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Heating mechanisms in radio-frequency-driven ultracold plasmas
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Several mechanisms by which an external electromagnetic field influences the temperature of a plasma are
studied analytically and specialized to the system of an ultracold plasma (UCP) driven by a uniform radio-
frequency (rf) field. Heating through collisional absorption is reviewed and applied to UCPs. Furthermore, it is
shown that the rf field modifies the three-body recombination process by ionizing electrons from intermediate
high-lying Rydberg states and upshifting the continuum threshold, resulting in a suppression of three-body
recombination. Heating through collisionless absorption associated with the finite plasma size is calculated in
detail, revealing a temperature threshold below which collisionless absorption is ineffective.
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I. INTRODUCTION

Conventional plasmas are formed when atoms are ionized
by strong electric fields or collisions with other particles. Due
to the large excess energy inherent in such ionization processes,
the resulting electron temperature is typically comparable
to the ionization potential, which is on the order of 1 eV,
equivalent to some 104 K. In marked contrast, ultracold neutral
plasmas (UCPs), created by photoionization of a cloud of
laser-cooled atoms [1], have an electron temperature close
to 1 K. UCPs typically consist of some 108 singly ionized
atoms localized in a millimeter-sized cloud of Gaussian
density profile, with a correspondingly low particle density
[2]. The combination of low temperature and low density
makes UCPs unique plasma systems. They can be close to
the strongly coupled regime where the Coulomb interaction
energy between the particles exceeds the thermal energy, as is
quantified by the coupling parameter

� = e2

4πε0rwkBT
(1)

exceeding unity, where e is the electron charge, ε0 the vacuum
permittivity, kB Boltzmann’s constant, T the plasma tempera-
ture, and rw = [3/(4πn)]1/3 the Wigner-Seitz radius with n the
number density. Due to their large coupling parameter, UCPs
behave in many respects similarly to strongly coupled plasmas
near solid-state density, such as laser-ionized atomic clusters
[3] or thin films [4], inertial confinement fusion targets [5], and
astrophysical plasmas [6]. The dynamics of solid-state density
plasmas, however, takes place at the time scale of the inverse
plasma frequency, which lies in the attosecond to femtosecond
regime. This seriously complicates diagnostics. In contrast,
UCPs evolve on the time scale of picoseconds to microseconds.
This enables excellent time-resolved diagnostic techniques,
including charged-particle detection [7], absorption imaging
[8], and fluorescence monitoring [9]. In addition, the careful
preparation and ionization of atomic clouds allows accurate
control over the initial temperature, density profile, and
ionization state. UCPs may therefore serve as versatile and
experimentally accessible model systems for high-density
plasmas that are difficult to diagnose.
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An important class of experiments on solid-state-density
plasmas involves plasmas created by laser irradiation of atomic
clusters in a gas jet. Characteristic of these experiments is
that the laser pulse length is comparable to the lifetime of
the plasma. Therefore the studied system typically consists
of a cluster plasma that is not only near to strongly coupled,
but is also strongly driven by a radiation field. This leads to
complicated dynamics that is difficult to unravel [3]. Research
on laser-cluster interaction would therefore benefit from UCP
experiments in which this interaction is mimicked. Since
atomic clusters are typically smaller than the laser wavelength,
the appropriate model system is an UCP driven by a strong
radio-frequency (rf) field. Interpretation of observations in
such experiments on rf-driven UCPs, however, requires a
detailed understanding of the mechanisms by which the
rf field and the UCP interact. In this paper, we consider
how the rf field influences the plasma temperature, both di-
rectly through rf energy absorption mechanisms and indirectly
through modification of the three-body recombination process,
the latter being a main heat source in UCPs.

In current UCP experiments, rf fields are used in a
diagnostic way to probe plasma modes. Plasma resonance can
be detected as an increased yield of electrons leaving the UCP
[10]. Combined with knowledge of the mode properties [11],
this can be used to determine the plasma density and expansion
as a function of time. Using the same technique, the presence
of acoustic or Tonks-Dattner modes in an UCP has been
observed in addition to the fundamental mode [12]. In these
experiments, the collective response of the plasma electrons to
the rf field has been studied in quite some detail. However,
the rf amplitude is kept low to avoid disturbances other
than plasma resonances, and little attention is paid to other
interaction mechanisms. Nevertheless, as we will describe in
this paper, the rf field influences the plasma also via incoherent
processes. In their Tonks-Dattner modes experiment, Fletcher
et al. [12] indeed observe the onset of field-induced effects
at large probing amplitudes. Although lower rf amplitudes
justify the use of standard plasma quantities, such as the
Spitzer collision frequency applied in the interpretation of
the fundamental plasma resonance measurements [11], or the
Debye length mentioned in support of the analysis of the
Tonks-Dattner modes [12], one should be aware of the possible
high-amplitude modifications of such quantities induced by
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the rf field. Finally, the expansion of an UCP is driven by the
thermal pressure of the electrons. It is therefore important to
understand the various ways in which the rf field contributes
to the heat budget of the plasma.

In this paper, we take the electric field strength E0 in the
plasma as a given quantity, and consider what influence this
field has on several microscopic processes. For underdense
plasmas, E0 is approximately equal to the externally applied
rf field. For denser plasmas, E0 may be significantly enhanced
by the polarization field generated by the plasma itself. This
is particularly relevant under conditions of resonance with
plasma modes, in which case the absorption of rf energy by
the UCP is dominated by the strong dependence of E0 on the
driving frequency [13]. The determination of the frequency
response of the UCP, and hence the polarization fields, is
actively being studied [11–14], but is outside the scope of
this paper. Nevertheless, our results may be directly applied
once E0 is known.

This paper is organized as follows. We consider two mecha-
nisms by which the UCP can directly absorb energy from the rf
field: collisional absorption and collisionless absorption due to
the finite size of the plasma. The first of these has been studied
extensively already in other contexts [15–25]. In Sec. II, we
therefore only cite the main results from literature and discuss
their relevance for rf-driven UCPs. In Sec. III, we study the
process of three-body recombination in the presence of a rf
field, and show that the recombination rate can be strongly
suppressed by the field. Next, in Sec. IV, we consider the
collisionless absorption mechanism mentioned above, which
has been mainly studied in the context of solid-state-density
plasmas [26–33]. We show that the approximations usually
adopted are not appropriate for UCPs. We provide an improved
description by specializing a derivation of the collisionless
absorption rate due to Zaretsky et al. [30] to the case of UCPs.
We conclude and summarize in Sec. V.

II. COLLISIONAL ABSORPTION

A. Collision frequency

At low to moderate rf field strengths, the energy absorption
of a plasma is dominated by collisional absorption, or inverse
bremsstrahlung [34]. The physical cause of the absorption
is that individual electrons, oscillating due to the rf field, are
deflected in the Coulomb fields of the approximately stationary
ions, resulting in a net energy gain. The average effect of
the Coulomb fields can be described phenomenologically as
an effective frictional force F = −mνeiv in the equation of
motion of the electron, and the energy absorption rate per
electron by the power Pei = −〈F · v〉. Here, m is the electron
mass, νei is the effective electron-ion collision frequency, and
v is the electron velocity. Expressing the velocity in terms of
the driving electric field gives [15]

Pei = 2νeiUp, (2)

where Up = (eE0)2/(4mω2) is the quiver energy, or pon-
deromotive potential, in the rf field with amplitude E0 and
frequency ω. Here and in the remainder of the paper, we assume
a linearly polarized rf field, and absorb any field enhancement
due to plasma resonance in the magnitude E0. Importantly,
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FIG. 1. (Color online) Effective electron-ion collision frequency
for collisional absorption scaled to the Spitzer collision frequency, as a
function of the ratio of quiver velocity to thermal velocity. Solid black
line, collision frequency Eq. (4); dash-dotted blue line, weak-field
limit vosc � vth given by Eq. (5); dashed red line, strong-field limit
vosc � vth given by Eq. (5).

Eq. (2) defines the collision frequency as merely a scaled
absorption rate, rather than predicting the absorption from a
predetermined collision frequency. Consequently, νei is not
necessarily equal to the Spitzer collision frequency [35]

νS =
√

2

3π
ωp�3/2 ln �, (3)

which is commonly used for plasmas without rf fields.
Nevertheless, the collision frequency Eq. (3) is sometimes
used for driven plasmas as well, and also in the context of
rf absorption by UCPs [11,36]. In Eq. (3), singly ionized
atoms are assumed, ωp is the plasma frequency, and ln � is
the Coulomb logarithm that will be discussed below.

Underlying any calculation of the collisional absorption rate
is some model for the scattering of an electron by the Coulomb
field of an ion, which generally depends on the electron
velocity. Because two velocity scales are involved, namely,
the thermal velocity vth = √

kBTe/m and the quiver-velocity
magnitude vosc = eE0/(mω), the collision frequency depends
on the ratio vosc/vth. Here, Te is the electron temperature of the
plasma. The effective collision frequency has been calculated
first by classical kinetic theory using the Landau collision
integral [15,16]. The result can be written as [21]

νei = 2F2

(
3

2
,
3

2
; 2,

5

2
; − v2

osc

2v2
th

)
νS, (4)

where 2F2 denotes the generalized hypergeometric function
[37] which has the limiting forms

2F2(· · · ) ≈
{

1, vosc � vth,

6
√

2
π

(
vth
vosc

)3[
ln

(
vosc
2vth

) + 1.0
]
, vosc � vth.

(5)

More advanced and alternative calculations largely confirm
these results [17–22].

The collision frequency of Eq. (4) is plotted in Fig. 1 as a
function of the velocity ratio. In rf experiments with UCPs, this
ratio can vary over the full range vosc � vth to vosc � vth [10].
The decrease of the collision frequency for increasing vosc

can be understood physically from the well-known fact that
the Rutherford scattering cross section for an electron by
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an ion is inversely proportional to the fourth power of the
relative velocity, so that driving the plasma more strongly
makes the electrons less susceptible to deflections and hence
to energy gain. Note that the Spitzer frequency Eq. (3) with
Eq. (1) substituted is proportional to v−3

th , while the second
line of Eq. (5) contains the factor (vth/vosc)3. Effectively,
therefore, and apart from a logarithmic factor, the content
of Eq. (4) is that the thermal velocity is replaced by the
quiver velocity in the collision frequency when vosc � vth.
In fact, this effect is such that the collision absorption rate
Pei given by Eq. (2) decreases with field strength as E−1

0
rather than increases, which is a well-known phenomenon in
laser-plasma physics [34]. This behavior is relevant not only
in situations where large rf field strengths are applied, but also
when UCPs are driven resonantly. This is because the electric
field E0 is strongly enhanced at densities for which the plasma
frequency equals the rf frequency. In particular, the amplitude
of the electron oscillations is then limited by the dominant
damping mechanism, which in view of Fig. 1 may no longer
be collisional absorption. For sufficiently small νei, excitation
of plasma waves can become important [38], although this is
outside the scope of this paper. In Sec. IV another competing
damping mechanism is presented.

B. Coulomb logarithm

A second important consequence of the rf field is that
the Coulomb logarithm ln � in Eq. (3) is modified. This
is particularly relevant for UCPs because the traditional
expression ln � = ln(�−2/3) loses its validity in the case
of strong coupling � � 1. The Coulomb logarithm arises
from cutting off the Coulomb collision integral at both large
and small impact parameters in elementary calculations of
the scattering cross section of an electron by an ion [39].
However, the physical arguments used to choose these cutoffs
are traditionally based on thermal electron velocities only, and
the cutoffs will change when in addition the quiver velocity
is taken into account. This can be confirmed by explicit
calculation [19], yielding ln � ≈ ln (bmax/bmin), with

bmax = veff

max(ω,ωp)
; (6)

bmin = e2

4πε0mv2
eff

; (7)

veff ≡
√

v2
th + v2

osc. (8)

Here the classical limit veff < e2/(2ε0h̄) has been assumed,
where 2πh̄ is Planck’s constant. Equations (6)–(8) show that
also in the Coulomb logarithm, as before, the quiver velocity
effectively takes over the role of the thermal velocity in the
limit vosc � vth. This suggests more generally that kinetic
processes in UCPs that depend on the electron temperature
may be strongly modified by the presence of a rf field. In the
next section, we further validate this notion by showing that
the three-body recombination rate in an UCP can be strongly
suppressed by application of a rf field.

III. THREE-BODY RECOMBINATION

In the process of three-body recombination (TBR), an
electron recombines with an ion, while the excess potential

energy is carried away by a second electron. In UCPs, TBR
is the dominant recombination channel [2] due to the strong
scaling of the TBR rate R with temperature, which is R ∝
T

−9/2
e according to conventional theory [40,41]. However,

the unphysical divergent behavior of the rate as Te → 0
indicates that this scaling must break down at sufficiently low
temperatures. Modifications of the rate associated with the
nonideality of strongly coupled plasmas have been demon-
strated analytically [42–45] and with molecular dynamics
simulations [46,47]. Quantum effects associated with the wave
character of the electrons can also play a role at sufficiently low
temperatures, if the electronic de Broglie wavelength becomes
noticeable on the spatial scale of the TBR process [48]. On
the other hand, in current experiments UCPs remain mainly
outside the strongly coupled regime [49], so that numerical
models of the expansion dynamics of UCPs that are based
on the conventional TBR rate are able to accurately describe
experimental results [50]. We will show now that, in addition
to any possible strong-coupling effects, the presence of a
rf field suppresses the TBR rate to a temperature scaling
of R ∝ T −1

e , which is much milder than the conventional
R ∝ T

−9/2
e dependency. We do not consider the mentioned

quantum effects, which are presumably small since the
quiver motion of the electrons ensures a small de Broglie
wavelength.

We determine the TBR rate along the lines of an elementary
analytical derivation by Hinnov and Hirschberg [40], adapted
to the situation in which vosc � vth. The TBR rate found
by Hinnov and Hirschberg has been confirmed by extensive
Monte Carlo simulations [41] to within a factor of order
unity, showing that their model captures the essential physics
despite its simplicity. In order to exhibit the rf field effects
clearly, we therefore choose to use this simple analytical model
rather than performing a detailed numerical study, although
the latter will be important to test the results derived here.
Let us first briefly review the conventional case where the
rf field is absent. Quantum-mechanically, a TBR event may
be described as an electron making a cascade of transitions
between adjacent energy levels of an atom until it reaches the
deeply bound states. Under conditions applicable to UCPs,
these transitions are mainly effected by collisions with other,
free electrons. The process is illustrated in the left panel of
Fig. 2. Considering an electron at any particular energy level
Ui < 0, there is both a finite probability that the next collision
will result in an upward transition, and a finite probability
that a downward transition results. It can be shown [40] that
the upward transition probability increases with respect to the
downward transition probability as Ui grows closer to the
continuum, and that upward transitions dominate for levels
less than an energy ∼kBTe below the continuum. Any electron
ending up in the energy band −kBTe < Ui < 0, shown in gray
in Fig. 2, is therefore likely to reionize, while electrons below
this band are likely to fully recombine. Hence, as far as TBR is
concerned, one may qualify the levels −kBTe < Ui < 0 as ef-
fectively unbound, and approximate the amount of eventually
recombining electrons with those electrons that skip this band
altogether by making a direct collisional transition from the
continuum to anywhere below the bottleneck level −kBTe.
The validity of this approximation has been confirmed by
simulations [41]. Summing the probabilities of such transitions
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FIG. 2. Energy diagram of three-body recombination with and
without rf field. The gray bands show energies from which reion-
ization is likely. An arbitrary level with high energy Uk < 0 has
been drawn; on the sides the energy scale has been indicated. The
bottleneck level is moved by the rf field (a). The rf field induces a
Stark shift of the continuum threshold (b), Stark splitting of highly
excited levels (c), and much smaller shifts of deeply bound states
(d). (e) is a electron that reionizes after a collisional transition from
the continuum to above the bottleneck level; (f) is a electron that
recombines by making a cascade to deeply bound states after a
collisional transition to below the bottleneck level.

over all possible initial and final energies of the recombining
electron and over all possible energies of the free electron, one
finds indeed the usual TBR rate proportional to T

−9/2
e [40].

When a rf field is present, two essential modifications
must be made to this picture, as illustrated by the right panel
of Fig. 2. First, the rf field interferes with the collisional
cascade towards deeply bound levels, because it can ionize
electrons from highly excited levels. It is well known that
the character of a field ionization process depends upon the
applied field strength and frequency in relation to the binding
energy of the electron; accordingly different regimes such
as multiphoton and tunneling ionization may be identified.
We consider microwave or lower frequencies and kV/m field
strengths, in which case field ionization from highly excited
levels is well described by classical over-the-barrier ionization
in a quasistatic electric field [51]. This has also been verified
experimentally [52–54]. Accordingly, the combined potential
U = −e/(4πε0r) − E0z of the ion and the external field has a
saddle point along the z axis of height

√
e3E0/(πε0) ≡ −Uion,

and any electrons with energies Ui > −Uion will rapidly
escape from the ion by going over this saddle point. Such
a static description is valid because, in the case at hand,
the applied frequency ω is much smaller than the classical
Kepler frequency ωi of the energy levels Ui close to −Uion.
The inverse process, in which free electrons enter the vicinity
of the ion in the presence of a low-frequency field and
which is the low-frequency equivalent of stimulated radiative
recombination, has also been observed [55,56]. The lowering
of the Coulomb barrier to −Uion due to the external field thus
defines a range of energies U > −Uion that are effectively
unbound. Regarding the three-body recombination process,
any electron ending up in this energy range is more likely to
ionize than to proceed with a downward collisional cascade.
Thus, analogously to the field-free case, only free electrons
that make a direct collisional transition to states below the
bottleneck level −Uion will contribute to the TBR rate, but

now the bottleneck level is set by the field and no longer by
the plasma property −kBTe.

A second influence of the rf field is the fact that the energy
of both free and bound electrons will change due to the field.
For free electrons, the energy increment is just the quiver
energy Up = mv2

osc/4. As a result the continuum threshold
shifts up by Up as well (see Fig. 2), which is a well-known
effect in multiphoton ionization experiments [57]. This upshift
is important for the TBR process since free electrons will now
have to lose an additional energy Up in order to recombine with
an ion. Combined with the adapted bottleneck, the minimum
energy loss to effect a TBR event has thus increased from
kBTe in the field-free case to Up + Uion in the case with field,
as is illustrated in Fig. 2 by the gray bands. This suppresses
the TBR rate significantly. Finally, the energy change of the
bound levels due to the rf field is the ac Stark shift. However,
the energy levels that are available for TBR are the levels
below −Uion, for which the shift is approximately equal to
the dc Stark shift because ωi � ω. For states just below
−Uion, the electric field exceeds the Inglis-Teller limit, which
means that the Stark splitting of the manifolds with principal
quantum number k is large enough to fill the energy space
with states more or less homogeneously [51]. An additional
observed effect due to this strong Stark mixing in an ac
field is that electrons may ionize from below −Uion via
subsequent upward Landau-Zener transitions [51]. We neglect
this effect because it is a much slower process than direct
over-the-barrier-ionization [58]. Resonant atomic transitions
that might be induced by the rf field are not included either,
although they may have an effect on the collisional cascade.

We now recalculate the TBR rate in the presence of a
rf field, taking account of the field modifications described
above. By the method of detailed balance, under the hypothet-
ical condition of thermal equilibrium the rate of collisional
transitions from the continuum U > Up to the bound energy
level Ui < Uion is equal to the rate of the inverse process,
which are ionizing transitions from the bound level to the
continuum caused by electron impact. From the well-known
[40] cross section Si(U ) for a collisional energy transfer of at
least |Ui | + Up from a moving electron with energy U to a
stationary electron, the rate of collisional ionization from level
Ui per unit plasma volume is

Ri =
∫ ∞

|Ui |+Up

ninevSi(U )f (U )dU. (9)

Here, f (U ) is the energy distribution function of free electrons,
v is the electron velocity corresponding to energy U , and ni is
the density of electrons in level Ui . The rate of TBR via level i,
which is the inverse process, is obtained by substituting for ni

the equilibrium value from the Saha equation [39], because the
two rates must be equal at equilibrium. Let us first consider the
case where Up � Uion, that is, for relatively high frequencies
or low fields, and denote the corresponding TBR rate by R0. In
this case U � Up in the whole integration domain of Eq. (9),
so that f (U ) may be approximated by an ordinary Boltzmann
distribution without the need to correct it for the quiver motion.
Evaluating the integral in Eq. (9), substituting the Saha value
for ni , and summing over all energy levels below −Uion, gives
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the total TBR rate

R0 =
∑

i

Ri ≈ e4h̄3n3
e

4gε2
0m

2(kBTe)3

∫ −Uion

−∞
F

(
U

kBTe

)
D(U )dU,

(10)

where F (x) ≡ exp(−x) Ei(x) − 1/x with Ei the exponential
integral [59] and g is the degeneracy of the ionic ground state.
The sum over states has been approximated by an integral
over the bound energy, resulting in the density of states D(U )
as a factor. Approximating the atomic potential with that of
hydrogen, D(U ) ≈ 1

2 Ry3/2 |U |−5/2, where Ry = 13.6 eV is
the Rydberg energy. For kV/m field strengths, |U | /(kBTe) �
1 over the whole integration domain of Eq. (10), so that
the function F can be approximated by its asymptotic value
F ≈ (kBTe/U )2. Then the remaining integral contains the field
effects, but is independent of the temperature. This means that
the temperature scaling of the TBR rate that is derived here
is insensitive to errors due to our approximate description
of the energy Uion and the Stark-shift structure, although the
prefactor may change somewhat in a more detailed calculation.
Integration of Eq. (10) gives

R0 ≈ π2

7g

√
2

m

(
e2

4πε0

)5
n3

e

U
7/2
ion kBTe

≈ 2.6 × 10−27 n3
e (cm−9)

U
7/2
ion kBTe (eV9/2)

cm−3 s−1, (11)

assuming g = 2. Within a factor of order unity, this three-body
recombination rate is equal to the accepted result for the
case without rf field [41], except that 7/2 powers of kBTe

have been replaced by an energy Uion characterizing the
applied field. This reduces the strongly divergent behavior
R ∝ T

−9/2
e to the much milder dependency R ∝ T −1

e . Thus
three-body recombination may be significantly suppressed by
the application of a rf field. A similar electric-field-induced
suppression of the TBR rate has been considered before [44],
although in that work the plasma microfield or Holtsmark
field was taken into account rather than an externally applied
field. The calculated TBR rate for singly charged ions was
1.4 × 10−31�Zn7

pn3
e/(kBTe) in the units of Eq. (11), with �Z ≈

2 and np the principal quantum number at their bottleneck
level defined in the paper. Using our bottleneck level instead
by substituting np = √

Ry /Uion precisely gives Eq. (11),
including the correct numerical factor, showing that the two
results are in agreement.

Equation (11) is valid for Up � Uion only. However, the
calculation is easily generalized to arbitrary Up, the only added
complication being the need to include the quiver motion of
the free electrons. The details are given in Appendix B; the
result is

R = R0G

(
Up

Uion

)
, (12)

where R0 is the rate given by Eq. (11) and G is a correction
factor. The latter is given by Eq. (B3) and is approximately
equal to

G(x) ≈ [1 + (βx)1/α]−5α/2, (13)

with α = 1.137 and β = (2/7)2/5.

IV. COLLISIONLESS ABSORPTION

A. Absorption models

Even without the presence of electron-ion collisions,
individual electrons in a plasma can absorb energy from
an applied electric field. For bulk plasmas, this collisionless
absorption effect is the well-known Landau damping [35], in
which electrons can gain net energy from a high-frequency
propagating electric wave, despite the fact that the high-
frequency electric force tends to cancel out on the average.
This is possible when the thermal velocity of the electron is
close to the velocity of the wave, so that the electric field
is approximately static in the electron frame of reference.
Essential for this mechanism is a resonance between thermal
motion and applied field. In plasmas of finite size, such
as an UCP, the thermal motion of electrons is necessarily
confined by the plasma boundaries, so the assumption of
rectilinear motion implicit in the Landau damping mechanism
of bulk plasmas is no longer appropriate. Rather, the electrons
perform quasiperiodic motion in the electrostatic potential of
the plasma, as is detailed below. Furthermore, the electric
field in the plasma is homogeneous rather than a propagating
wave when the applied wavelength is much larger than the
plasma size, as in the case of a rf field applied to an UCP.
Nevertheless, electrons may on the average gain energy, and
this is again due to a resonance between the thermal motion and
the applied field. This is why the collisionless absorption of
finite plasmas has been called Landau damping as well [27,60],
although the character of the correlation is quite different. In
this section, we calculate the rf energy absorption of an UCP
by this mechanism. To avoid confusion, it should be noted
that the resonance between thermal motion and rf field that is
meant here has nothing to do with the more familiar plasma
resonance. The electrons in the plasma have an individual
thermal motion superposed on a collective quiver motion; the
resonance meant here concerns the first of these, while plasma
resonance relates to the latter.

First, we mention a number of other approaches to colli-
sionless absorption and argue why these are less appropriate
for UCPs in rf fields. In the above description of collisionless
absorption, the applied field plays the role of a perturbation
on the thermal motion of the electrons. One may change
perspective and look at the quiver motion of the electrons as
being the primary motion, perturbed by a thermal one. Because
the details of the thermal motion are determined by the details
of the plasma potential, this can be interpreted as an oscillating
electron having interaction with the plasma potential itself.
This view is particularly appropriate when the potential can be
approximated by an infinitely deep well, so that the “interaction
with the potential” simply becomes “collisions with the plasma
boundary.” Then the collision frequency of electrons with the
plasma boundary is on average

νp ∼ v

σ
(hard-wall model), (14)

where σ is the plasma size, and v is the characteristic velocity
of the electrons that is taken to be the thermal velocity [30],
a combination of thermal and quiver velocity [29] or Fermi
velocity [27] depending on the model used. On average
the electrons gain an energy 2Up per hard-wall collision,
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in analogy with Eq. (2). The result (14) also follows as a
special case from the more general Landau damping approach
when specialized to a hard-wall potential [30]. While a flat
potential with hard walls, and hence the resulting absorption
rate 2vUp/σ , may be a good approximation for large metallic
clusters [27,29], it is not for UCPs. In the process of creation
of an UCP from an atomic cloud, part of the electrons escape
from the plasma immediately after photoionization of the
cloud. This continues until the accumulated charge imbalance
self-limits further loss of electrons. The resulting spherically
symmetric Coulomb potential of the UCP with a typical
Gaussian density distribution is [2]

U (r) = U0

[
1 −

√
πσ

2r
erf

( r

σ

)]
, (15)

where erf(r/σ ) denotes the error function [59], and r is the
distance to the cloud center. The depth of the potential saturates
to U0 ∼ kBTe by nature of the charging process. Clearly, the
hard-wall potential is not a very good approximation in this
case, and a more detailed calculation of the energy absorption
is necessary to account for the smoothness of the potential.

Another absorption mechanism that is considered important
for large metal clusters is the Brunel effect [28], in which
electrons at the plasma boundary are pulled out of the plasma
by the applied electric field and then driven back into the
plasma as the field reverses direction. When the plasma is
sufficiently overdense, the interaction effectively stops once
the electron has moved deeper into the plasma than the skin
depth, resulting in net energy gain because the electron cannot
be brought back to rest by the evanescent field. The resulting
absorption rate, divided by 2Up for comparison, gives again
the hard-wall collision frequency Eq. (14), with v the high-
frequency velocity. In an UCP, however, the Brunel mechanism
is not in effect either, since typically the skin depth, which is
comparable to c/ωp with ωp the plasma frequency, is much
larger than the plasma size.

Finally, when the applied field is so strong that the
oscillation amplitude of individual electrons is comparable
to or larger than the plasma size, one can hardly speak of
the applied field as a perturbation, and other descriptions of
the electron motion such as nonlinear oscillators [31–33] or
scattering off the plasma potential [61] are more appropriate.
Here we do not consider such strong-field effects.

B. rf absorption by electrons in a general potential

We now proceed to calculate the collisionless rf energy
absorption by an UCP, taking account of the smooth plasma
potential shape shown in Eq. (15) rather than resorting to a
hard-wall approximation. We make use of the calculational
method developed by Zaretsky et al. [30]. When forcing an
UCP with an rf signal, the electric field in the plasma consists
of the external rf field, the polarization field caused by any
excited plasma modes, and the field corresponding to the
plasma potential Eq. (15). The combination of the first two
fields may be considered a fast harmonic perturbation on the
latter field. Although UCPs behave entirely classically [2], a
quantum-mechanical description of this situation proves best
suited to calculate the rf energy absorption. Accordingly, the
electrons occupy bound states in the plasma potential, and can

change states by absorption or emission of a rf photon. The
quantum-mechanical calculation of the absorption is given
in detail in Ref. [30]. A spatially homogeneous rf field is
assumed, which rules out strong local field enhancements
such as those generated by plasma resonances. Therefore
the following calculation is restricted to underdense plasmas.
In summary, perturbation theory is applied, in which the
transition probability of electrons between any pair of states is
given by Fermi’s golden rule [62]. The number of rf photons
absorbed by the plasma equals the difference between the
number of electron transitions to a higher state and those
to a lower state, and the absorbed rf energy is this amount
multiplied by the photon energy. Exploiting, in addition, the
fact that the system dimension σ is much larger than the
typical de Broglie wavelength of the electrons, one can adopt
the quasiclassical or Bohr-Sommerfeld theory to approximate
quantum-mechanical quantities by their classical analogs [62].
Although results for a general three-dimensional potential
are available [30], we will use the one-dimensional analogs
because then the mathematics is much more transparent. This
does not represent a major error since the energy transfer
from the rf field to the plasma proceeds via electrons that
move partially resonantly with the applied field. This means
that only one component of the electron trajectories, namely,
the one that is parallel to the applied field, contributes to
the rf absorption, so that the problem is essentially one
dimensional. Explicit calculation of the rf absorption in both
the full three-dimensional and corresponding one-dimensional
hard-wall potentials [30] confirms that the latter captures the
general behavior.

Expressing as before the absorbed rf power Pp due to
collisionless absorption in terms of an effective frequency νp,
it is found that [30]

Pp = 2νpUp; (16)

νp = πmω3

ZkBTe

∞∑
s=0

[ |X(ε)|2
|d�/dε| exp

(
− ε

kBTe

)]
ε=εs

. (17)

Here, �(ε) is the oscillation frequency of the classical
trajectory x(ε,t) of a particle with energy ε in the unperturbed
potential,

X(ε) = �(ε)

2π

∫ 2π/�(ε)

0
x(ε,t) exp (iωt) dt (18)

is the Fourier component of the classical trajectory at the
frequency of the perturbation,

Z =
∫

exp

(
− ε

kBTe

)
dε

�(ε)
(19)

is the partition function of the electron distribution over the
energy states, which is assumed to be a Boltzmann distribution
here, and the sum in Eq. (17) is over energies that are roots of
the equation

(2s + 1) �(εs) = ω. (20)

Without attempting to explain all details underlying Eqs. (17)–
(20) here, it is noted [30] that the only contributions to the
absorbed energy come from those electrons whose trajectory is
in resonance with the applied field according to Eq. (20). This
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is the correlation between thermal motion and applied field
also characteristic for bulk Landau damping. Furthermore, the
contributions in Eq. (17) are proportional to |X|2, the spectral
content of the trajectory at the applied frequency. However, the
dominant frequencies in the spectrum of the trajectory will be
on the order of the oscillation frequency �(ε). In a potential
such as Eq. (15) with r replaced by x, this frequency will be
comparable to that of a harmonic oscillator potential with the
same curvature at x = 0, that is, to � ∼

√
2U0/(3mσ 2) ≡ ω0.

Therefore, it is expected that the rf energy absorption strongly
depends on the ratio ω/ω0. In addition, the ratio of particle
energy ε and thermal energy kBTe appears in Eq. (17), the
former being limited to values smaller than the potential depth
U0, so there will be some weak secondary dependency on the
ratio U0/(kBTe) as well. These properties are indeed found
below.

In the classical UCP system the spacing between energy lev-
els is much smaller than the thermal energy, and therefore the
sum in Eq. (17) may be approximated by integration over s. A
subsequent change of integration variable from s to the energy
εs introduces an extra factor (dεs/ds)−1, which is the density
of resonant states. This factor is obtained by differentiating
Eq. (20) with respect to s, yielding |d�/dε|ε=εs

dεs/ds =
2�2/ω. Accordingly, Eq. (17) becomes

νp ≈ πmω4

2ZkBTe

∫ ∣∣∣∣X(ε)

�(ε)

∣∣∣∣
2

exp

(
− ε

kBTe

)
dε, (21)

where the subscript s has been dropped.

C. rf absorption in a model plasma potential

Equation (21) allows explicit calculation of the absorbed rf
power, if the classical trajectories in the potential are known
analytically. However, for the particular potential Eq. (15),
closed expressions for the trajectories are not available. In
order to still make quantitative estimates for the energy
absorption, instead of Eq. (15) we use a model potential with
the same general shape for which the trajectories are known
analytically:

U (x) = mω2
1x

2

2

(
1 − x2

a2

)
, (22)

where a is a positive constant with units of length.
Equation (22) is the potential of a Duffing oscillator commonly
used to describe the motion of a mass on a cubic softening
spring. Although this potential differs from the actual UCP
potential Eq. (15), we note that from a physical point of view
the most important characteristics of the UCP potential are
the temperature, which sets the potential depth U0, and the
charge density, which sets the curvature mω2

0 at the bottom of
the potential. Therefore we should obtain a reasonable estimate
for the energy absorption by choosing the model potential
accordingly, setting the curvature mω2

1 equal to mω2
0 and the

potential depth mω2
1a

2/8 ≡ U1 equal to U0. Important as well
is that the infinitely differentiable UCP potential is modeled
by an equally smooth one, and that both potentials approach
their edge with vanishing slope. In Fig. 3 the two potentials
are compared.

A particle is bound by the potential Eq. (22) only if its
energy ε is less than U1. For such a bound particle the classical

UCP

Model

4 2 0 2 4
0

0.5

1

x σ

U
x

U
0

FIG. 3. (Color online) Model potential [red dashed line, Eq. (22)]
compared to the actual UCP potential [black solid line, Eq. (15)]. The
parameters have been set to ω1 = ω0 and a such that U1 = U0. The
dotted parts of the model potential are not used.

trajectory, starting at time t = 0 at position x = 0, can be
shown to be given by the periodic function [63]

x(ε,t) = a

√
u

2v
sn

(√
v

2
ω1t,

u

v2

)
, (23)

where sn(y,m2) is the Jacobi elliptic function with argument
y and modulus m, and u = ε/U1 is the particle energy in units
of the potential depth, and v = 1 + √

1 − u. The frequency �

with which the particle oscillates back and forth in the potential
is given by [63]

�(ε) = π
√

v

2
√

2 K(u/v2)
ω1, (24)

where K(m2) is the complete elliptic integral of the first kind
with modulus m. In the limit of vanishing particle energy
ε → 0, the trajectory (23) approaches harmonic motion with
frequency ω1, while the motion becomes anharmonic with
the frequency monotonically decreasing to zero as the energy
grows to U1.

In Appendix A the absorbed power is calculated by using
Eqs. (23) and (24) in Eq. (21). The exact result Eq. (A3) for the
effective collision frequency is plotted in Fig. 4 as a function of
ω1/ω, assuming a potential depth equal to kBTe. Also plotted
is the asymptotic approximation, valid for ω1/ω � 1,

(νp

ω

)
model

= C (Y )

(
ω

ω1

)2

exp

(
−

√
2π

ω

ω1

)
, (25)

which fits the exact result very well. In a typical UCP, σ ∼
1 mm and Te ∼ 1 K [2], while in a typical rf experiment
ω/(2π ) > 1 MHz [10], so that usually the asymptotic regime
of Eq. (25) is in effect. The prefactor C (Y ) is given by Eq. (A4)
and depends on the ratio Y = U1/kBTe. As argued previously,
the choice of model potential parameters that best represents
the actual UCP potential is ω1 = ω0 and U1 = U0 ∼ kBTe,
giving Y ∼ 1. The corresponding prefactor in Eq. (25) lies in
the range C = 20–35 for Y = 0.5–2.0.

From Fig. 4 and Eq. (25), it is clear that the collisionless
rf absorption by an UCP strongly depends on ω1/ω, that is,
on the ratio of the frequency at which the thermal motion
of the UCP electrons takes place to the rf frequency. This
strong dependency was anticipated above from the fact that
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FIG. 4. (Color online) Effective collision frequency νp for rf
absorption due to the finite plasma size, as a function of the ratio
of the frequency characterizing the potential ω1 to the rf frequency ω.
A potential depth equal to kBTe has been assumed. The inset shows
the behavior for ω1/ω < 1 on a logarithmic scale, comparing the
exact result Eq. (A3) (solid curve) to the approximate result Eq. (25)
(dots).

the collision frequency Eq. (17) is proportional to the spectral
content of the trajectory at the rf frequency: when ω1 and ω

do not differ too much, the rf forcing and the electron motion
take place on more or less the same time scale, so that the
electron motion contains an appreciable Fourier component
at the rf frequency, resulting in resonant and efficient energy
transfer. Since all oscillation frequencies given by Eq. (24) are
in fact less than ω1, the average oscillation frequency will be
less than ω1 as well, so that in Fig. 4 the peak in the energy
transfer occurs at a somewhat higher value than ω1/ω = 1,
corresponding to a somewhat slower forcing.

An important feature of Fig. 4 and Eq. (25) is the threshold-
like behavior of νp: for ω1 � ω the absorption is significant,
while for ω1/ω → 0 it decreases exponentially. The inset
shows that this decrease is very rapid, so that collisionless
absorption is completely negligible if ω1 � ω. This condition
can be written as 1 � ω1/ω ∼ ω0/ω ≡

√
2U0/(3mσ 2ω2) ∼

vth/(σω). Physically, this corresponds to the situation in which
a low temperature yields by assumption a shallow potential
with slow electrons, so that almost no electrons traverse the
plasma within one rf oscillation. Combined with the lack of
steep features in the smooth potential, this means that there
is almost no electron motion available at the rf frequency that
is susceptible to resonant absorption. One may thus define a
critical temperature

kBTp = mω2σ 2 (26)

that separates a temperature regime Te � Tp in which col-
lisionless absorption is significant and a regime Te � Tp

where it is negligibly small. Note that this behavior is not
at all described by the hard-wall approximation Eq. (14).
The reason for this is that an electron bouncing between
hard plasma boundaries abruptly changes its velocity at every
wall collision, giving rise to high-frequency components
essentially regardless of the velocity. Therefore Eq. (14)
predicts significant collisionless absorption at any temperature,
but is valid only for steep plasma potentials.

D. Validity for the actual UCP potential

As we just described, the collisionless absorption rate
in the model plasma potential exponentially decreases with
the ratio vth/(σω). Since the physical arguments leading to
Eq. (26) are valid for any general smooth plasma potential,
in actual UCPs also the collisionless absorption rate will
quickly decrease once the electron temperature is below the
critical temperature Tp. However, one may still ask whether
the decay constant of this decrease [i.e., the factor

√
2π in

Eq. (25)] is also representative for actual UCPs, or depends
on the potential shape. Lacking analytical expressions for the
trajectories x(t) in the UCP potential, this cannot be verified
by explicit calculation. Nevertheless, the decay constant can
be calculated by quantifying the asymptotic behavior of the
Fourier coefficients of the trajectories, using the so-called
Darboux principle [64]. This however requires considering
the analytical continuation of x(t) to the complex t plane. The
details are rather technical and are relegated to Appendix A.
The main result is that the quantity |X(ε)|2 in Eq. (21) for
the UCP potential contains an extra factor of approximately
exp (2ω/ω0) as compared to the case of the model potential,
independent of the particle energy ε and for sufficiently large
ω/ω0. Including this extra factor in the result Eq. (25), the
asymptotic rate of decrease of the collision frequency is
approximately equal to(νp

ω

)
UCP

∝ exp

[
−(

√
2π − 2)

ω

ω0

]
. (27)

Although the decay constant
√

2π − 2 is smaller than that of
Eq. (25) and Fig. 4, it is still of the same order of magnitude.
In the UCP case also, therefore, the collisionless absorption is
negligible for ω0 � ω, or equivalently for temperatures below
Tp given by Eq. (26).

V. DISCUSSION AND CONCLUSIONS

In this paper, we considered three mechanisms by which an
rf field influences the temperature of an UCP. First, rf energy
is absorbed through the well-known process of collisional
absorption, in which electrons gain energy during Coulomb
collisions with ions. Second, the rf field modifies the TBR rate
by ionizing electrons from intermediate high-lying Rydberg
states. Third, resonance between the motion of electrons
in the plasma potential and the rf field may give rise to
collisionless energy absorption. For all of these processes,
naive extrapolations from well-known formulas are inadequate
for UCPs or strong rf fields. For example, the electron-ion
collision frequency Eq. (4) is much smaller than the Spitzer
frequency for strong rf fields, suppressing the collisional
absorption rate. As we indicated, this is because the quiver
velocity effectively takes over the role of the thermal velocity,
or equivalently, because the temperature is replaced by the
ponderomotive potential in the collision frequency. Likewise,
the TBR rate in strong rf fields is much smaller than expected
from the commonly used T

−9/2
e scaling, partly because the

conventional TBR bottleneck level characterizing the plasma
is replaced by the energy Uion characterizing the rf field.
Figure 5 schematically shows the various heating regimes in
terms of the rf field amplitude and frequency; the strong-field
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FIG. 5. Heating regimes for rf-driven UCPs in terms of the
applied frequency ω and field strength E0. (a),(b) Collisional
absorption rate according to Spitzer collision frequency and TBR
rate according to T −9/2

e scaling; (c),(d) collisional absorption rate
according to collision frequency Eq. (4) and TBR rate according to
Eq. (11). (a),(d) Collisionless absorption relevant; (b),(c) collisionless
absorption negligible.

effects apply to the area above the slanted line. As discussed
in the previous section, collisionless absorption is relevant
only at sufficiently high temperatures or low frequencies, as is
represented by the area to the left of the vertical line in Fig. 5.

Let us conclude by giving two numerical examples. The rf
experiment of Fletcher et al. [12] was well in the weak-field
regime (a),(b) of Fig. 5 according to the reported experimental
values. Using these values in Eqs. (2)–(8), (16), and (25)
gives absorption rates per electron of Pei/kB = 3 K/μs and
Pp/kB = 0.002 K/μs at the highest reported frequency and
amplitude. Considering the electron temperature of 100 K
and the typical plasma expansion time of microseconds, these
low absorption rates will not influence the plasma temperature
and expansion much. For somewhat larger rf amplitudes,
however, the collisional absorption starts to become significant
on the time scale of the plasma expansion, which may be
related to the high-field effects observed in the experiment.

As an example in the regime (c) of Fig. 5, consider an
applied field with an amplitude of 0.1 MV/m at a frequency
of 28 GHz, which is currently available [65]. We deliberately
choose this relatively high frequency because otherwise the
oscillation amplitude of the plasma electrons would exceed
the plasma size at such a large field strength, which situation is
outside the scope of this paper. Choosing further σ = 1 mm,
Te = 1 K, and n = 108 cm−3, Eqs. (2)–(8), (12), (16), and (25)
give Pei/kB = 4 × 102 K/μs and R/ne = 3 × 10−7 μs−1,
while the collisionless absorption rate is vanishingly small.
Thus collisional absorption is expected to heat the plasma to
the 100 K scale during the expansion time of the plasma,
while the chance that an individual electron recombines is
very small. Now compare these numbers to the corresponding
results obtained from standard expressions. Use of the Spitzer
collision frequency instead of Eq. (4) would give Pei/kB =
4 × 105 K/μs, which would predict immediate heating of
the UCP to conventional eV plasma temperatures. According
to the usual T

−9/2
e scaling [Eq. (11) with Uion replaced by

kBTe], the TBR rate per electron would be R/ne = 50 μs−1.
Assuming an energy release of ∼kBTe per recombination,
this would result in a heating rate per electron on the order
of 102 K/μs due to TBR alone, although of course this rate

would be quickly quenched as the electron temperature
rises. Based on the hard-wall approximation Eq. (14) with
v = vth, the collisionless absorption rate would be Pp/kB =
1 × 103 K/μs rather than exponentially small. From these
numbers it is clear that it is essential to properly take into
account strong-field effects on the one hand, and the smooth
UCP plasma potential on the other hand. For the application
of a very strong microwave field to an UCP, this changes the
predicted effect from destroying the plasma immediately to
only heating it up moderately.

In summary, we have analytically studied well-known
plasma heating mechanisms and specialized them to the system
of an UCP driven by a uniform, and possibly strong, rf
field. Benchmarking our results against molecular dynamics
simulations will yield valuable additional insights, and will
also identify any additional rf effects that are not addressed
in this paper. Among these are, for example, plasma cloud
deformations expected when the electron oscillation amplitude
becomes comparable to the plasma size, relativistic effects,
plasma waves, and other instabilities. Experiments in which rf
fields are used to probe plasma resonances rely on adequate
modeling of the UCP expansion dynamics, which will benefit
from detailed knowledge of rf heating mechanisms such
as those discussed in this paper. Furthermore, in virtue of
comparable coupling parameters, rf-driven UCPs may be seen
as millimeter-sized scale models of laser-driven solid-state-
density plasmas. Understanding the ways in which ultracold
plasmas interact with rf fields is therefore also relevant for
such high-density systems.
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APPENDIX A: EFFECTIVE COLLISION FREQUENCY

The Fourier series of the trajectory (23) equals [63]

x(ε,t) = 2a
�

ω1

∞∑
n=0

sin [(2n + 1) �t]

sinh
[
(2n + 1)

π K(1−u/v2)
2 K(u/v2)

] . (A1)

Substituting Eq. (20) in Eq. (18), and comparing with (A1), it
follows that∣∣∣∣X(ε)

�(ε)

∣∣∣∣ = a

ω1
csch

[
ω

ω1

√
2

v
K(1 − u/v2)

]
. (A2)

Using this quantity in Eq. (21), and changing the integration
variable to u = ε/U1, results in

νpot

ω
= π2

√
2

(
ω

ω1

)3

× Y

∫ 1
0 csch2

[
ω
ω1

√
2
v

K(1 − u/v2)
]

exp (−Yu) du∫ 1
0 v−1/2 K(u/v2) exp (−Yu) du

,

(A3)

where Y = U1/kBTe. The integrations are over energies
smaller than the potential depth, corresponding to bound
electrons, since transitions to the continuum do not give rise
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to energy increase of the ensemble that is left behind. When
ω1/ω � 1, to a good approximation csch Z ≈ 2 exp (−Z) in
the numerator of Eq. (A3). Furthermore, the argument Z of the
csch function is smallest at u = 1, so that the region around
the upper integration limit will give the dominant contribution
to the integral in Eq. (A3), and Z may be approximated
by its Taylor series around u = 1. This gives csch Z ≈
2 exp[−(π/

√
2)(ω/ω1) (1 + 3δ/16)], where δ = 1 − u. Simi-

larly, in the integral in the denominator of Eq. (A3), the elliptic
function diverges at u = 1, so that again the region around the
upper integration limit will give the dominant contribution, and
the elliptic function may be approximated by its asymptotic
value [59]. This gives v−1/2 K(u/v2) ≈ − ln (δ/64) /4. With
these approximations, the integrals in Eq. (A3) can be solved
analytically, yielding Eq. (25), with

C (Y ) = 256π

3

Y 2

Ein Y + 6 ln 2 (exp Y − 1)
. (A4)

Here, Ein denotes the modified exponential integral [59,66].

APPENDIX B: TBR RATE FOR ARBITRARY RATIO Up/Uion

The energy distribution function of the free electrons in
the presence of a rf field may be approximated by the shifted
Boltzmann distribution

f (U ) = 2
√

U − Up√
π (kBTe)3/2

exp

(
−U − Up

kBTe

)
(U − Up),

where  denotes the Heaviside step function and the shift Up

accounts for the quiver energy of the electrons. Substituting in
Eq. (9) this distribution function, the cross section Si(U ) given
in Ref. [40], and the rms velocity v = √

2U/m corresponding
to energy U , and changing the integration variable to the
thermal energy Uth = U − Up, gives

Ri = nineme4

2ε2
0 (2πmkBTe)3/2

∫ ∞

|Ui |

(
1

|Ui | + Up

− 1

Uth + Up

)

×
√

Uth

Uth + Up

exp

(
− Uth

kBTe

)
dUth. (B1)

For field strengths greater than 1 kV/m and typical UCP
temperatures, |Ui | > Uion � kBTe, so that the exponent in
Eq. (B1) falls off rapidly compared to the rate of variation of the
preexponential factor; furthermore the integrand is significant
only close to the lower integration limit. The preexponential
factor may therefore be approximated by the first term
of its Taylor expansion around Uth = |Ui |. Performing the
integration with this approximation, substituting for ni the
equilibrium value from the Saha equation [39], and summing
as before the result over all energy levels below −Uion by
means of the rule R = ∑

Ri ≈ ∫
RiD(Ui)dUi with D(Ui)

the density of states gives the total TBR rate

R ≈ π2

7g

√
2

m

(
e2

4πε0

)5
n3

e

U
7/2
ion kBTe

G

(
Up

Uion

)
; (B2)

G(x) ≡ 7

2x3

(
15 + 20x + 3x2

3(x + 1)3/2
− 5 arcsinh

√
x√

x

)
. (B3)

The relative error in the approximation for the function G(x)
given in Eq. (13) is less than 6% for any value of x.

APPENDIX C: DECAY RATE OF ν p FOR AN UCP

We use the following theorem [64]: The coefficients of the
Fourier series

∑
an sin (n�t) of a 2π/�-periodic function

y(t), which is infinitely many times differentiable, decay
asymptotically as an ∝ exp (−�τn). The constant τ equals
min | Im tj |, where tj denote the singularities of the function
y(t) in the complex t plane.

Writing ω = (ω/�)� in Eq. (18) shows that X is essen-
tially the (ω/�)th Fourier coefficient of the function x(ε,t),
so that according to the theorem the integrand in the collision
frequency Eq. (21) is proportional to

|X|2 ∝ exp (−2ωτ ) , τ = min | Im tj | (C1)

for large ω. This expression is easily checked for the model
potential: the elliptic function in the trajectories Eq. (23)
has singularities along the lines Im t = ±ω−1

1

√
2/v K(1 −

u/v2) ≡ ±τ in the complex t plane [63]. Substitution in
Eq. (C1) yields the behavior of |X|2 for large ω, which
coincides precisely with what is found in Appendix A, Eq.
(A2), by explicit calculation.

Applying Eq. (C1) to the actual UCP potential requires
explicit expressions for the trajectories x(ε,t); however, these
are not known. Instead, the inverse function t(ε,x) may be
obtained by integration of the equation of motion md2x/dt2 =
−dU (x)/dx, yielding

t(ε,x) =
√

m

2

∫ x

0

dz√
ε − U (z)

. (C2)

Here, the initial conditions x = 0 and dx/dt = √
2ε/m at

t = 0 have been assumed, and U (z) denotes the UCP potential
Eq. (15) with r = z. Equation (C1) requires knowledge of
the singularities tj of the functions x(ε,t), which may be
categorized as either poles, logarithmic branch points, or
algebraic branch points. [More pathological singularities such
as exp (1/z) at z = 0 are not considered here.] An algebraic
branch point in x(ε,t) corresponds to a critical point in the
inverse function t(ε,x), at which dt/dx = 0. Differentiating
Eq. (C2) with respect to x, it follows that U (z) must diverge at
such a point if the derivative dt/dx is to vanish. But the UCP
potential Eq. (15) is an entire function, so that this does not

C1 C2

4 3 2 1 0 1 2 3 4

0

1

2

3

4

Re z

Im
z

FIG. 6. (Color online) Branch cuts (black solid lines) of the
integrand of Eq. (C2) in the complex z plane, using u = 1. In
the shaded sectors |arg z| < π/4 and |π − arg z| < π/4, the error
function behaves as erf (z/σ ) → 1 as |z/σ | → ∞. Two possible
contours from the origin to infinity are shown.
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FIG. 7. Decay constant τ in Eq. (25) as a function of particle
energy. Solid line, analytical result for the model potential Eq. (15)
assuming ω1 = ω0 and U1 = U0; dots, numerical result for the UCP
potential (22).

occur for any finite complex z; hence x(ε,t) does not have any
algebraic branch points.

Considering next poles and logarithmic branch points in
x(ε,t), at such points the position diverges while the complex
time has some finite value. In terms of the inverse function
Eq. (C2) then, there exist contours Cj in the complex x plane
from the origin to infinity such that t(ε,x) → tj with |tj | < ∞
as x → ∞ along Cj . In view of Eq. (C1) we are interested in
the contour that yields the time tj with the smallest imaginary
part. A complication in finding this contour is the presence of
the square root in Eq. (C2), because of which the integrand
has branch cuts in the complex z plane. Adopting the standard

choice of letting the branch cuts coincide with the points at
which the argument of the root is real and negative, these
cuts start at the zeros of the function ε − U (z) and extend to
±i∞ without crossing. Figure 6 shows the resulting branch
cut structure for the case ε = U0/2; the integrand in the lower
half plane is the complex conjugate of that in the upper half
plane. Also drawn are two possible contours from the origin to
infinity. Now, the potential U (z) in Eq. (C2) contains the error
function erf (z/σ ), which has the property [59] that its value
is close to unity for |z/σ | � 1 in the shaded sectors in Fig. 6,
while its amplitude grows superexponentially as z → ∞ in
the nonshaded sectors. Therefore the integrand in Eq. (C2)
will be essentially constant along parts of contours that cross
the shaded sector, such as C2, so that a large contribution to
the integral is accumulated along these parts. Hence we may
expect that the contour yielding the smallest possible value
of tj is the contour that avoids the shaded sectors altogether,
that is, the contour C1 along the imaginary axis. With this
conjecture, we calculate τ in Eq. (C1) by integrating Eq. (C2)
along C1 for several values of the particle energy ε. The result
is shown in Fig. 7, together with the analogous result for the
model potential. As is clear from the figure, for any particle
energy τ for the UCP potential is approximately one unit ω−1

0
less than that for the model potential. Hence, asymptotically for
large ω, the quantity |X|2 in Eq. (21) will contain an extra factor
exp (2ω/ω0) as compared to the case of the model potential,
independent of ε. The resulting rate of decrease of the collision
frequency is given in Eq. (27).
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