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Compared to purely atomic collisions, ultracold collisions involving molecules have the potential to support a
much larger number of Fano-Feshbach resonances due to the huge amount of ro-vibrational states available. In
order to handle such ultracold atom-molecule collisions, we formulate a theory that incorporates the ro-vibrational
Fano-Feshbach resonances in a statistical manner while treating the physics of the long-range scattering, which
is sensitive to such things as hyperfine states, collision energy, and any applied electromagnetic fields, exactly
within multichannel quantum defect theory. Uniting these two techniques, we can assess the influence of highly
resonant scattering in the threshold regime, and in particular its dependence on the hyperfine state selected for
the collision. This allows us to explore the onset of Ericson fluctuations in the regime of overlapping resonances,
which are well known in nuclear physics but completely unexplored in the ultracold domain.

DOI: 10.1103/PhysRevA.85.062712 PACS number(s): 34.50.Cx

I. INTRODUCTION

Resonances have always played a key role in scattering
experiments across many areas of physics, serving to nail down
our understanding of the interaction between the collision
partners. They play an additional role in dilute, ultracold
atomic and molecular gases, where resonance positions can
be moved relative to the (essentially zero) collision energy by
means of applied electromagnetic fields. This circumstance
allows one to control collision cross sections, as well as mean-
field interactions in quantum degenerate gases. Dozens of
magnetic-field Fano-Feshbach resonances have been identified
and characterized in ultracold collisions of various alkali-metal
atoms [1]; many are now working tools for research in
many-body quantum physics. In the case of cold collisions of
alkali-metal atoms, the resonant states differ from the incident
scattering states by the change of an internal spin. For this
reason, the number of resonant states remains typically small
and the resonances themselves usually remain well separated
and tractable.

This situation can be different, however, for collisions
involving cold molecules, where rotational and vibrational
excitations can also contribute to resonant states. Many such
resonances have been predicted in theoretical treatments of
cold molecular scattering [2–12]. While the number of reso-
nances naturally grows in this case, nevertheless the individual
resonances are typically well resolved and manageable in num-
ber. This is particularly evident in cold collisions of molecules
with helium atoms, relevant to buffer gas cooling, where light
masses and shallow potential energy surfaces conspire to keep
the density of resonant states low [13,14]. Resonances appear
to be resolved even in collisions involving light objects other
than helium such as O2 [2], Rb + OH [15], N + NH [16], or
Mg + NH [17]. In relatively “clean” systems like these, there
remains hope of explicitly identifying the quantum numbers
of resonances, and using them to back out accurate potential
energy surfaces (PES). Indeed, energy resolution afforded at
ultralow temperatures may allow for the elucidation of van der
Waals [18,19] or transition state [20,21] resonances, important
for unraveling chemical reactions when a barrier is present.

There remains, however, a class of heavier molecules that
have been or will be produced at ultracold temperatures.

Notable among these, and the subject of this paper, are
diatomic species consisting of pairs of alkali-metal atoms.
When such a molecule collides with another alkali-metal atom,
the PES is sufficiently deep that tens of vibrational levels, and
hundreds of rotational levels, may be energetically accessible.
In this case the density of resonant states (DOS) may be so high
that individual resonances may not even be resolved, let alone
identified. In such a case, it would be worthwhile to understand
the effect of all these resonances on observed collision cross
sections.

Theories relating to high-DOS scattering have long ago
been formulated, notably in chemistry and in nuclear physics.
On the one hand, the theory of unimolecular dissociation
regards the problem in the time domain. If a polyatomic
molecule is given enough energy to break a particular bond,
say by absorbing an appropriate photon, it does not necessarily
immediately dissociate. Rather, it can lose energy in many
irrelevant degrees of freedom until, by accident, sufficient
energy lands in the desired bond to break it. The theory of
this process, known as the Rice-Ramsperger-Kassel-Marcus
(RRKM) theory [22], expresses the mean rate of dissociation
as

kRRKM = 1

2π

Na

h̄ρ
. (1)

Here, ρ represents the (very large) density of resonant states,
while Na represents the (small) number of quantum states
available at the transition state which lead to dissociation.

On the other hand, scattering experiments in nuclear theory
have inspired statistical ideas of highly resonant scattering
more in the energy domain. Again, a high density of states
is expected because of the many strongly interacting nucleon
degrees of freedom inside a compound nucleus. In this case it
is typical to treat the energies of the resonances (especially
if they are individually distinguished) as random numbers
with a characteristic mean level spacing d = 1/ρ. Whereas
noninteracting energy levels are distributed so that their level
spacings obey a Poisson distribution, instead these strongly
interacting levels obey a distribution derived by Dyson and
Wigner. This distribution is regarded as characteristic of
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spectra for systems whose classical analogues are chaotic
[23–25].

In this energy-domain picture, the resonance widths are
related, sometimes in a subtle way, to the Hamiltonian matrix
elements Wμa that couple a bound resonant state μ of the
collision complex to a scattering state a [26–28]. In the random
matrix theory of nuclear scattering, these matrix elements
are themselves random numbers, distributed about a mean
resonance width �̄. The theory identifies two distinct regimes
of resonant scattering. In the first, �̄/d � 1, meaning that the
resonances are resolvable (though still distributed randomly).
In the other limit, �̄/d � 1, the resonances overlap. Rather
than washing out completely, however, the resulting spectrum
exhibits “Ericson fluctuations” on a scale set by �̄ itself
[29,30]. Both regimes are observed in nuclear physics, with
Ericson fluctuations typically appearing at higher energies
[31].

In this article we apply the methods of random matrix theory
to cold collisions within the Wigner threshold regime. The ob-
ject of our study will be atom-diatom collisions, which possess
far fewer degrees of freedom than the polyatomic molecules or
complex nuclei described above. Nevertheless, it has been well
established that the same ideas apply to nominally “simpler”
systems, even to the level of a single electron in a diamagnetic
Rydberg state [32,33] or to conductance fluctuations in a
semiconductor device [23], in the quantum chaos regime.

To apply the statistical model to cold collisions, we must
balance the highly resonant, strongly coupled, 103K energy
physics of the complex against the delicate sub-mK energy
scales of the ultracold. To do this, we exploit ideas of
multichannel quantum defect theory (MQDT) [34,35]. This
theory makes a clean distinction between the physics of the
complex, which is pertinent when the colliding species are
close together; and the physics of the long-range scattering,
which is sensitive to such things as the hyperfine states of the
atom and molecule, the low collision energy, and any applied
electromagnetic fields. Uniting these two disparate sets of
phenomena, we can assess the influence of highly resonant
scattering in the threshold regime, and in particular its depen-
dence on the hyperfine state selected for the collision. Although
the multichannel scattering cross sections are derived from a
fairly realistic framework, we find nevertheless that the simple
RRKM rate Eq. (1) is a useful tool for interpreting the results,
even at ultracold temperature.

The present work is outlined as follows. In Sec. II we detail
our theoretical framework, which is divided into two aspects.
Section II A introduces the general scattering framework and
the treatment of the long-range interactions via MQDT. In
Sec. II B we then present our approach of treating the highly
resonant short-range part by means of a statistical framework
derived from random matrix theory. The essential input
parameter for the statistical theory is the density of states for the
short-range resonances; in Sec. II C we provide estimates for
all nonreactive A + AB alkali-metal dimer pairs. The question
of including the density of states due to the nuclear spin
degrees of freedom is addressed in Sec. II D. In Sec. III A
we present exemplary elastic cross sections within the Wigner
threshold law regime that are derived from our theoretical
framework. Two particular examples are chosen: K + LiK,
where resonances remain well separated, and Rb + KRb,

where the DOS is high. In addition, magnetic-field-dependent
thermal rates are provided. Section III B finally shows that
ultracold atom-molecule collisions demonstrate the onset of
Ericson fluctuations on a completely different energy scale
than in nuclear physics. In Sec. IV we comment on what
might be learned from experimental data by comparing to
the predictions and assumptions of our model. With Sec. V we
provide a brief conclusion and an outlook on further directions
for our theory of highly resonant scattering.

II. THEORETICAL FRAMEWORK

We deal here with the three-body physics of ultracold
alkali-metal atoms, a calculation that could, in principle, be
performed in substantial detail [36,37]. It is, however, an
immense labor, and the results, while qualitatively meaningful,
are unlikely to be quantitatively accurate. Even in cases where
the calculations can be converged, the relevant potential energy
surfaces are not known to sufficiently high accuracy for
ultracold collisions. Nevertheless, the scattering framework is
standard. In this section we develop this framework, including
our approximate, statistical version of the resonant states.

A. Scattering framework

We begin with a diatomic molecule AB (where A and B
denote alkali-metal atoms) in its 1� electronic ground state, its
v = 0 vibrational ground state, and its n = 0 rotational ground
state, according to the Hund’s case (b) coupling scheme.
Examples of such molecules have been produced in gases of
order μK temperatures [38–41]. The molecules may or may
not be also prepared in their ground state of nuclear spin I [42].
These molecules will collide with another alkali-metal atom
C (typically one of A or B) in its 2S ground state, and with its
own accessible hyperfine degrees of freedom.

For the time being, we consider cases where chemical
reactions are not energetically allowed at ultralow temperature.
Therefore, the only collisions we consider are those that can
change the nuclear spin quantum numbers. Generally, we are
interested in the regime where the atom’s spin state can be
labeled by |f,mf 〉, even in the presence of a magnetic field. For
the molecule, we assume a magnetic field sufficiently large that
the nuclear spins IA and IB are decoupled and the states can be
characterized by their individual projections on the magnetic
field axis, |IAMA,IBMB〉. The observables then consist of the
collision rate constants,

KMA,MB,f mf →M ′
A,M ′

B,f ′m′
f

= 〈
vσMA,MB,f mf →M ′

A,M ′
B,f ′m′

f

〉
, (2)

where v is the relative velocity before the collision and σ is the
collision cross section. We omit the nuclear spins IA and IB in
Eq. (2) since they are not subject to change in the collisions we
are considering. Assuming a decomposition into partial waves
|LML〉 for the relative motion, the cross section is given by

σMA,MB,f mf →M ′
A,M ′

B,f ′m′
f

= π

k2

∑
LMLL′M ′

L

∣∣1 − SM ′
AM ′

Bf ′m′
f L′M ′

L;MAMBf mf LML

∣∣2
, (3)

in terms of the scattering matrix elements Sa′a . The S

matrix describes the possible rearrangement of angular mo-
mentum during the collision but must conserve the total
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FIG. 1. (Color online) Schematics of our MQDT approach (not
to scale). In the long-range part, R > Rm, we only consider the ro-
vibrational ground state of the molecule, but include all Na atomic and
molecular hyperfine states and different partial waves (not shown).
In the asymptotic region, R → ∞, No of them are energetically open
and Nc are closed. The MQDT treatment transforms the short-range
K matrix K sr, defined at Rm, into a physical scattering matrix Sphys

from which quantities such as elastic and inelastic cross sections
can be deduced. K sr includes the information on the ro-vibrational
resonances which occur in the short-range part, R < Rm.

projection, M = M ′
A + M ′

B + m′
f + M ′

L + m′
n =MA + MB +

mf + ML + mn, with the quantization axis applied along the
magnetic field direction, if any. In the above equality we
included the projection mn of the rotational quantum number
n of the molecule, which is needed when considering possible
resonant states. For the incident and outgoing channels,
however, we will always assume the ro-vibrational ground
state (i.e., v = n = mn = 0). For notational convenience we
hereafter denote these scattering channel indices as

|a〉 = |v = n = 0,MAMBf mf LML〉. (4)

Calculation of a schematic but realistic Sa′a , including its
energy- and magnetic-field-dependent resonance structure, is
the goal of this article.

To achieve this goal, we exploit the conceptual difference
between the spin channels |a〉 that describe physics at large
interparticle separation R; and the numerous resonant states
|μ〉 that differ by rotational and vibrational quantum numbers
from a, and that describe states of the scattering complex.
This general separation of states is illustrated schematically in
Fig. 1. For separations R greater than some characteristic dis-
tance Rm, the channels a are assumed to be independent of one
another and described by simplified long-range interactions of
the form

Va(R) = −C6

R6
+ h̄2La(La + 1)

2mrR2
+ Ea(B), (5)

where Ea(B) is the threshold of the ath channel, which may
depend on a magnetic field B. Here, mr is the reduced mass of
the scattering partners and C6 is their van der Waals coefficient,
which is taken to be isotropic in this model.

Dividing the scattering process into short- and long-range
parts forms the basis of quantum defect theory (QDT). Here,
we utilize a multichannel formulation of QDT along the lines
of Ref. [35]. The key feature of MQDT is that—once the

MQDT parameters have been determined for a given class of
potentials—one only needs to provide the reactance matrix
Ksr = i(1 − Ssr)(1 + Ssr)−1 which is defined at the matching
radius Rm between the short and the long range. The MQDT
formalism as outlined in this section then takes care of the
propagation for R > Rm and directly yields the physical
scattering matrix Sphys, which defines the solution vectors
ψ (a) of the coupled channel equations for the whole scattering
process,

ψ
(a)
a′ (R)

R→∞= δa′af
−
a (R) − S

phys
a′a f +

a′ (R). (6)

f ±
a =

√
2mr/πh̄2kae

±i(kaR−Laπ/2) are outgoing (+) and in-
coming (−) spherical waves, respectively. Once determined,
Sphys can easily be converted into various observables describ-
ing the scattering process.

We apply this formalism explicitly only to the small number
Na of hyperfine channels belonging to the ro-vibrational
ground state of the molecule and the ground electronic state
of the atom. Of these, some number No will be energetically
open, meaning that for these channels E > Ea and the collision
partners can escape to infinity. The remaining Nc = Na − No

closed channels do not contribute directly to the physical
scattering matrix, and must be “eliminated” by the usual
algebraic procedures of MQDT.

To do so, the short-range K matrix Ksr is partitioned into
its open and closed channels at Rm,

Ksr =
(

Ksr
oo Ksr

oc

Ksr
co Ksr

cc

)
. (7)

The closed channels are eliminated in the MQDT sense
through

K̃ = Ksr
oo − Ksr

oc

(
Ksr

cc + tan β
)−1

Ksr
co, (8)

where β is a closed-channel MQDT parameter [35]. The
modified reactance matrix K̃ has dimension No × No and
shows the potential influence of closed channel pathways.
The transformation to an energy-normalized, nonanalytic
long-range representation is achieved by

K = A
1
2 K̃(1 + GK̃)−1A

1
2 . (9)

The physical scattering matrix is finally formed by

Sphys = eiη(1 + iK)(1 − iK)−1eiη. (10)

A, G, η, and β are diagonal matrices in the asymptotic
channel space, consisting of the relevant MQDT parameters.
The latter are determined as in Refs. [35,43]. In the present
form of MQDT we encounter two sets of long-range ref-
erence functions: (f 0,g0) are smooth, analytic functions of
energy; whereas, (f,g) are energy-normalized but nonanalytic
functions of energy. (f,g) are solutions of the Schrödinger
equation in the presence of a long-range potential V lr(R)
and are related to the energy-normalized spherical Bessel and
Neumann functions via

f (R)
R→∞−−−→ kR

√
2mr/πk [jl(kR) cos η − nl(kR) sin η],

g(R)
R→∞−−−→ kR

√
2mr/πk [jl(kR) sin η + nl(kR) cos η].

(11)
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Equation (11) defines the MQDT parameter η. The parameter
β is a negative energy phase that represents the phase
accumulated in V lr(R). The energy-normalized base pair (f,g)
is related to the energy-analytic base pair (f 0,g0) through the
transformation(

f 0

g0

)
=

(
A− 1

2 0
−A− 1

2 G A
1
2

)(
f

g

)
, (12)

which defines the MQDT parameters A and G.
MQDT has been a hugely successful tool for organizing

apparently complex spectra of atoms [44] and in simply
describing resonant scattering, both at thermal energies [45,46]
and in ultracold atom collisions [35,47–49]. Much of its
appeal in these circumstances lies in the fact that a matching
radius Rm can be chosen so the channels that will be closed
as R → ∞ remain classically open at R = Rm. If this is
so, the short-range K matrix becomes a weakly energy-
dependent quantity, and complex spectra can be unified by the
simple algebraic procedures described above. For molecular
scattering, it remains to be seen whether this same simplicity
occurs, since for any Rm there may be many channels that are
already classically closed, and hence, impart resonant structure
to Ksr. Indeed, there is already some hint in applications of
MQDT to cold molecule collisions that Rm must be chosen
carefully to maximize the simplicity of Ksr [12].

In the present case of highly resonant scattering, we in fact
approach quite the opposite limit, where for any reasonable Rm

most of the resonant ro-vibrational channels are already closed.
Thus, our Ksr will necessarily be highly energy dependent,
exhibiting already the resonances of interest. Although it is
difficult to compute, it remains nevertheless a well-defined
quantity in the theory. For our present purposes, we employ
MQDT as a quick, algebraic solution to producing scattering
matrices Sphys for a given Ksr. Arriving at a physically
reasonable Ksr is the task we turn to next.

B. Statistical short-range K matrix

In treating the long-range collision physics by means of
MQDT, the only quantity left to be determined is the short-
range K matrix. It is indexed by the Na asymptotic channels
a, but is influenced by the myriad (i.e., N � Na) of resonant
states μ. Quite generally, it can be expressed as [31]

Ksr
a,b(E) = −π

N∑
μ=1

WaμWμb

E − Eμ

. (13)

Equation (13) is expressed in the eigenspace of a short-range
Hamiltonian H sr that gives rise to the (unperturbed) short-
range levels at Eμ. Waμ = Wμa are (assumed-to-be energy
independent) coupling matrix elements between resonance μ

and asymptotic channel a. The mean coupling strength of the
ath asymptotic channel to the short-range resonances is given
by the dimensionless parameter

R(0)
a = π

2
ρ�̄a, (14)

where �̄a = (2π/N )
∑N

μ=1 |Wμa|2 is the zero-order average
partial width to the decay channel a [28] and ρ is the DOS of
the resonances, evaluated at the incident energy.

The input parameters for the resonant scattering theory,
Eq. (13), are the zero-order positions Eμ of the resonances
and the coupling elements Waμ to the asymptotic channels.
However, both are usually unknown unless the short-range
part is known with high precision. To provide Eq. (13) with
reasonable input parameters, we utilize a statistical model
where Eμ and Waμ are taken as random variables. This model
follows closely the random matrix theory approach in nuclear
reaction physics [31] and can be also found in theoretical
works on quantum transport [23], as well as in the theory
of chemical reactions [28]. By employing such a model, we
assume that the collision complex corresponds classically to
a long, chaotic trajectory that ergodically explores a large
portion of the allowed phase space.

Acknowledging the statistical nature of the short-range
resonance levels, we apply random matrix theory to Ksr based
on the Gaussian orthogonal ensemble (GOE) according to [31].
In particular, we assume that the spectrum Eμ of the resonant
states is determined by a Hamiltonian H GOE that is a member
of the GOE. As such, the nearest-neighbor distribution of the
spectrum satisfies the Wigner-Dyson distribution,

P (sμ) ≡ P (s) = π

2
se−πs2/4, (15)

where sμ = |Eμ+1 − Eμ|/d is the nearest-neighbor level
spacing in units of the mean level spacing [24]. In practice,
we produce the spectrum Eμ for a given DOS ρ = 1/d by
constructing first a set {sμ} of nearest-neighbor splittings
satisfying Eq. (15) [50]; the spectrum is then given by
Eμ = E0 + ∑μ−1

i=1 sμ, where E0 is an appropriately chosen
offset. An exemplary GOE spectrum for Rb + KRb scattering
is reproduced in Fig. 2 along with its nearest-neighbor
distribution.

Since Ksr is expressed in the frame where H GOE is diagonal,
the coupling matrix W becomes a random process itself
[31]. More precisely, its elements are given by uncorrelated,
Gaussian-distributed random variables with mean 0 and
variance ν2

a . Hence, �̄a = 2πν2
a are the mean zero-order partial

widths. From Eq. (14) we find

ν2
a = R(0)

a

ρπ2
. (16)

Thus, in order to describe the short-range physics within the
statistical model, it is sufficient to specify the DOS ρ of the
short-range resonances and the mean coupling strength R(0)

a to
the asymptotic channels. In the present work, we will usually
assume R(0)

a = 1 for which the transmission coefficient Ta

between the short- and long-range channels [28,29,31],

Ta = 4R(0)
a[

1 + R
(0)
a

]2 , (17)

reaches unity. In other words, outbound flux that has left the
collision complex and reaches Rm is assumed to continue out
with unit probability. Some of this flux will later be reflected
back to small R due to details of the hyperfine channels |a〉.
This effect, however, is fully accounted for in MQDT.

Having a unit transmission probability corresponds to
the RRKM limit of transition state theory, reached for
barrierless reactions. In transition state theory, the decay rate
of a metastable state (here, the short-range resonances) is
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FIG. 2. (Color online) Schematic overview (not to scale) of the
origin of the short-range resonances and their distribution. (Bottom)
The atom-molecule potential is modeled by a Lennard-Jones po-
tential, Eq. (19). The resonant channels stem from ro-vibrationally
excited states of the molecule. For ultracold temperatures, the
incident and outgoing scattering channels are restricted to the ground
ro-vibrational state of the molecule. Within this ground state, the
various spin states are treated explicitly by means of MQDT. (Top)
Exemplary short-range spectrum for s-wave collisions of Rb + KRb;
it is constructed to satisfy the Wigner-Dyson distribution for the
nearest neighbors [cf. Eq. (15)].

proportional to the ratio between the number Na of open
channels (here, the asymptotic channels) and the level density
ρ of the metastable states [22]. Indeed, one recovers for the
decay rate k,

k =
∑Na

a=1 Ta

2πh̄ρ
= Na

2πh̄ρ
= kRRKM, (18)

when Ta = 1 [28]. In general, however, R(0)
a can act as a fitting

parameter to real spectra, revealing further details on the short-
range physics.

C. Ro-vibrational density of states

Having the statistical model for the short-range K matrix
in hand, Eq. (13), the question of computing the mean density
of states itself remains. Since in general we do not know the
short-range potential in detail, it is impossible to calculate
the real atom-diatom ro-vibrational spectrum, which would
give rise to the short-range resonances in question. We thus
pursue the following strategy to get an adequate estimate of
the short-range ro-vibrational density of states ρrv (see also
Fig. 2):

(1) The short-range interaction is approximated by a
Lennard-Jones potential along the reaction coordinate R plus
the centrifugal energy due to the end-over-end rotation angular

momentum L of the atom and the molecule about one another,

V (L)
sr (R) = C12

R12
− C6

R6
+ L(L + 1)

2mrR2
. (19)

A fairly realistic estimation of the long-range behavior of
this potential is to assume C6,B+AB = C6,AB + C6,B2 [51]; a
convenient compilation of the C6 coefficients of all alkali-
metal dimers can be found in [52], and we use these here. The
C12 coefficient in Eq. (19) refers to the short-range behavior of
the potential. It can be expressed in terms of the overall depth
De of the potential and the C6 coefficient via C12 = C2

6/4De;
in the present work, we employ the realistic depths De as
calculated in [53]. De refers to the dissociation energy of the
ground-state trimer AB2 into AB + B.

(2) For every partial wave L of interest, we calculate the
bound state energies E(L)

α of V (L)
sr (R). α labels the vibrational

quantum number in R, and each of these states represents a
possible short-range resonance.

(3) Each asymptotic ro-vibrational channel (v,n) can give
rise to such short-range resonance states. With each of
these channels we associate a set of resonance energies
E(L,v,n)

α that is offset by the corresponding channel threshold
(i.e., E(L,v,n)

α = E(L)
α + Ev,n). The total angular momentum

J = L + n is assumed to be conserved in the usual quantum
mechanical way, hence the triangular conditions hold for the
possible combinations of L and n. In particular, for J = 0
(s-wave collisions), only L = n is possible.

(4) All allowed energies E(L,v,n)
α form a total spectrum.

From this spectrum we can extract the mean level spacing
d and the level density ρrv = 1/d associated with the ro-
vibrational resonant states. In doing so, we restrict ourselves to
a certain energy interval centered around the incoming channel
threshold.

(5) The analysis so far does not account for any degeneracy
of the energy levels. We consider the case where only the total
magnetic quantum number M is conserved. Since M = MA +
MB + mf + ML + mn, there are numerous possibilities to
couple to a given total M . These degeneracies are accounted
for when calculating the final DOS.

Specific examples of DOS calculated in this way are
presented in Tables I and II. The former shows the dependence
of the resulting DOS on the maximal ro-vibrational quantum
numbers vmax,nmax used in the estimate; the Rb + KRb
collision is chosen as a particular example. The DOS increases

TABLE I. Ro-vibrational DOS ρrv(mK−1) for 87Rb + 40K87Rb
collisions as a function of the maximal allowed vibrational (rows) and
rotational (columns) quantum numbers. The total angular momentum
J = L + n is assumed to be conserved; the values reported here are
for J = 0, ML + mn = 0. Including more than 25 vibrational and
100 rotational levels does not increase the DOS further.

vmax/nmax 10 20 40 60 80 100

0 0.12 0.23 0.38 0.53 0.66 0.79
2 0.14 0.29 0.57 0.93 1.28 1.61
10 0.17 0.40 0.93 1.65 2.53 3.46
20 0.18 0.46 1.20 2.22 3.46 4.81
25 0.20 0.49 1.29 2.34 3.59 4.94
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TABLE II. Properties characterizing the atom-molecule potential,
Eq. (19), and the resulting ro-vibrational DOS for various atom-
molecule pairs. The DOS are calculated for L = 0. We picked the
isotopes 6Li, 23Na, 40K, 87Rb, and 133Cs. The X 1�+ molecular PES
needed for the calculation of the ro-vibrational states of the AB
molecule are taken from the references provided in the last column.

De C6 ρrv EvdW ρrv

(cm−1) (a.u.) (mK−1) (mK) (units of E−1
vdW) Refs.

Na + LiNa 2872 3015 0.19 0.569 0.11 [54]
K + LiK 2124 6190 0.33 0.184 0.06 [55]
Rb + LiRb 2036 7159 0.76 0.056 0.04 [56]
Cs + LiCs 2502 9785 1.41 0.026 0.04 [57]
K + NaK 1851 6297 1.22 0.150 0.18 [58]
Rb + NaRb 1752 7273 2.73 0.050 0.14 [59]
Cs + NaCs 2186 9910 4.96 0.024 0.12 [60]
Rb + KRb 1684 8798 4.95 0.041 0.20 [61]
Cs + KCs 1821 11752 7.68 0.020 0.16 [62]
Cs + RbCs 1825 12135 12.11 0.017 0.21 [63]

with the number of allowed ro-vibrational levels vmax,nmax and
saturates if a large number of ro-vibrational levels is included.
This saturation is because of the finite sampling interval for
the calculation of the mean DOS: The bound states belonging
to highly excited ro-vibrational molecular levels simply lie
outside the sampling region. We remark that the final densities
of states are rather insensitive to the particular sampling
interval chosen; in the present work, we use an interval of ±5 K
centered at the ro-vibrational ground state. In addition, as can
be seen in Table I, the dependence of ρrv on vmax,nmax is rather
weak. Thus, for example, if atoms in the collision complex can
for some reason only access states up to nmax = 60 rather than
nmax = 100, this would only change our estimate by a factor of
two. In general, we expect something like one ro-vibrational
resonance per mK for s-wave scattering of Rb + KRb. This
estimate assumes that the molecular states of AB are all in
their singlet electronic manifold. We estimate that including
the (much shallower) triplet states would increase the DOS
by ∼ 10%. Therefore, we do not consider these states in the
present work.

We provide similar estimates of ro-vibrational DOS for
various collision partners in Table II, assuming that all
energetically allowed v and n states contribute. We also
include in this table the basic molecular data from which the
DOS estimates were obtained. As one might expect, ρrv is
larger for heavier collision systems. In particular, the DOS
for Cs + RbCs collisions is two orders of magnitude higher
than for the light Na + LiNa collision complex. A useful
way to express ρrv is in units of states per van der Waals
energy EvdW = h̄3(2mr )−3/2C

−1/2
6 ; see also Table II. In this

representation, the larger van der Waals energy scale of lighter
molecules compensates for their smaller number of bound
states. In the end, all considered DOS are roughly the same,
namely, ρrv(E−1

vdW) ≈ 0.1 within a factor of 3.
The DOS provided in Tables I and II are specific examples

for J = 0, for which L = n needs to be satisfied in order to
conserve the total angular momentum J = L + n. For J �= 0,
there are 2J + 1 possibilities for L and n to couple (L = n,

L = n ± 1, . . . , L = n ± J ), and therefore the DOS increases
by approximately the same factor.

We remark that in the above considerations the presence of
nuclear spin degrees of freedom is not taken into account. In
the following subsection we will therefore discuss the possible
influence of the spin on the densities of states.

D. The role of nuclear spins

Thus far we have considered only the density of states due
to rotations and vibrations (i.e., due to the relative motion
of the three alkali-metal atoms) denoted by ρrv. The DOS
will multiply, however, if the nuclear spin degrees of freedom
become involved. To see whether the nuclear spin may change
during the collision, we employ a semiclassical analysis as
follows. Once the collision complex is formed, it lives, on
average, for an amount of time τ that is related to the mean
resonance width by τ = h̄/�̄. During this time, the nucleus
of any given atom follows a chaotic trajectory through phase
space, according to our ergodic assumption. The nuclear spins
are influenced during this time by a hyperfine Hamiltonian Hhf

that varies in time as the collision complex explores the phase
space. The dominant part of this Hamiltonian arises from the
magnetic dipole interaction of the nuclear spin with the spin of
the electron immediately in orbit above it in the same atom. The
electron spin, however, is subject to fluctuations during this
classical trajectory. We therefore expect that the nuclear spin
experiences a rapidly time-varying change in its Hamiltonian,
δHhf(t).

The magnitude of these fluctuations can be estimated by
the following argument. We regard the collision complex
semiclassically as a repeated set of mini-collisions, occurring
at average time intervals �t . For instance, at one moment
the complex might resemble A + (BC)∗ (i.e., the A atom is
loosely bound to a molecule BC which is excited into some
ro-vibrational state). Because BC is excited, A cannot escape,
but rather returns to collide again. This collision might result
in a different complex, say B + (AC)∗. Consider then the
nucleus attached to atom A. Before this collision, this nucleus
experiences the unpaired electron on the A atom, and hence
essentially the entire hyperfine interaction determined by the
corresponding magnetic dipole constant Ahf [64]. After the
collision, the atom A is locked into a singlet state with atom C,
and the nucleus sees no hyperfine interaction at all, apart from
the modest nuclear quadrupole interaction. Thus, the hyperfine
interaction experienced by any given nucleus in the complex is
effectively switched randomly between full strength and zero,
at random intervals ∼ �t .

Let h̄ω12 denote the energy difference between two nuclear
spin states in the absence of these fluctuations. Then, a nucleus
initially in one of the states will end up in the other at time τ

with a probability amplitude

c(τ ) = 1

ih̄

∫ τ

0
dt eiω12t δHhf(t) =

√
2π

ih̄
δH̃hf(ω12), (20)

in terms of the Fourier transform δH̃hf(ω12). The perturbing
Hamiltonian δHhf(t) will fluctuate on a characteristic time
scale �t , set roughly by the mean collision time of an atom
in the complex with another atom. The Fourier transform
of δHhf(t) is then nonzero only over some finite bandwidth
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� = 2π/�t . To conserve the intensity of the fluctuations over
τ in the time domain and � in the frequency domain, the
root-mean-squared averages of the fluctuation and its Fourier
transform must satisfy√

〈[δHhf(t)]2〉t
√

τ ≈
√

〈[δH̃hf(ω)]2〉
ω

√
�. (21)

If we assume that the time domain fluctuations are random
white noise, then the power spectrum is approximately
independent of frequency within the bandwidth �. That
is, δH̃hf(ω) = δH̃

(0)
hf = const. and

√
〈[δH̃hf(ω)]2〉ω = δH̃

(0)
hf

correspondingly. In particular, we assign it this value at the
transition frequency, δH̃hf(ω12) = δH̃

(0)
hf . Employing c(τ ) =√

2π/(ih̄)δH̃hf(ω12) and
√

〈[δHhf(t)]2〉t = Ahf/2, we find for
an estimate of the transition probability

P = |c(τ )|2 =
∣∣∣∣∣
√

2π

ih̄

√
〈[δHhf(t)]2〉t

√
τ

�

∣∣∣∣∣
2

= π2

(
Ahfτ

h

) (
Ahf�t

h

)
. (22)

The first factor in parentheses denotes the size of the
perturbation, times the length of time it acts, which would be
the probability that a smoothly varying perturbation changes
the spin state. The second factor in parentheses accounts
for the fluctuations on a time scale �t . Once the perturbing
Hamiltonian takes a certain value, the nuclear spin has only
a time �t to respond to this perturbation (i.e., by precessing
around the instantaneous local magnetic field). After time �t ,
the perturbation randomly switches to something else, and the
nuclear spin attempts to follow a new local field. If �t is much
smaller than the nuclear-spin-changing period 2π/ω12 (as it is
in our case), then the nuclear spin has a hard time changing
at all; more rapid collisions actually reduce the transition
probability. On the other hand, if the collisions occur rarely
on the time scale 2π/ω12, then the relevant �t is reciprocal to
the hyperfine interaction itself. In this case, the second factor
in (22) is unity, and we reduce to the familiar case of a slowly
varying perturbation.

Representative values of P in case of s-wave collisions are
given in Table III for some of the atom-molecule pairs we
are considering. For calculating these values, we estimate the
complex lifetime by means of its RRKM value, τ = h̄/�̄ =

TABLE III. Mean collision time �t [Eq. (24)], lifetime τ , nuclear
spin transition probability P [Eq. (22)], and nuclear spin enhancement
factor Nnuc [Eq. (26)] for various collision complexes in case of L = 0.

�t (s) τ (s) P Nnuc

Na + LiNa 9.1 × 10−12 9.4 × 10−9 6.6 × 10−1 4
K + LiK 1.7 × 10−11 1.6 × 10−8 2.1 × 10−1 9
Rb + LiRb 2.8 × 10−11 3.6 × 10−8 1.2 × 102 4
Cs + LiCs 3.9 × 10−11 6.8 × 10−8 4.3 × 102 4
K + NaK 3.7 × 10−11 5.8 × 10−8 1.7 16
Rb + NaRb 6.4 × 10−11 1.3 × 10−7 9.7 × 102 4
Cs + NaCs 9.1 × 10−11 2.4 × 10−7 1.1 × 103 4
Rb + KRb 1.0 × 10−10 2.4 × 10−7 2.8 × 103 31
Cs + KCs 1.5 × 10−10 3.7 × 10−7 2.8 × 103 91
Cs + RbCs 2.3 × 10−10 5.8 × 10−7 6.9 × 103 4

2πh̄ρrv, where ρrv is the ro-vibrational DOS of the collision
complex as provided in Table II for L = 0.

The mean collision time can be estimated by averaging
over classical trajectories in a pure C6 potential as follows.
The time the atom needs to get out of the collision complex,
climbing the potential Va(R) until the classical turning point
R0 where the kinetic energy vanishes, and then falling back
into the complex, can be approximated by twice the time it
needs to fall from R0 all the way in,

�t0(R0) = 2
∫ R0

0

dR

v(R)
=

√
2mr

C6
R4

0

∫ 1

0
dx

(
1

x6
− 1

)−1/2

= �
(

2
3

)
�

(
1
6

)
√

2πmr

C6
R4

0, (23)

where v(R) = √
2[E − Va(R)]/mr = R3

0

√
2C6/mr√

R6
0/R

6 − 1 is the atom’s classical velocity as a function of
R. The mean collision time �t follows from averaging over
all turning points, starting at the equilibrium position Re of
the potential up to some maximal Rmax,

�t = (Rmax − Re)−1
∫ Rmax

Re

dR0�t0(R0)

= 1

5

�
(

2
3

)
�

(
1
6

)
√

2πmr

C6
(1 − Re/Rmax)−1R4

max. (24)

The outermost turning point considered, Rmax =
(C6/2Bdimer

rot )1/6, is reached if the collision complex
scatters into the energetically lowest closed channel, which
is the first rotationally excited state of the molecule with
E = −2Bdimer

rot . Explicit values of �t for various molecules
cover the nanosecond to picosecond regime (cf. Table III).
Using a pure C6 potential as in Eq. (23) instead of our model
Lennard-Jones potential and integrating all the way to zero
instead of stopping at Re is an excellent approximation; in the
case of Rb + KRb, for example, the introduced error is less
than 1%.

In cases where P is of order unity or larger (typical for heavy
molecules), the nuclear spin is almost certain to change during
the lifetime of the complex. Therefore, the nuclear spin degree
of freedom also contributes to the total DOS. For constructing
our statistical models we would then use

ρ = ρrvNnuc, (25)

where Nnuc denotes the number of nuclear spin states. The
latter is determined via

Nnuc =
L∑

ML=−L

f (M,ML), (26)

where f (M,ML) is the number of possible spin states
|MAMBf mf 〉 that conserve the total magnetic quantum
number M for a given ML. We remark that in principle the
ro-vibrational DOS ρrv also depends on ML; however, this
dependence is negligible such that Eq. (25) is a valid approx-
imation. Specific examples of Nnuc are listed in Table III. In
calculating Nnuc we include all hyperfine states of the atom but
restrict ourselves to singlet molecular states. Triplet molecular
states lead to excited electronic quartet and doublet states of
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the triatomic collision complex which are connected to the
considered doublet ground state via avoided crossings [6]. The
contribution of these states can be assessed by calculating their
DOS at the threshold of the ground-state doublet potential. Our
estimate shows that the overall DOS would increase only on
the order of 10%. Hence, we continue to focus on singlet
molecular states solely.

Our estimate of nuclear spin-changing probability P is
admittedly crude and represents at best an order-of-magnitude
estimate. Nevertheless, all we really need to know is whether
P is likely to be much larger than unity. For heavier molecules,
this appears to be the case, and we will include nuclear spins
in the DOS for our Rb + KRb example below. However, for
some lighter species, such as K + LiK, we expect nuclear spins
to be fairly well conserved during the collision.

The determination of the complex lifetime τ is not influ-
enced by the inclusion of the nuclear spin states since both the
DOS as well as the number of asymptotic channels increase
by the same factor: τ = 2πh̄ρ/Na = 2πh̄(ρrv × Nnuc)/Nnuc =
τ = 2πh̄ρrv.

III. HIGHLY RESONANT SCATTERING NEAR
THRESHOLD

Using the model described above, we now calculate
simulated collision cross sections in the ultralow energy limit.

A. Elastic scattering

We have seen that the density of states can vary widely,
depending on the particular species we consider. For this
reason, in this section we will explore two schematic cases,
where the DOS is either “low” or “high,” meaning few or
many resonant states within the characteristic energy scale
EvdW within which the Wigner threshold laws hold.

For the weakly resonant case, we pick 40K + 6Li40K. For
this particular example, we do not expect nuclear spin states
to be changed (P = 0.2) and hence expect only 0.06 s-wave
resonances per Evdw (cf. Tables II and III). Exemplary elastic
partial wave cross sections up to L = 4 as a function of the
collision energy are shown in Fig. 3; the incident channel is
the absolute ground state of both the atom and the molecule,
so only elastic scattering is possible. As expected from the
low DOS, within the given energy range (up to 2 × EvdW)
resonances are encountered only sporadically and are thus well
resolved. Therefore, the Wigner-law behavior of the elastic
cross sections is evident: σ el ∝ E2L for L = 0,1, and σ el ∝ E3

for L � 2 [65]. We remark that the resonances found in Fig. 3
are determined within our statistical approach and hence are
representative, not predictive. For a quantitative description
of low-resonant cases such as K + LiK a full coupled channel
calculation is necessary, at least to provide a realistic short-
range K matrix; the long-range part then may still be treated
by means of MQDT [12].

Let us now switch to a high DOS, for which the present
theory is intended. As a particular example we choose
87Rb +40 K87Rb collisions [66] for which we expect the
nuclear spin states to be changed during the formation of the
collision complex (P > 1). Because of Eqs. (25) and (26),
the actual DOS depends on the partial wave considered. For
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FIG. 3. (Color online) Elastic partial wave cross sections for
K + LiK collisions; the top panel shows the corresponding cumulative
elastic cross sections. The incident channel is the absolute ground
state; the maximum collision energy is twice the van der Waals energy
scale EvdW.

higher partial waves L, the 2L + 1 projections ML of the
orbital angular momentum allow for a greater variety of spin
and rotational states that conserve a given total magnetic
quantum number M . The resulting DOS for Rb + KRb as a
function of L,ML are tabulated in Table IV. Not only does the
DOS increase rapidly as a function of L, but also all angular
momentum projections ML need to be summed to form the
final partial wave cross section. Since to every ML a different
short-range spectrum is attached, this increases the DOS by
an additional factor of approximately 2L + 1 compared to
the case of a single ML. This rapid increase of the number
of resonances can be observed in Fig. 4(b). As indicated by
Table IV, within one EvdW there are fewer than 10 resonances
for s-wave collisions, over 100 for p-wave collisions, and
already close to 1000 for d-wave collisions.

TABLE IV. Density of states ρ for 87Rb +40 K87Rb collisions as
a function of the partial wave and its magnetic quantum number.
The total magnetic quantum number is always chosen such that the
absolute ground state is included.

L ML ρ (G−1) ρ (μK−1) L ML ρ (G−1) ρ (μK−1)

0 0 5.1 0.15 3 1 226.9 6.76
1 −1 39.9 1.19 3 2 226.9 6.76
1 0 44.2 1.32 3 3 213.7 6.36
1 1 46.2 1.37 4 −4 157.8 4.70
2 −2 85.9 2.56 4 −3 203.1 6.05
2 −1 104.3 3.11 4 −2 248.5 7.40
2 0 117.2 3.49 4 −1 291.0 8.67
2 1 123.6 3.68 4 0 325.0 9.68
2 2 123.6 3.68 4 1 344.7 10.26
3 −3 123.9 3.69 4 2 344.7 10.26
3 −2 158.3 4.71 4 3 325.0 9.67
3 −1 189.3 5.64 4 4 291.0 8.67
3 0 213.7 6.36
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FIG. 4. (Color online) Elastic cross section for Rb + KRb colli-
sions in the absolute ground state. The maximum collision energy is
twice the van der Waals energy scale EvdW. (a) Shows the sum of the
individual partial waves depicted in (b). (c) Provides a comparison
of higher (L � 2) partial wave cross sections including [black lines,
same as in (b)] and omitting [orange(gray) lines] the long-range phase
shift tan δ ∝ k4 due to the C6/R

6 van der Waals dispersion potential.

For ultracold temperatures usually all collision processes
except for s-wave collisions are suppressed. In the case of
highly resonant scattering as we investigate here, however,
there are plenty of resonance peaks due to higher partial waves
[cf. Fig. 4(a)]. Due to the threshold scaling of resonance widths
[67], these events are isolated and should in principle be well
resolvable at the very cold end, Ec � EvdW. Closer to EvdW, on
the other hand, higher partial waves are not as suppressed and
in addition resonances start to overlap. Hence, in this regime
the appearance of the total cross section eventually is no longer
determined by the background scattering cross section with a
few resonances on top of it, but rather by the interplay of many
overlapping resonances.

The increasing number of resonant states with increasing
partial wave is not the whole story, however. As Fig. 4(b)
shows, the number of visible resonances increases from L = 0
to 1 to 2, but fewer resonances appear for L > 2. The reason for
this can again be found in the Wigner threshold laws. Recall
that the elastic scattering phase shifts for a van der Waals
potential have two distinct components. There is a short-range
component δsr ∝ k2L+1, which vanishes faster with energy for
higher partial waves because the incident wave function has an
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FIG. 5. Elastic s-wave rate constants for Rb + KRb collisions in
the absolute ground state. Depicted is the thermalized rate constant
for a temperature of 1 μK, 10 μK, and 100 μK, respectively (top to
bottom).

ever-greater centrifugal barrier to tunnel through. There is also
a long-range component δlr ∝ k4, which arises from scattering
outside the outer classical turning point of the centrifugal po-
tential [65]. Since the resonances originate in short-range scat-
tering, they appear in δsr, whereby this part of the cross section
can be dwarfed by δlr for L > 2. To show this more explicitly,
we separate out the short-range contribution in Fig. 4(c); within
the MQDT theory, this amounts to neglecting the eiη terms
in Eq. (10). We therefore conclude that, while the number
of resonances grows rapidly with increasing partial waves,
nevertheless they are unlikely to be observed in the ultracold.

Instead of the elastic cross sections as a function of
collision energy, presented in Fig. 4, in experimental practice
one is more likely to measure scattering rate constants that
are thermally averaged. Moreover, often the temperature is
fixed and, instead, an external magnetic field is varied to
tune the various scattering channels with respect to each
other. For these reasons, we provide in Fig. 5 the thermally
averaged elastic rate constant Kel = 〈v σ el〉 as a function
of magnetic field, again for Rb + KRb. Because of the vast
difference in energy scales, we assume that the short-range
physics is independent of the applied magnetic field. As a
consequence, the collision complex probes the short-range
resonance spectrum with a rate corresponding to the Zeeman
shift of the incident channel (i.e., energies are converted into
magnetic field strengths via E = −μmagB). For the particular
example of 87Rb + 40K87Rb with the absolute ground state as
incident channel, this Zeeman shift is largely determined by
the magnetic moment of the f = mf = 1 ground state of the
rubidium atom (μmag = 0.7 MHz/G). The resulting densities
of states as a function of magnetic field are listed in Table IV;
for s-wave collisions as depicted in Fig. 5, it amounts to five
resonances per Gauss, which still should be experimentally
resolvable.

These resonances will naturally wash out with increasing
temperature. In Fig. 5 we compare the s-wave elastic rate
constant for three different temperatures, namely, 1 μK,
10 μK, and 100 μK. As expected, a higher temperature
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gradually smoothes the sharp resonance peaks found for 1 μK.
Moreover, the few resonances found for s-wave scattering as
a function of collision energy, Fig. 4, have now turned into a
dense spectrum of resonances due to the large Zeeman shift
of the rubidium atom. Since sub-μK temperatures are easily
reached in ultracold alkali-metal experiments, we predict that
individual resonances ought to be observable.

We remark that in principle Fig. 5 shows also Fano-
Feshbach resonances that occur within the ro-vibrational
ground state (i.e., without the need of a highly resonant
short-range part). However, within the magnetic field range
shown in Fig. 5, there are only a few such resonances: The
difference between the last and last but one vibrational level
of Rb + KRb is on the order of 100 mK. The atomic Zeeman
shift is 33.5 μK/G, that is, within 100 G it is unlikely to find
two different vibrational states of the same channel.

B. Onset of Ericson fluctuations

Resolving individual scattering resonances requires that
their mean width �̄ be less than their mean separation d = 1/ρ.
However, as more open channels become available, the widths
should increase, and when �̄ > d the scattering should be
in the Ericson regime. For ultracold collisions, adding more
open channels is as simple as preparing the molecules in a
higher-energy hyperfine state. In this section we therefore
explore resonance widths as a function of the number No of
open channels.

In the limit where the mean resonance width exceeds
the mean level spacing, one might expect the spectrum to
become increasingly smooth and featureless. Ericson showed
that surprisingly this is not so [29,30]. Rather, there remains
structure that can be probed via the two-point correlation
function F (�B) (here written in terms of magnetic field
strength),

F (�B) = 〈σ el(B + �B)σ el(B)〉 − 〈σ el(B)〉2, (27)

where the brackets denote the average over B. In the Ericson
regime, this function is predicted to be Lorentzian [29],

F (�B) ∝ 1

1 + (�B/�)2
. (28)

Since in this section we are only concerned with magnetic-
field-dependent cross sections, � has units of magnetic field
in our case; it easily converts to energy via E = −μmagB,
though. Similarly, we also consider the DOS to be expressed
in the magnetic field domain, as in Table IV.

In nuclear physics, where the number of asymptotic chan-
nels Na � 1, the correlations predicted by Eriscon have been
nicely demonstrated [31]. Ultracold atom-molecule collisions
as in the present work, on the other hand, are an ideal candidate
to investigate the onset of Ericson fluctuations for only a few
asymptotic channels. They possess a large enough DOS for the
statistical arguments to be valid and—most importantly—the
number of relevant asymptotic channels can be very precisely
set by choosing the initial hyperfine states of the colliding
particles. Unlike the treatment in nuclear physics where all
asymptotic channels are considered open (i.e., No = Na), in
ultracold collisions only No of them remain open at infinite
separation of the particles and provide a finite outbound flux
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FIG. 6. (Color online) (a) Onset of Ericson fluctuations in
ultracold Rb + KRb s-wave collisions at a collision energy of 100 nK.
Shown is the mean resonance width (dots and solid line) of elastic
cross sections as a function of the number of open channels. See
text for further details. (Insets) Exemplary elastic cross sections for
No = 2 and No = 9 open channels, respectively. (b) Atomic Zeeman
shift of the scattering channels. The molecular nuclear spin gives rise
to an additional magnetic field dependence which splits each atomic
line into a number of sublevels; on the given scale, these sublevels
are not visible. The channel indices equal the number of open
channels No.

as R → ∞. Therefore, in the context of ultracold collisions,
we are concerned with No rather than Na . Moreover, by
setting the short-range coupling parameter R(0)

a = 1, we might
expect the collision complex to decay with the RRKM rate
� = �RRKM = No/2πh̄ρ [cf. Eq. (18)], where ρ is density of
states per magnetic field interval.

In Fig. 6 we show the mean widths of resonances as
a function of the number of open channels. The value of
the width is extracted from our scattering data as follows.
We consider magnetic-field-dependent elastic s-wave cross
sections for Rb + KRb collisions at a fixed collision energy of
100 nK over the range 0 < B < 100 G. The number of open
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channels No is set by varying the incoming channel from the
absolute ground state of the system (f = mf = 1, MK = −4,
MRb = 3/2) to the highest possible spin state within the
ro-vibrational ground state (f = mf = 2, MK = −2, MRb =
−3/2). We restrict ourselves to the conserved total magnetic
quantum number M = −3/2 that contains the absolute ground
state, which yields in total 31 possible spin states. After
generating a model short-range resonance spectrum Eμ and
width matrix Wμa , we compute the magnetic-field-dependent
elastic cross section for each of the No channels. The mean
width of the resonances encountered in these cross sections
is extracted via their two-point correlation function Eq. (27)
by fitting to the form Eq. (28). This procedure we repeat
for 300 randomly sampled short-range resonance spectra
and width matrices, for each No. To accommodate for the
different DOS seen by different hyperfine states, we employ
ρ = |mf |ρ(mf = 1). A caveat is that, for states with mf = 0,
there is a very weak dependence of the incident threshold on
magnetic field. In this case, only few resonances are seen in the
magnetic field range 0 < B < 100 G, and we cannot extract a
width. Thus, in Fig. 6 no data points are shown for No =5–8
and 21–24.

Figure 6 presents the results of this simulation, showing
the width extracted from Eq. (28) as a function of the number
of open channels. The dots represent the mean value from
300 trials, while the shaded region indicates the 1-σ scatter
among the trials. The widths are scaled by 2πρ such that the
RRKM width Eq. (1) is equal to the number of open channels
[i.e., it results in a unit slope as a function of No (dashed line)].
The width observed in Fig. 6 is unquestionably an increasing
function of No, but grows at a different rate for No � 4 and
for No � 9.

Focusing on No � 4 in Fig. 6, our data shows a slope
significantly smaller than the RRKM value. This can be
explained as follows. Assuming that Eq. (1) is applicable,
resonances begin to overlap when No > 2π . Hence, for No �
4 we are in the regime of isolated resonances where � is
determined by individual widths and not by the collective
behavior of many overlapping resonances. Nevertheless, we
still find a linear behavior, � = γNo, whose slope γ is
determined by the Wigner threshold laws.

The widths of nonoverlapping resonances can in principle
be extracted from the short-range K matrix Ksr. More
precisely, Eq. (14) yields a mean resonance width in the
absence of threshold effects of �̄ = 2/πρ, which is defined
at Rm assuming that particles can freely propagate beyond
this point. Threshold effects, which narrow this width, are
accounted for within our MQDT treatment. For a single open
channel, and while neglecting the potential resonant influence
of closed asymptotic channels, the MQDT transformation (9)
turns into a simple algebraic equation. Employing further the
zero energy limits η → 0 and G → (−1)L+1 [43], the elastic
cross section reads

σ el = 4π

k2

A(k,L)2[
1 + (−1)L+1K−1

sr
]2 + A(k,L)2

. (29)

For an isolated resonance in the short-range K matrix, Ksr =
−(�̄/2)/(E − Eres), Eq. (29) yields a Lorentzian shaped

resonance in the elastic cross section with a width of

�(No = 1) = γ = A(k,L) × �̄ = 2A(k,L)

πρ
. (30)

The low energy behavior of the MQDT parameter A(k,L) is
known analytically [43,68],

A(k,L)1/2 = R
L+1/2
vdW �

(
3
4 − L

2

)
√

π2L−1/2(2L + 1)!!
kL+1/2, (31)

RvdW being the van der Waals length RvdW = (2mrC6/h̄
2)1/4.

For the parameters of Fig. 6 (s-wave, E = 100 nK), we thus
find 2πρ × γ = 0.18. This line is shown as a dotted line in
Fig. 6 for No � 4; it agrees quite well with our numerical
result. Hence, even in the limiting case of isolated resonances,
No < 2π , we find that the RRKM assumption is true: The
decay rate and therefore the width of the resonances scales
with the inverse of the DOS and is proportional to the
number of available outgoing channels. We remark that in
the nonoverlapping regime the two-point correlation function
Eq. (27) is not strictly Lorentzian, and fitting to Eq. (28) is
an approximate approach that introduces uncertainties up to
10%. We continue to use a Lorentzian fit simply for its ease of
application.

For No � 9, the resonances nominally overlap since �̄/d =
No/2π > 1 in the RRKM formula. If this indeed places us in
the Ericson regime, then the width � extracted from Eq. (28)
should scale according to 2πρ� = No, i.e., should form a line
of unit slope in Fig. 6. And indeed this is true, apart from an
offset, as seen in the figure (dotted line for No � 9). The source
of this offset originates in the Wigner-Dyson distribution of
level spacings. Qualitatively, the Wigner-Dyson distribution
discourages levels from being close together. The onset of
overlapping resonances is therefore deferred until higher No.

More quantitatively, it can be understood by employing a
simple model. Instead of the actual cross section, we calculate
the width �out of the correlation function of a model spectrum
that consists of identical Lorentzian resonances of width �in

at different magnetic field values,

σ mod(B) =
∑

μ

1

π

�in/2

(B − Bμ)2 + (�in/2)2
, (32)

whose locations Bμ are distributed according to Eq. (15). We
used the same DOS as in Fig. 6. The result is shown in Fig. 7
(orange dashed line) as a function of the input width �in of
the Lorentzians. For a single resonance, our procedure yields
�out = �in. For nonoverlapping resonances, �in � 1/ρ, this
can be seen in Fig. 7 as well. As the resonances start to overlap,
however, �out starts to deviate from its linear behavior by
showing a smaller width than the input. For a strong overlap,
the linear behavior is recovered again, but now with a constant
offset from unity. This is the same qualitative behavior seen
in Fig. 6. By contrast, if we repeat the model calculation but
now for normally distributed resonances instead of Wigner-
Dyson (solid green line in Fig. 7), the result changes quite
drastically: The width calculated from the correlation function
reproduces the input width. Hence, we attribute the offset of
the calculated widths to the particular statistical properties of
the Wigner-Dyson distributed resonances.

062712-11



MICHAEL MAYLE, BRANDON P. RUZIC, AND JOHN L. BOHN PHYSICAL REVIEW A 85, 062712 (2012)

Normal
Distribution

Wigner Dyson

Distribution

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

in

o
u

t

FIG. 7. (Color online) Influence of the Wigner-Dyson distribution
on the correlation function Eq. (27). Shown is the calculated width
�out of the correlation function as a function of the input width
�in for the Lorentzian model spectrum Eq. (32). (Orange dotted
line) Resonances are distributed according to the Wigner-Dyson
distribution Eq. (15). (Green solid line) The same resonances are
normally distributed. The shaded areas indicate the standard deviation
for the given sample of 30 individual runs.

We remark that the observation of an autocorrelation
function with a Lorentzian shape is a necessary but not a
sufficient condition for the existence of Ericson fluctuations.
As shown, for example, in the case of helium photoionization,
one finds a Lorentzian shape of the autocorrelation function
[69,70]. Looking at the microscopic processes in more detail,
however, this cross section is actually dominated by only a
few, well-defined resonances not in the Ericson regime. The
large number of remaining resonances, that would promote
the DOS into the Ericson regime, are of too small intensity
to contribute to the cross section. In our case, on the other
hand, there is no hierarchy in the intensities and all resonances
contribute similarly, which makes the autocorrelation function
again a good indicator for Ericson fluctuations.

IV. CONNECTION WITH EXPERIMENTS

Our present model of highly resonant scattering makes
various assumptions and is by no means meant as a quantitative
description. As a qualitative guide, however, it does predict
various trends from one molecule to another, and from
one internal hyperfine state to another. In this section we
summarize what might be gleaned from experimental data
as they become available.

A. Density of states

The first and most obvious measurement would be that
of the density of states itself. This is most easily measured,
presumably, by the magnetic field variation of a cross section,

as in Fig. 5. Even in the highly resonant case of Rb + KRb that
we explored in detail, we still anticipate s-wave resonances
spaced an average of ∼ 0.1 Gauss apart, along with perhaps
a smattering of higher-partial wave resonances at sufficiently
low temperature. In fact, Eq. (30) tells us that for one open
channel p-wave resonances at E = 100 nK only possess a
mean width of �̄ = 4 × 10−7 G, which is below typical exper-
imental resolution. For s-wave resonances, on the other hand,
the required resolution seems experimentally reasonable. For
molecules in their ground hyperfine state, the most likely
observable would be loss due to three-body processes near
each resonance. In this case, one should consider the effect
on observables due to the width of the three-body process, a
task we have not attempted here. Otherwise, measurements of
two-body loss versus field for molecules in their first excited
state would supply a reasonable observable.

Our estimates of the DOS of various collision partners
rely heavily on the assumption that the entire phase space
allowed by conservation of energy and angular momentum is
in fact explored by the collision complex. We have argued
above that the DOS is surprisingly weakly dependent on the
maximum number of vibrational or rotational states populated
(see Table I). Nevertheless, our estimates of both the DOS and
the lifetime of the complex are almost certainly upper limits.
There exists, however, already one experiment that constrains
the DOS, namely, collisions of Rb with ground-hyperfine
state KRb at sub-μK temperatures [66]. To infer a DOS
from this experiment, we assume that there is a universal
Rb + KRb collision rate given by the quantum threshold
model of Ref. [71], KQT

Rb+KRb = π (2h̄2C6/m3
r,Rb+KRb)1/4. Since

Rb + KRb collisions are stable against reactive losses, the
overall loss rate is given by the above collision rate times
the probability that, during the complex lifetime τ , another
Rb atom hits the complex and destroys it (the Lindemann
mechanism) [22]. This probability is τ times the Rb + KRb2

rate K
QT
Rb+KRb2

= π (2h̄2C6/m3
r,Rb+KRb2

)1/4. As a result, the loss
rate is a quadratic function of the Rb density n(Rb),

�(KRb) = τ n(Rb)2K
QT
Rb+KRbK

QT
Rb+KRb2

(33)

≈ τ n(Rb)2 × 1021 cm6/s2. (34)

The JILA experiment on KRb emphatically did not measure a
quadratic dependence on the loss rate on n(Rb). Nevertheless,
we can extract an order of magnitude estimate. From Ref. [66]
we infer for a Rb density of n(Rb) ≈ 0.6 × 1012 cm−3 a decay
rate of �(KRb) ≈ 20 s−1. This sets a rough upper limit to the
complex’s lifetime of τ ≈ 10 ms. What does this mean for the
density of states? Suppose the lifetime τ is set by the RRKM
expression Eq. (1), assuming only one possible exit channel
since both the atom and the molecule are in their ground states.
The upper limit on the density of states is then ρ ≈ 103/μK.
This is a very high density of states, much larger than the
≈ 1/μK we estimate for this case. Hence, the experiment at
least does not contradict our thinking, though it is by no means
a measurement of DOS.

B. Resonance widths

Within the statistical picture we have outlined, there are
patterns in the resonance widths as well as in their distribution.
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A main result, which we believe to be quite general, is the one
in Fig. 6. Namely, the width � deduced from the two-body
correlation function of a spectrum grows linearly as a function
of the number No of open hyperfine channels. The rate of
growth is, however, different for No < 2π and No > 2π . In
the former case, d�/dNo is small and is governed by the
Wigner threshold law. In this case the widths of the individual
resonances may be difficult to extract; observed widths of very
narrow resonances are typically set by the temperature, not the
intrinsic magnetic-field width of the resonance.

Vice versa, in the limit No > 2π , the resonances are not
individually resolved anyway. Here the spectrum becomes
a varying background of Ericson fluctuations, characterized
by the width � of the two-point correlation function, as in
Eqs. (27) and (28). Determining this � is presumably an easier
task, experimentally, than locating and measuring the widths
of individual narrow resonances. In such a case, the simplest
version of our model predicts that the DOS can be extracted
from the slope of � versus the number of open channels, via
d�/dNo = (2πρ)−1.

In cases where � and the DOS ρ are both measured
independently, more information can be determined about
the microscopic scattering system. Then, as in Fig. 6, the
dimensionless quantity 2πρ� can be directly evaluated as a
function of No. Our basic model predicts that this relation
will be linear with unit slope, but shifted so as to intercept
the No axis at some positive value. This shift is, as we have
argued, a consequence of the Wigner-Dyson statistics of level
spacings. If, on the other hand, the empirical plot of 2πρ�

versus No intercepts the origin, the resonances are more likely
normally distributed (see Fig. 7). Such data would therefore
provide evidence that the underlying classical dynamics of the
collision complex is not chaotic.

Furthermore, the experimentally determined 2πρ� versus
No may not have unit slope, but may grow more slowly,
perhaps even nonlinearly. This would indicate that the widths
are narrower than in the “maximal coupling” limit we have
assumed, in which the coupling parameter R(0)

a = 1 for all
asymptotic channels. Determining realistic values of coupling
constants R(0)

a (or equivalently, transmission probabilities Ta)
would further constrain models of how the ro-vibrational
ground state couples to the resonant complex, in ways that
remain to be explored.

C. Likelihood of changing spins

Estimates of the spin-changing probability P are arguably
the weakest point of our discussion above. Here again,
experiments should shed light on the true situation. For
example, if molecules are prepared in their second-lowest
hyperfine state, one could simply directly measure the rate
at which molecules are produced in the lowest state. When the
probability P is of order unity (or higher, in our estimates)
the spin-changing rate constant should be on the order of the
universal rate constant KQT, as described above. However,
when P � 1, as we estimate for Na + LiNa or K + LiK, then
the spin-changing rate is likely smaller by a factor of P . Even
an approximate determination of P in this way would be a
strong and useful constraint on the time scales that govern the
spin-changing dynamics.

The argument for whether or not the spin changes depends
on the DOS. Thus we can also infer useful information from
a direct measurement of the DOS itself. Within our order-of-
magnitude estimates we expect the density of ro-vibrational
states to be nearly universal (i.e., to be something like 0.1
s-wave resonances per characteristic van der Waals energy
EvdW). For heavier molecules with P ∼ 1, we expect the
density of states to be augmented by the number of spin states,
as in Eq. (25). Thus, for example, if the DOS were measured
directly for both K + LiK (where spin does not change) and for
Rb + KRb (where spin can change), both expressed in units of
resonances per EvdW, then their ratio would be

ρ(Rb + KRb)

ρ(K + LiK)
≈ Nnuc(Rb + KRb) = 31. (35)

On the other hand, if it turns out that the spin cannot change
in Rb + KRb either, this ratio is closer to unity. If instead
both collisions freely allow spins to change, then the ratio
would be closer to Nnuc(Rb + KRb)/Nnuc(K + LiK) ≈ 3.4.
Checking this kind of scaling would provide information for
either verifying or refuting our assumptions about whether and
how the spin can change.

V. CONCLUSIONS AND OUTLOOK

In the present work we have formulated a theory for
cold and ultracold atom-molecule collisions that incorporates
the ro-vibrational Fano-Feshbach resonances in a statistical
manner while treating the long-range physics exactly within
MQDT. We provided estimates for the densities of states en-
countered for all nonreactive collisions involving alkali-metal
atoms and heteronuclear alkali-metal dimers. The question
if, during the collision, the hyperfine states of the collision
partners are allowed to change is answered by means of
a semiclassical approach that estimates the lifetime of the
collision complex. As it turns out, we expect all systems
except the very lightest ones to allow for such transitions.
This has a great influence on the scattering process itself since
more resonances are accessible, pushing the cross sections
at ultracold temperatures over the limit from showing few
to many resonances. Exemplary elastic cross sections as a
function of the collision energy are provided for K + LiK
(no hyperfine change) and for Rb + KRb (change in hyperfine
sublevels allowed). For the latter, also thermalized rates as a
function of magnetic field strength for fixed temperature are
shown. Since we assume that the short-range physics—and
therefore also the ro-vibrational resonances—is independent
of external fields, the density of states becomes a function of
magnetic field that is probed by a rate corresponding to the
atomic magnetic moment. This translates the density of states
from just a few within the Wigner threshold limit to many per
Gauss.

One of the intriguing aspects of the considered ultracold
collisions is that the initial states can be very well controlled.
This allows one to tune the number of open channels very
precisely and opens the opportunity to probe the onset of
Ericson fluctuations. The latter are well known in nuclear
physics where one encounters usually a large number of (open)
asymptotic channels. Here, we showed that the scaling law
predicted by Ericson should be nicely observable in ultracold
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atom-molecule collisions. Moreover, by limiting the number of
open channels to a small number, one can switch between being
in the Ericson regime and the regime of isolated resonances.

The Ericson fluctuations only depend on the density of
states and the number of open channels. Since the latter
are fixed by the choice of the initial state, a measurement
of the Ericson fluctuations should in principle allow for
an experimental determination of the density of states—an
intriguing possibility which is the subject of future investiga-
tions. Furthermore, in the present work only elastic processes

are investigated. The extension to inelastic or chemically
reactive ones is straightforward and promises further insights
in the physics of highly resonant scattering.
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E. Tiemann, Phys. Rev. A 83, 052519 (2011).

[64] E. Arimondo, M. Inguscio, and P. Violino, Rev. Mod. Phys. 49,
31 (1977).

[65] H. R. Sadeghpour, J. L. Bohn, M. J. Cavagnero, B. D. Esry, I. I.
Fabrikant, J. H. Macek, and A. R. P. Rau, J. Phys. B 33, R93
(2000).

[66] S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda,
B. Neyenhuis, G. Quemener, P. S. Julienne, J. L. Bohn, D. S.
Jin, and J. Ye, Science 327, 853 (2010).

[67] J. L. Bohn and P. S. Julienne, Phys. Rev. A 60, 414 (1999).
[68] B. P. Ruzic and J. L. Bohn (unpublished).
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