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Relativistic convergent close-coupling method calculation of the spin polarization of electrons
scattered elastically from zinc and mercury
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We present spin-asymmetry parameters (Sherman functions) for elastic electron scattering on zinc and mercury
atoms calculated using the relativistic convergent close-coupling method for quasi-two-electron atoms above an
inert core. The results for mercury are in excellent agreement with experiment across a wide range of energies.
Similarly for zinc, we find excellent agreement between theory and experiment for energies below 9.0 eV.
However, at 11.0 eV there is a discrepancy between theory and experiment, most likely due to a resonance
excitation of a core electron.
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I. INTRODUCTION

Electron scattering from zinc and mercury has received
recent attention in the literature due to a discrepancy between
theory and experiment for the Zn P2 Stokes parameter of
light emitted during spin-polarized electron-impact excitation
below the ionization threshold [1,2]. A controversial claim is
made by Williams et al. [2] that relativistic scattering theories
do not account for spin properly during electron scattering
on quasi-two-electron targets such as Zn and Hg; the claim
is made that a geometric Berry phase is required to augment
fundamental scattering theories. In order to contest such a
claim we present calculations of the Sherman function for
electron scattering on Zn and Hg across a wide range of
energies. The relativistic convergent close-coupling (RCCC)
method [3,4] is nonperturbative and involves solving a set of
relativistic Lippmann-Schwinger equations derived from the
Dirac equation. Therefore the spin-orbit interaction is included
ab initio in a consistent way between all electrons in the
electron-target collision system. The unitarity of the RCCC
method ensures that the effect of excitation channels is taken
into account during the calculation of the Sherman function,
which pertains to elastic scattering; the total flux is conserved
and therefore opening of excitation channels affects the elastic
channel. Relativistic convergent close-coupling results for
scattering on other quasi-two-electron targets such as Cd [5,6]
demonstrate the effectiveness of the method in comparison to
perturbative relativistic distorted-wave methods.

Spin-polarization effects in electron scattering from atoms
can be due to electron exchange, spin-orbit interactions, or
their interference [7–10]. For the case of elastic electron
scattering from a spin-zero target such as the Zn or Hg
ground state, the spin-polarization effects arise solely due
to the spin-orbit interactions [11]. The exchange effects,
while important in determining the magnitude of the cross
section at low energies, do not give rise explicitly to any
spin polarization in the scattering process. Conversely, even
for low-energy electrons incident on a heavy target, the
spin-orbit interaction can influence spin-polarization effects
in scattering because the electrons will accelerate significantly
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on approaching close to the nucleus. Thus the study of
spin-polarization effects in electron-zinc and electron-mercury
scattering provides a sensitive test of the relativistic effects and
correct antisymmetrization of the total wave function.

The RCCC results for the Zn Sherman function are
compared with the measurements of Bartsch et al. [12] and
the relativistic distorted-wave calculations of McEachran and
Stauffer [13], Szmytkowski and Sienkiewicz [14], and Kumar
et al. [15]. For the Hg Sherman function, the RCCC results
are compared with the measurements of Dummler et al. [16],
Kaussen et al. [17], and Duweke et al. [18] and also the
following theories: the relativistic distorted-wave calculations
of Szmytkowski and Sienkiewicz [14], the generalized density-
functional calculations of Fritsche et al. [19] and Haberland
and Fritsche [20], and R-matrix calculations of Bartschat
et al. [21].

II. METHOD

The RCCC method is described in detail by Bostock [4] and
only a brief overview relevant for the case of e-Zn and e-Hg
scattering will be presented. The Zn atom is modeled as two
active valence electrons above a frozen [Ar]3d10 Dirac-Fock
core. The [Ar]3d10 Dirac-Fock core orbitals are obtained
using the GRASP package [22]. For the valence electrons, a
set of one-electron orbitals is obtained by diagonalization
of the Zn+ quasi-one-electron Dirac-Coulomb Hamiltonian
in a relativistic (Sturmian) L-spinor basis [23]. The set of
orbitals contains 4s–10s, 4pj –9pj , and 4dj –8dj (j = l ± 1/2)
orbitals. Two-electron configuration-interaction calculations
are then performed to obtain wave functions for the Zn atom.
The choice of two-electron configurations was such that one
electron is in 4s,4p1/2, or 4p3/2 orbitals while the other
electron occupies any of the one-electron orbitals allowed by
the total angular momentum and parity.

Phenomenological one- and two-electron polarization po-
tentials are used to improve the accuracy of the calculated Zn
wave functions [24,25]; these allow us to take into account
more accurately the effect of closed inert shells on the active
electrons. These depend on the static dipole polarizability of
the inert core αc, which is given by the calculations of Ye and
Wang [26]. The parameters of these potentials, the static dipole
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TABLE I. The RCCC energy levels for Zn compared with
experimental levels listed by the National Institute of Standards and
Technology (NIST) [28].

Configuration Term J Parity RCCC (eV) Experiment (eV)

4s2 1S0 0.0 1 0.000 0.000
4s4p 3P o

0 0.0 −1 4.064 4.006
4s4p 3P o

1 1.0 −1 4.091 4.030
4s4p 3P o

2 2.0 −1 4.144 4.078
4s4p 1P o

1 1.0 −1 5.882 5.796
4s5s 3S1 1.0 1 6.648 6.655
4s5s 1S0 0.0 1 6.698 6.917
4s5p 3P o

0 0.0 −1 7.609 7.594
4s5p 3P o

1 1.0 −1 7.613 7.597
4s5p 3P o

2 2.0 −1 7.620 7.604
Ionization limit 9.396 9.394

polarizability, the falloff radius r
pol
c , and rdiel

c are adjusted
to obtain the best representation of target state energies and
optical oscillator strength (OOS). For the Zn2+ core we chose
αc = 2.6, rdiel

c = 2.1, and an l-dependent r
pol
c with values 1.5,

1.5, and 1.6 for l = 0,1, and 2, respectively. The energy levels
of the first ten states used in the calculation are listed in Table I
and the OOSs for the (4s4p) 3P1 and (4s4p) 1P1 states are
listed in Table II. According to the measurements of Goebel
et al. [27], the experimental static dipole polarizability of Zn
is 38.8a3

0 . With our target model we obtain a value of 33.1a3
0 .

This slightly lower value is an indication of the imperfection in
the [Ar]3d10 inert core model as a large part of the static dipole
polarizability comes from inner core excitations. In the present
work we have chosen the polarization potential parameters to
obtain the most accurate energy levels and oscillator strengths
possible; this is at the expense of obtaining an accurate value
for the static dipole polarizability. Our target model consists
of 66 states: 32 bound states and 34 continuum states.

Similarly, the Hg atom is modeled as two active valence
electrons above a frozen [Xe]4f 145d10 Dirac-Fock core. The
[Xe]4f 145d10 Dirac-Fock core orbitals are obtained using
the GRASP package [22]. For the valence electrons, a set
of one-electron orbitals is obtained by diagonalization of
the Hg+ quasi-one-electron Dirac-Coulomb Hamiltonian in
a relativistic (Sturmian) L-spinor basis [23]. The set of
orbitals contains 6s–17s, 6pj –17pj , 6dj –17dj , and 6fj –17fj

(j = l ± 1/2) orbitals. Two-electron configuration-interaction
calculations are then performed to obtain wave functions for
the Hg atom. The choice of two-electron configurations was
such that one electron is in 6s,6p1/2, or 6p3/2 orbitals while
the other electron occupies any of the one-electron orbitals
allowed by the total angular momentum and parity.

TABLE II. Oscillator strengths of the Zn ground state. Experi-
mental values listed by NIST [28] are also shown.

Oscillator strength

Transition RCCC Expt.

(4s2) 1S0–(4s4p) 3P1 0.00014 0.00019
(4s2) 1S0–(4s4p) 1P1 1.45 1.46

TABLE III. The RCCC energy levels for Hg compared with
experimental levels listed by NIST [28].

Configuration Term J Parity RCCC (eV) Experiment (eV)

6s2 1S0 0.0 1 0.000 0.000
6s6p 3P o

0 0.0 −1 4.706 4.667
6s6p 3P o

1 1.0 −1 4.926 4.887
6s6p 3P o

2 2.0 −1 5.577 5.461
6s6p 1P o

1 1.0 −1 6.549 6.704
6s7s 3S1 1.0 1 7.775 7.730
6s7s 1S0 0.0 1 8.000 7.926
6s7p 3P o

0 0.0 −1 8.648 8.619
6s7p 3P o

1 1.0 −1 8.667 8.637
6s7p 3P o

2 2.0 −1 8.763 8.829
Ionization limit 10.447 10.438

For the Hg2+ core phenomenological polarization parame-
ters we chose αc = 8.4, rdiel

c = 2.3, and r
pol
c = 2.2. The energy

levels of the first ten states used in the calculation are listed
in Table III and the OOSs for the (6s6p) 3P1 and (6s6p) 1P1

states are listed in Table IV. According to the measurements
of Miller and Bederson [29] the experimental static dipole
polarizability of Hg is 34.4a3

0 . With our target model we obtain
a value of 22.6a3

0 . Similarly to the Zn atom, this lower value is
an indication of the imperfection in the frozen [Xe]4f 145d10

inert core model as a large part of the static dipole polarizability
comes from inner core excitations. Our target model consists
of 58 states: 29 bound states and 29 continuum states.

The generated target states are then used to expand the
total wave function of the electron-zinc scattering system and
formulate a set of relativistic Lippmann-Schwinger equations
for the T -matrix elements. In this latter step, the relativistic
Lippmann-Schwinger equations for the T -matrix elements
have the partial wave form

T �J
f i (kf κf ,kiκi)

= V �J
f i (kf κf ,kiκi)

+
∑

n

∑
κ

∑∫
dk

V �J
f n (kf κf ,kκ)T �J

ni (kκ,kiκi)

E − εN
n − εk′ + i0

. (1)

The notation in Eq. (1), the matrix elements, and the method of
solution using a hybrid OpenMP-MPI parallelization suitable
for high-performance supercomputing architectures are given
in Ref. [4].

The T -matrix elements obtained from solution of Eq. (1) are
used to determine the scattering amplitudes [4], which in turn
are used to calculate the spin-asymmetry parameter SA. For
scattering of unpolarized spin- 1

2 electrons on an unpolarized

TABLE IV. Oscillator strengths of the Hg ground state. Experi-
mental values listed by NIST [28] are also shown.

Oscillator strength

Transition RCCC Expt.

(6s2) 1S0–(6s6p) 3P1 0.038 0.024
(6s2) 1S0–(6s6p) 1P1 1.20 1.16
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target this is given by Scott et al. [30],

SA = −2

σu(2J0 + 1)
Im

{ ∑
M1M0

f

(
M1

1

2
; M0 − 1

2

)

× f ∗
(

M1
1

2
; M0

1

2

) }
, (2)

where Im{} denotes the imaginary part and the cross section
σu is

σu = 1

2(2J0 + 1)

∑
M1M0m1m0

|f (M1m1; M0m0)|2. (3)

The scattering amplitude f (M1m1; M0m0) describes the tran-
sition from a target state with total angular momentum J0

and spin projection M0 to a target state with J1 and M1. The
initial and final spin projections of the scattered electron are
m0 and m1, respectively. For elastic scattering of unpolarized
electrons on an unpolarized spin-zero target the SA parameter
is equivalent to the Sherman function [31]. Note that the
nonrelativistic convergent close-coupling method has a zero
spin-flip amplitude [f (0 1

2 ; 0 − 1
2 ) = 0] due to the absence of

spin-orbit coupling in the formalism and therefore Eq. (2)
yields identically zero for SA.

III. RESULTS

The results for the RCCC method calculations of the
SA parameter of Zn are illustrated in Fig. 1. Here the
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FIG. 1. (Color online) Spin-asymmetry parameter SA at a range of energies for elastic electron scattering on zinc. Measurements of
Bartsch et al. [12] are presented. The RCCC calculations are described in the text. Relativistic distorted-wave calculations of McEachran and
Stauffer [13], Szmytkowski and Sienkiewicz [14], and Kumar et al. [15] are denoted by RDWa , RDWb, and RDWc, respectively.
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spin-asymmetry parameter is calculated across a wide range
of energies and compared with the measurements of Bartsch
et al. [12] and the previous relativistic distorted-wave (RDW)
calculations of McEachran and Stauffer [13], Szmytkowski
and Sienkiewicz [14], and Kumar et al. [15]. The RDW
calculations utilize first-order perturbative solutions of the
Dirac equation for various model potentials. The measure-
ments were taken with an angular resolution of 3.5◦ and this
is incorporated by convolution of the RCCC results. Note in
Fig. 1 that there is a significant discrepancy between exper-
iment and previous distorted-wave theories for an electron

impact energy of 9.0 eV. The RCCC method, which is
both unitary and has a full account of relativistic spin-orbit
effects, produces results that are in excellent agreement with
experiment at this energy. It has been demonstrated previously
in an analysis of spin-resolved electron-sodium scattering that
the unitarity of the close-coupling formalism accounts for
the influence of excited states on the elastic channel spin
asymmetry [32]. At the energies of 2, 3, 4, 5, and 6 eV there is
also excellent overall agreement between the RCCC results and
experiment. We note that it is in this low-energy region, where
cascade effects from high-lying states are absent, that Pravica
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FIG. 2. (Color online) Spin-asymmetry parameter SA for elastic electron scattering on mercury. Measurements of Dummler et al. [16] (1.0,
1.5, and 1.9 eV), Kaussen et al. [17] (6, 9, 11, 12.2, and 14 eV), and Duweke et al. [18] (2.4 and 3.9 eV) are presented. The RCCC calculations
are described in the text. The relativistic distorted-wave calculations of Szmytkowski and Sienkiewicz [14], the generalized density-functional
calculations of Fritsche et al. [19] and Haberland and Fritsche [20], and the R-matrix calculations of Bartschat et al. [21] are denoted RDW,
GDF, and R-matrix, respectively.
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et al. [1] highlight the discrepancy between experiment and
theory for the P2 Stokes parameter of zinc. At 11 eV there is
significant disagreement between theory and experiment. It is
in this energy region that 3d10 core excitation levels exist; these
states cannot be modeled accurately with the RCCC method,
which assumes a closed 3d10 core. The NIST lists core excited
states (3d94s24p) 3P o

1 , (3d94s24p) 3Do
1 , and (3d94s24p) 3P o

1
at 11.187, 11.804, and 11.877 eV, respectively. Napier et al.
[33] have shown that experimental elastic differential cross
sections are affected by negative-ion resonances associated
with these core excited states. The present RCCC model
does not incorporate 3d9 . . . excited states and therefore these
resonances could be responsible for the current discrepancy
between the RCCC spin-asymmetry results and experiment at
11 eV. At 14 eV the agreement between theory is once again
good; however, the measured peak in the spin-asymmetry
parameter is a little sharper than that produced by the RCCC
calculations.

The accuracy of the RCCC method in the calculation of
the SA parameter for e-Hg scattering is illustrated in Fig. 2.
Here the spin-asymmetry parameter is calculated across a wide
range of energies and compared with the measurements due
to Dummler et al. [16] at 1, 1.5, and 1.9 eV; Kaussen et al.
[17] at 6, 9, 11, 12.2, and 14 eV; and Duweke et al. [18]
at 2.4 and 3.9 eV. The results are also compared with the
following theories: the relativistic distorted-wave calculations
of Szmytkowski and Sienkiewicz [14] (denoted RDW); the
generalized density-functional calculations of Fritsche et al.
[19] at 1.0, 1.5, and 1.9 eV and Haberland and Fritsche [20] at
6, 9, and 11 eV (denoted GDF); and R-matrix calculations of
Bartschat et al. [21] at 1.9 and 6 eV. The detector has an angular
resolution of 3.5◦ at all energies except at 2.4 and 3.9 eV,
where it is 8.0◦. The angular resolution is incorporated by
convolution of the RCCC results. There is excellent agreement
between RCCC results and experiment at 1, 1.5, 1.9, 3.9, 9, 11,
12.2, and 14 eV. At 2.4 and 6 eV there is excellent agreement
between the RCCC spin-asymmetry results and experiment at
all angles except in the minima regions near 120◦ where the
RCCC results are lower than experiment. We note that the
RCCC spin-asymmetry results for Hg at 9 eV are in excellent
agreement with experiment despite the fact that 5d9 . . . core

excited states are listed in the NIST tables in this region at 8.79
and 9.54 eV [28].

Calculations performed without the phenomenological one-
and two-electron polarization potentials resulted in only a
marginal change in the Sherman function results for both Hg
and Zn. When the polarization potentials are set to zero the cal-
culated corresponding static dipole polarizabilites are 46.0a3

0
and 38.7a3

0 for Hg and Zn, respectively. The Sherman function
results, unlike the energy levels and oscillator strengths of
the target, are insensitive to the phenomenological one- and
two-electron polarization potentials employed.

IV. CONCLUSION

We have calculated the Sherman function for e-Zn and
e-Hg scattering across a wide range of scattering angles and
energies using the RCCC theory within the model of two
active electrons above a Dirac-Fock core. Three key features
of the RCCC method are critical: (i) an ab initio treatment
of spin via the Dirac equation, (ii) a unitary treatment of the
scattering process, and (iii) correct antisymmetrization of the
total wave function. There is excellent agreement between
the RCCC results and experiment for the case of Hg across a
wide range of energies and similarly there is excellent agree-
ment between RCCC results and experiment for Zn across
the range of energies where 3d10 core excitation levels do
not appear. Explicit treatment of core excitations is a difficult
task that is not undertaken in the present work. Meanwhile,
it would be interesting to determine if the R-matrix method
of Zatsarinny and Bartschat [34] that has the capacity to
directly account for core excitations would reproduce results
in agreement with the experimental Zn Sherman function at
11 eV. We remain convinced that geometric phases are not
required in ab initio relativistic scattering theories based on
the Dirac equation.
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