementary and gives

[Û+,HA] = −Û+H
pA

I . (C14)

Then, after substitution of Eq. (C14) into Eq. (C13), the
Hamiltonian H

pA

I disappears from the S-matrix element in
spite of making calculations in the VG. Finally, because HdE

I

is a Hermitian operator, the exact probability amplitude of
ionization takes the form

(S − 1)f i = 1

ih̄

∫ ∞

−∞
dt

(
HdE

I Û+�
(−)pA

f ,�i

)

= 1

ih̄

∫ ∞

−∞
dt

(
�

(−)dE
f ,HdE

I �i

)
, (C15)

which is identical with the LG result derived in Eq. (C8). In
this way, for the exact probability amplitude of ionization,
the gauge invariance is preserved. By analogy, starting from
Eqs. (C6) and (C10), respectively, and making similar calcula-
tions, one can check, that the gauge-invariant direct time form
of the S matrix is

(S − 1)f i = 1

ih̄

∫ ∞

−∞
dt

(
�f ,HdE

I �
(+)dE
i

)
. (C16)

In light of the above calculations it is obvious that the
well-known starting point of the VG SFA theory

(S − 1)f i = 1

ih̄

∫ ∞

−∞
dt

(
�

(−)pA

f ,H
pA

I �i

)
(C17)

is not always an exact expression [unless Eq. (C1) is satisfied].
Equation (C17) may be obtained, if one sets Û (�r,t) = 1 during
all the time evolution of the ionized electron. This can be
deduced from the first line of Eq. (C12) (where we set Û+ = 1)
and Eq. (C8) (where we set HI = H

pA

I ). However, as we have
noted above, Û (�r,t) = 1 is not satisfied in strong laser fields.

In our opinion, the qualitative difference between the
so-called LG SFA theories and the so-called VG SFA theories
is connected with the matter of gauge invariance. When
calculating the probability amplitude of ionization in the
S-matrix theory one integrates the time derivative of the
overlap (�(−)

f ,�i), which is a function of time. As Eq. (C8)
clearly shows, such an integration is performed from the point
t = +∞, where we know the overlap: (�(−)

f ,�i) = δf i , to the
point t = −∞, where this overlap is (analytically) unknown.
To obtain an approximate result, we approach the value of
the integrand for all times between t = +∞ and t = −∞
by using the Volkov wave function instead of �

(−)
f . But

for any time t obeying +∞ > t > −∞ and �A(t) �= �0 the
overlap (�(−)dE

f ,�i) is the instantaneous probability amplitude

of ionization, while the overlap (�(−)pA

f ,�i) is not. These

two expressions are equal only when �A(t) = �0. Therefore
only in the LG does our approximation have a clear physical
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interpretation for all t , which contribute to the analytical value
of the integral. Let us note that for the circularly polarized

laser field (unlike for the linear polarization) one never has
�A(t) = �0, when the laser field has a constant intensity.
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