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Ratio of forbidden transition rates in the ground-state configuration of O II

Xiao-Ying Han,1,* Xiang Gao,2 De-Ling Zeng,3 Jun Yan,1 and Jia-Ming Li4,5

1Data Center for High Energy Density Materials, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
2Beijing Computational Science Research Center, Beijing 100084, China

3Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
4Key Laboratory for Laser Plasma (Ministry of Education) and Department of Physics, Shanghai Jiao Tong University,

Shanghai 200240, China
5Department of Physics and Center for Atomic and Molecular Nanosciences, Tsinghua University, Beijing 100084, China

(Received 23 February 2012; published 7 June 2012)

Based on a set of “quasicomplete bases,” using the large-scale multiconfiguration Dirac-Fock (MCDF) method,
we calculate the forbidden electric quadrupole (E2) and magnetic dipole (M1) transition rates of the transitions
2Do

5/2,3/2 → 4So
3/2 of the O II ground state considering the quantum electrodynamics (QED) corrections. Our

calculations demonstrate that the Breit interactions are most important among all the QED corrections. The
calculated E2 and M1 transition rates converge in a systematical and uniform manner with the extending
orbital basis and the calculation uncertainty of 2.5% is achieved by considering the valence- and core-excitation
correlations totally. With the converged transition rates, a value of the intensity ratio between the two transitions
in high-electron-density limit in planetary nebulas is given, that is, r(∞) = 0.363 ± 0.009, which is within the
overlap of the different observations and with the least uncertainty up to now. In addition, the E2 and M1
transition rates of two transitions 2P o

3/2,1/2 → 4So
3/2 of O II ground state and the ratio between the two transition

rates in high-electron-density limit are calculated and compared with the previous results.
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I. INTRODUCTION

Oxygen is one of the abundant elements in astronomy and
astrophysics. In planetary nebulas (PNs), the ratio between
the two transitions 2Do

5/2,3/2 → 4So
3/2 of O II ground state

[1s22s22p3], that is, I (3729)/I (3726), is used to diagnose
the electron densities [1]. In the high-electron-density limit,
the detailed balance between the collisional excitations and
deactivations produces a Boltzmann distribution of the ionic
states. The line intensities are proportional to the radiative
transition rates and the static weights of the ionic states
when the split of 2Do

5/2,3/2 states is much lower than the
electron temperature of the PNs. In low-electron-density limit,
the line intensities are proportional to the collision strengths
because of the equilibrium between the radiative transitions
and the collisional excitations. This paper mainly focuses on
the intensity ratio in high-electron-density limit.

The transitions 2Do
5/2,3/2 → 4So

3/2 of O II ground state
[1s22s22p3] are forbidden for electric dipole (E1) radiations;
hence, the total transition rates are mainly determined by
electric quadrupole (E2) and magnetic dipole (M1) radiations,
about which some studies [2–5] have been carried out.
More specifically, Eissner and Zeippen [2] investigated the
importance of the two-electron Breit terms (within the Breit-
Pauli approximation) on the M1 transition rates of O II; Fisher
and Tachiev [3–5] investigated the extensive correlation effects
and the importance of the core-excitation correlations in E1,
E2, and M1 transition rates through a nonrelativistic multi-
configuration Hartree-Fock (MCHF) calculation followed by a
configuration interaction (CI) calculation using the Breit-Pauli
(BP) Hamiltonian. Chen et al. [6] calculated the E2 and M1
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transition rate of 2Do
5/2,3/2 → 4So

3/2 transitions of O II ground
state through a MCDF calculation. In Chen’s calculation,
the core-excitation correlations are not considered in their
CI calculation and the convergence of these two forbidden
transition rates is not uniform. In this work, we use a GRASP-JT

code, which is based on the GRASP2K code [7] to carry out a
“quasicomplete basis” scenario demonstrated in the previous
work [8], to calculate the E2 and M1 transition rates of O II

ground state. Our calculations are fully relativistic and take
into account of the large-scale electron correlations (including
the valence- and core-excitation correlations) based on a set of
quasicomplete basis and include the quantum electrodynamic
(QED) corrections as perturbations. Adopting the quasicom-
plete basis scenario can fully utilize the variational principle;
for example, the convergence of the present results is in a more
systematical and uniform manner than Chen’s calculation. Our
calculated E2 and M1 transition rates converge uniformly
with an uncertainty of about 2.5%. With the converged E2
and M1 transition rates, a value for the intensity ratio in the
limit of high electron density, that is, r(∞) = 0.363 ± 0.009,
is given. This value is within the overlap of the astronomical
observations by Wang et al. [9], Monk et al. [10], and Copetti
and Writzel [11] and is more accurate than other theoretical
results [1,6,12–14]. Furthermore, the forbidden E2 and M1
transition rates of the other two transitions 2P o

3/2,1/2 → 4So
3/2 of

O II ground state and the ratio between the two transition rates
in high-electron-density limit are calculated and compared
with the other results [4].

II. THEORY

A brief description of the MCDF method will be presented
here. The interactions in a many-electron atomic system
can be separated into two sorts: longitudinal and transverse
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interactions. In the Coulomb gauge, the atomic Hamiltonian
only with the longitudinal electron-nucleus and electron-
electron interactions, can be expressed as (atomic units are
used throughout the paper if not specified)

HDC =
∑

i

[
c�α · �pi + (β + 1)c2 − Z

ri

]
+

∑
i<j

1

�ri − �rj

. (1)

The transverse interactions and the interactions with radiation
fields are treated as perturbations. The full relativistic atomic
orbital (AO) wave functions are obtained by solving the Dirac-
Fock equations self-consistently, that is,

HDC� = E�. (2)

In this work we use a GRASP-JT code, which is based on
GRASP2K code [7] to carry out a quasicomplete basis scenario
[8], to calculate all the relevant AO bases. More specifically, the
AOs with principal quantum numbers n = 1,2 are optimized
together by multiconfiguration self-consistent-field (MCSCF)
iterations to minimize the statistic weight summation F of the
lowest five energy levels 4So

3/2,
2Do

5/2,3/2,
2P o

3/2,1/2 of O II ground
state [1s22s22p3]. Here the multiconfigurations are generated
by single (S) and double (D) electron excitations from the
reference configuration 1s22s22p3. The AOs with n = 1,2 are
spectral orbital bases with n − l − 1 nodes. Then the AOs
with n = 1,2 are fixed, and the AOs with n = 3 are obtained
by MCSCF iterations to optimize the same F , where the
configurations are generated by S and D electron excitations
from the reference configurations 2p3 and 2p23p to all the AOs
with n = 2,3 and l = 0, . . . ,n − 1 (namely, the occupation
number of 1s orbital of all the configurations is fixed to be
2). In succession, with the AOs (n � 3) fixed, the AOs are
extended to nmax = 4, . . . ,9 from n to n + 1 by optimizing F
with the multiconfigurations generated by S and D electron
excitations from the reference configurations 2p3 and 2p23p to
the AOs with n = 2, . . . ,nmax and l = 0, . . . ,min(nmax − 1,7).
All the nodes of AOs with n � 3 are not fixed and they are
expected to be pseudostate orbitals.

Configuration state functions (CSFs) are linear combina-
tions of Slater determinations of the AOs with n � nmax.
Atomic state functions (ASFs) are linear combinations of CSFs
with the same parity (P ), total angular momentum (J ), and

magnetic quantum number (M), which can be expressed as

|�PJM; nmax〉 =
nc∑

r=1

Cr�|γrPJM; nmax〉, (3)

where Cr� is the mixing coefficient and �, γ represent all
other quantum numbers. The energy levels are calculated by
CI method including the S and D electron excitations config-
urations from the reference configuration 1s22s22p3, which
means the core (1s2) and valence (2s22p3) are all relaxed. So
the CI calculations take account of all the valence- and core-
excitation correlations, which are important for convergence.
The QED corrections, especially the Breit interaction, are
added to the atomic Hamiltonian as a perturbation in the
CI calculations. The Breit interaction is the most important
high-order correction not only for the energy levels but also
for the transition rates. The Breit (transverse) interaction
represents the relativistic retardation effect of electromagnetic
interactions with the finite velocity of light [15,16], especially
the retarded magnetic interactions among the electron currents
[17], which are illustrated later by the calculation results.

Table I shows our calculated lowest five energy levels and
the fine structure splits of O II ground state based on AOs
with nmax = 9(l � 7), taking account of the Breit interaction
and the comparisons with other theoretical and experimental
values. Our calculated fine structure energy levels, especially
the 2Do

5/2,3/2 energy levels, are in good agreement with the
experimental values. Our calculated fine structure splits also
agree well with the experimental values. The other theoretical
results [3,4,6] all agree well with the experimental values,
especially the results of Fisher and Tachiev [4] being the same
with the experimental values. The results of Fisher and Tachiev
[3,4] are calculated through a MCHF + BP calculation. Chen
et al.’s [6] results are from a MCDF calculation, which differ
from our calculations in two ways: (1) In their calculations,
the AOs with n � 5 are prepared with core (1s2) relaxed and
the AOs with n = 6,7 are prepared with core (1s2) frozen,
while our all AOs are prepared with core (1s2) frozen except
the AOs with n = 1,2; (2) in Chen’s CI calculations the core
1s2 is frozen and the number of CSFs of three Jπ symmetries
are 7970 for Jπ = 1/2−, 14 208 for Jπ = 3/2−, 17 599 for
Jπ = 5/2−, while in our CI calculations the core 1s2 is relaxed

TABLE I. The fine structure energy levels and fine structure splits of O II ground state [1s22s22p3] (in atomic units).

This work Chenc

Term (nmax = 9) Expt.a �b (nmax = 7) � Tachiev and Fisherd � Fisher and Tachieve

4So
3/2 0 0 0 0 0

2Do
5/2 0.122 865 0.122 158 0.58% 0.122 850 0.57% 0.123 129 0.79% 0.122 158

2Do
3/2 0.122 957 0.122 249 0.58% 0.122 941 0.57% 0.123 219 0.79% 0.122 248

2Do
5/2−2Do

3/2 − 0.000 091 − 0.000 091 − 0.000 091 − 0.000 090 − 0.000 090
2P o

3/2 0.186 285 0.184 384 1.03% 0.184 793 0.22% 0.184 877 0.27% 0.184 386
2P o

1/2 0.186 293 0.184 393 1.03% 0.184 806 0.22% 0.184 889 0.27% 0.184 398
2P o

3/2−2P o
1/2 − 0.000 008 − 0.000 009 − 0.000 012 − 0.000 012 − 0.000 012

aExperiment by Wenåker [18].
bPercentage difference between the calculations and the experimental values [18].
cCalculations by Chen [6].
dCalculations by Tachiev and Fischer [3].
eCalculations by Fischer and Tachiev [4].
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FIG. 1. Our calculated fine structure energy levels and fine structure splits of 2Do
5/2,3/2 and 2P o

3/2,1/2 states converge with the increasing nmax

of the AO bases. Results of 2Do
5/2,3/2 states are shown in panel (a) and results of 2P o

3/2,1/2 states are shown in panel (b). Our calculation results
consider the Breit interaction. In addition, the measured [18] and other theoretical [3,6] values are plotted for comparison.

and the number of CSFs of three Jπ symmetries are 59 684 for
Jπ = 1/2−, 108 649 for Jπ = 3/2−, 139 620 for Jπ = 5/2−.
The calculated energy levels of Chen are a little better than
our calculations. However, in the following we see that their
calculated two E2 transition rates of 2Do

5/2,3/2 → 4So
3/2 do not

converge uniformly, which brings a bigger uncertainty of the
total transition rates than our results.

Figure 1 shows the convergence process of our calculated
fine structure energy levels and splits with the increasing nmax.
In Fig. 1, an inconsistent variation of the convergence process
is shown at nmax = 3 of the curves for the fine structure splits
of 2Do

5/2,3/2 states [in panel (a)] and the fine structure levels
of 2P o

3/2,1/2 states [in panel (b)]. It is noted that the AOs of
nmax = 2 are spectral orbitals, while the AOs of nmax = 3 begin
to be pseudostate orbitals. Therefore, the inconsistent feature
at nmax = 3 should result from the break feature of the AO
bases. After nmax = 3, the convergence shows a systematical
and uniform manner with the extending bases.

The spontaneous radiative transition rate for a discrete
transition i → j can be obtained as

Aij = 2π

2Ji + 1

∑
Mi,Mj

∣∣〈�jPjJjMj |T (k)
λ |�iPiJiMi〉

∣∣2
, (4)

where T
(k)
λ is the multipole radiation field operator. Ac-

cording to the Wigner-Eckart theorem, the transition ma-
trix element is related to the reduced matrix element
〈�jPjJjMj ||T (k)

λ ||�iPiJiMi〉. Substituting the ASFs with
CSFs, and in turn with AOs, the reduced matrix element can
be calculated by the sum of single-electron reduced matrix
elements. In the Coulomb gauge, T (k) has two forms: T (k)(m)
for magnetic fields and T

(k)
t (e) for electric fields. The Coulomb

gauge corresponds to the velocity form in the nonrelativistic
limit. For the length form, the electric multipole operator
has another form T (k)(e) = T

(k)
t (e) + √

(k + 1)/kT
(k)
l (e). The

details are described elsewhere [19–21].
In the MCDF method, if the wave functions are accurate

the electric transition rates calculated in length and velocity
forms should be the same. However, the results in two forms
are usually different in multiconfiguration calculations since

the wave functions do not converge completely. Therefore, the
convergence of the values in two forms provides a stringent test
for the accuracy of the wave functions. In the velocity form,
the reduced matrix element 〈�jPjJjMj ||T (k)

λ ||�iPiJiMi〉 de-
pends sensitively on the wave functions at short distances,
while in the length form they depend sensitively on the wave
functions at long distances [19,20]. The magnetic transition
rates depend sensitively on the wave functions at intermediate
distances.

III. RESULTS AND DISCUSSIONS

Figure 2 shows that our calculated E2 transition rates
of 2Do

5/2,3/2 → 4So
3/2 converge in a systematical and uniform

manner with the increasing nmax. In Fig. 2, the values in
length and velocity form of 2Do

5/2 → 4So
3/2 and 2Do

3/2 →
4So

3/2 transition rates merge together at nmax = 9. More
specifically, the average values A = (AL + AV )/2 of each
transition rate vary about 1.1% from nmax = 8 to nmax = 9.
Namely, for the 2Do

5/2 → 4So
3/2 transition, Anmax=8 = 3.99 ×

10−5s−1 and Anmax=9 = 3.94 × 10−5s−1; for the 2Do
3/2 → 4So

3/2

transition, Anmax=8 = 2.62 × 10−5s−1 and Anmax=9 = 2.59 ×
10−5s−1. For the two transitions, if we set Anmax=9 as the
“benchmark” values, respectively, the differences of the tran-
sition rates in length and velocity forms of nmax = 9 compared
with the benchmark values are all about 2.2%. In Chen’s
calculations [6] the uncertainty of 2Do

3/2 → 4So
3/2 transition

rates (3.48+0.20
−0.99 × 10−5s−1) is much bigger than the uncer-

tainty of 2Do
5/2 → 4So

3/2 transition rates (3.00+0.06
−0.06 × 10−5s−1),

which means their calculations do not converge uniformly
since the core-excitation correlations are not considered. In
addition, Fig. 2 shows that the Breit interaction reduces the E2
transition rates about 27% by comparisons between the values
with and without considering Breit interactions. Namely, for
the 2Do

5/2 → 4So
3/2 transition Anmax=9 changes from 5.41 ×

10−5s−1 (without Breit interaction) to 3.94 × 10−5s−1 (with
Breit interaction) and for the 2Do

3/2 → 4So
3/2 transition Anmax=9

changes from 3.49 × 10−5s−1 (without Breit interaction) to
2.59 × 10−5s−1 (with Breit interaction). In our calculations,
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FIG. 2. (Color online) Our calculated E2 transition rates for 2Do
5/2 → 4So

3/2 and 2Do
3/2 → 4So

3/2 converge with the increasing nmax of AO bases.
Results of 2Do

5/2 → 4So
3/2 transition are shown in panel (a) and results of 2Do

3/2 → 4So
3/2 transition are shown in panel (b). �, Results without

considering the Breit interaction in length form; �, results without considering the Breit interaction in velocity form; �, results considering
the Breit interaction in length form; �, results considering the Breit interaction in velocity form; •, average value A = (AL + AV )/2 without
considering the Breit interaction; ◦, average value A = (AL + AV )/2 considering the Breit interaction.

the rates of further considering the other QED corrections,
for example, the vacuum polarization, the mass shift, and
self-energy correlations, merely vary by a magnitude of about
0.001% compared with the results of only considering Breit
interaction; hence, for clearer comparisons, we do not plot
the results of taking into account the other higher-order QED
corrections.

Figure 3 shows that our calculated M1 transition rates of
2Do

5/2,3/2 → 4So
3/2 converge with the increasing nmax. From

nmax = 8 to nmax = 9, the M1 transition rates of 2Do
5/2,3/2 →

4So
3/2 change 0.1%. This means that the M1 transition rates

converge faster than E2 transition rates. In Fig. 3, it can
be found that the Breit interaction affects the M1 transition
rates by magnitude, which is more remarkable than the
effect for E2 transition rates. This illustrates that the Breit
(transverse) interaction represents especially the retarded
magnetic interactions among the electron currents [17].

Table II shows our recommended E2 and M1 transition
rates for 2Do

5/2,3/2 → 4So
3/2 and the comparisons with other

theoretical values [4,6,12,13]. According to the convergence of
the transition rates with the increasing nmax, as shown in Figs. 2
and 3, the uncertainty of our recommended rates is given as
2.5% by considering the difference (2.2%) of the length and
velocity form values and the difference (1.1%) between the
values of nmax = 8 and nmax = 9. For the two transitions, in
general, all the theoretical results with bigger values (e.g.,
E2 transition rates) agree better with each other than the
tiny results (e.g., M1 transition rates). This demonstrates that
achieving convergence of tiny values is more difficult.

In Table II, our calculated transition rates for 2P o
3/2,1/2 →

4So
3/2 transitions are also listed. For the forbidden M1 transi-

tions, the rates of 2P3/2,1/2 → 4S3/2 (in magnitude of 10−2) are
much larger than the rates of 2D5/2,3/2 → 4S3/2 (in magnitude
of 10−4 and 10−6), while for the forbidden E2 transitions, the
rates of 2D5/2,3/2 → 4S3/2 (in magnitude of 10−5) are larger
than the rates of 2P3/2,1/2 → 4S3/2 (in magnitude of 10−6 and
10−8). This is because of the favor of the angular momentum
l transfers of one (two) for M1 (E2) transitions. That is to

FIG. 3. (Color online) Our calculated M1 transition rates for 2Do
5/2 → 4So

3/2 and 2Do
3/2 → 4So

3/2 transitions converge with the increasing nmax

of AO bases. Results of the 2Do
5/2 → 4So

3/2 transition are shown in panel (a) and results of the 2Do
3/2 → 4So

3/2 transition are shown in panel (b).
�, Results without considering the Breit interactions; �, results considering the Breit interactions.
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TABLE II. Our recommended E2 and M1 transition rates for 2Do
5/2,3/2 → 4So

3/2 and the comparison with other theoretical values. Our
calculated E2 and M1 transition rates for 2P o

3/2,1/2 → 4So
3/2 (in unit of s−1). The numbers in square brackets indicate the power of 10.

Transition Type This work (nmax = 9) Chena Zeippenb Zeippenc Fischer and Tachievd

2Do
5/2 → 4So

3/2 E2 3.94+0.09
−0.09[−5] 3.91+0.08

−0.11[−5] 3.64[ − 5] 3.39[ − 5] 3.382[ − 5]

M1 3.02+0.08
−0.08[−6] 3.00+0.06

−0.06[−6] 1.83[ − 6] 1.98[ − 6] 7.416[ − 6]

E2 + M1 4.25+0.10
−0.10[−5] 4.21+0.09

−0.11[−5] 3.82[ − 5] 3.59[ − 5] 4.124[ − 5]
2Do

3/2 → 4So
3/2 E2 2.59+0.06

−0.06[−5] 3.48+0.20
−0.99[−5] 2.36[ − 5] 2.20[ − 5] 2.209[ − 5]

M1 1.50+0.04
−0.04[−4] 1.48+0.01

−0.00[−4] 1.41[ − 4] 1.59[ − 4] 1.414[ − 4]

E2 + M1 1.75+0.05
−0.05[−4] 1.83+0.03

−0.10[−4] 1.65[ − 4] 1.81[ − 4] 1.635[ − 4]
2P o

3/2 → 4So
3/2 E2 1.27+0.10

−0.10[−6] 1.233[ − 8]

M1 5.87+0.44
−0.44[−2] 5.646[ − 2]

E2 + M1 5.87+0.44
−0.44[−2] 5.646[ − 2]

2P o
1/2 → 4So

3/2 E2 5.27+4.16
−4.16[−8] 1.510[ − 6]

M1 2.35+0.18
−0.18[−2] 2.265[ − 2]

E2 + M1 2.35+0.18
−0.18[−2] 2.265[ − 2]

aCalculations by Chen et al. [6].
bCalculations by Zeippen [12].
cCalculations by Zeippen [13].
dCalculations by Fisher and Tachiev [4].

say the major contributions of the M1 transition mainly result
from the transitions of 2P o

3/2,1/2 terms to 4So
3/2 terms because

of a favor of change one for l. We note that the 2D3/2 state has
a component of 2P o

3/2 term since different LS coupling terms
with the same total angular momentum J will mix due to the
spin-orbit interactions, while the 2D5/2 state has no 2P3/2,1/2

components. Therefore, the M1 transition rate of 2D3/2 →
4S3/2 is much larger than that of 2D5/2 → 4S3/2. Although the
absolute value of M1 transition rates of 2D5/2,3/2 → 4S3/2 are
small, it is interesting to note that we still can calculate the
M1 rates with enough accuracy because we have achieved
enough convergence for the E2 transition rates. The uniform
convergence guarantees the convergence of the products of the
initial and final wave functions at large and small distances
according to the E2 matrix elements of the length gauge
and velocity gauge, respectively, and then ensures the M1
transition matrix elements with nearly the same accuracy,
which involves the integrations at intermediate distances.

Similarly, for E2 transitions the major contributions mainly
result from the transitions of 2Do

5/2,3/2 terms to 4So
3/2 terms

because of a favor of change of two for l. The 2P o
3/2 state

has a component of 2Do
3/2 term due to the the spin-orbit

interactions, while the 2P o
1/2 state has no mixture of 2D5/2,3/2

terms; hence, the E2 transition rate of 2P o
3/2 → 4So

3/2 should be
much larger than that of 2P o

1/2 → 4So
3/2. In Table II, the results of

Fischer and Tachiev [4] are reversed, namely 1.233 × 10−8 for
2P o

3/2 → 4So
3/2 and 1.510 × 10−6 for 2P o

1/2 → 4So
3/2, which are

unreasonable from the above qualitative analysis. Our results
of 1.27 × 10−6 for 2P o

3/2 → 4So
3/2 and 5.27 × 10−8 for 2P o

1/2 →
4So

3/2 are reasonable. In our calculations, for E2 transition rates
of 2P o

3/2,1/2 → 4So
3/2, the uncertainties are larger than those of

2Do
5/2,3/2 → 4So

3/2 transition rates since it is very difficult to
calculate the tiny E2 rates of 2P3/2,1/2 → 4S3/2 transitions.

The uncertainty of the E2 transition rate of 2P o
3/2 → 4So

3/2
is estimated as about 7.5%, which involves the difference
between the results of length and velocity forms (about
7.5%) and the difference between the values of nmax = 8 and
nmax = 9 (<1%). For the M1 transition rate of 2P o

3/2 → 4So
3/2,

the difference between the values of nmax = 8 and nmax = 9
is smaller than 1%, but we give the same uncertainty 7.5% as
the uncertainty of the corresponding E2 transition rate. The
E2 transition rate of 2P o

1/2 → 4So
3/2 is tiny (in magnitude of

10−8), the complete convergence of which may be affected
by the numerical errors caused by present double precision
calculations and is out of the scope of this work. For the
M1 transition rate of 2P o

1/2 → 4So
3/2, the difference between

the values of nmax = 8 and nmax = 9 is smaller than 1%, but
considering the uncertainty of the 2P3/2 → 4S3/2 transition and
that 2P3/2 and 2P1/2 belong to the same LS term, here we still
give the same uncertainty as 7.5%.

According to the recommended E2 and M1 transition
rates, the recommended ratio between 2Do

5/2 → 4So
3/2 and

2Do
3/2 → 4So

3/2 transition rates in high-electron-density limit
can be obtained by the following formula [1]:

r(∞) = 6A(E2+M1)
(2
Do

5/2 → 4So
3/2

)
4A(E2+M1)

(2
Do

3/2 → 4So
3/2

) . (5)

Table III shows our recommended ratios (with uncertainty
of 2.5%) and the comparisons with the measurements [9,10]
and other theoretical values [1,6,12–14]. For clearer compar-
isons, all the values are plotted in Fig. 4.

Figure 4 shows that the previous calculated ratios change
a lot from 0.43 to 0.26 from 1957 to 1996. Until to
1996, only two calculation results, Eissner in 1981 [2] and
Zeippen in 1982 [12], are within the experimental uncertainties
of Monk [10]. These two calculations are carried out on
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TABLE III. The intensity ratio between 2Do
5/2 → 4So

3/2 and 2Do
3/2 → 4So

3/2 transition rates in the high-electron-density limit.

This work Chen [6] Seaton [1] Eissner [2] Zeippen [12] Zeippen [13] Wiese [14] Fisher & Tachiev [4]

Calculation (∞) 0.363 ± 0.009 0.345+0.028
−0.014 0.43 0.35 0.348 0.297 0.26 0.378

Monk [10] Wang and Liu [9]
Observation (∞) 0.339 ± 0.028 0.378 ± 0.017

a set of small AO bases only considering five and nine
configurations, respectively, and adopting a nonrelativistic
Hamiltonian followed by relativistic corrections. It is noted
that Zeippen’s calculated transition rates for 2Do

5/2,3/2 → 4So
3/2

[12] are lower than our calculated values, respectively, which
means his calculations do not converge enough, although
his ratio is within the measurement uncertainties. In 1987
Zeippen gave a new ratio value 0.297 [13] based on a new
AO basis with nmax = 4 including 23 configurations. The
new ratio is lower than the lower limit of the measurements
since his rate of 2Do

5/2 → 4So
3/2 is lower and his rate of

2Do
3/2 → 4So

3/2 is higher than the corresponding values given
in 1982. Then Fisher and Tachiev, using the MCHF + BP
method, present a ratio value 0.378 [4] within the measurement
uncertainties of Wang and Liu [9]. Recently, Chen et al. carry
out a large-scale MCDF calculation and give a ratio with a
ununiformity uncertainty, that is, r(∞) = 0.345+0.028

−0.014 [6]. In
Chen’s calculations the transitions rates for 2Do

5/2,3/2 → 4So
3/2

converge to a certain degree and his ratio with uncertainties
has some overlap of two experimental uncertainties. How-
ever, since in Chen’s calculations the transition rates for
2Do

5/2 → 4So
3/2 and 2Do

3/2 → 4So
3/2 do not converge uniformly,

the uncertainties of his given ratio are bigger and nonuniform.
In Fig. 4, the newest ratio, that is, r(∞) = 0.363 ± 0.009, is
within the overlap range of two experimental measurements
and with the smallest uncertainty, which means the present
calculations converge enough and the large-scale MCDF
calculation based on a set of quasicomplete basis is an efficient
strategy.

FIG. 4. The intensity ratio between 2Do
5/2 → 4So

3/2 and 2Do
3/2 →

4So
3/2 transition rates at the high-electron-density limit. The dashed

lines are the upper and lower limits of Wang and Liu observations [9].
The solid lines are the upper and lower limits of Monk observations
[10].

According to the calculated E2 and M1 transition rates, the
ratio between 2P o

3/2 → 4So
3/2 and 2P o

1/2 → 4So
3/2 transition rates

in high-electron-density limit can be obtained by

r(∞) = 4A(E2+M1)
(2
P o

3/2 → 4So
3/2

)
2A(E2+M1)

(2
P o

1/2 → 4So
3/2

) . (6)

Our calculated ratio is r(∞) = 4.99 ± 0.38, which agrees
with the ratio value (4.985) of Fisher and Tachiev [4]. This
means that the large difference between our and Fisher and
Tachiev’s calculated M1 transition rates of 2P o

3/2,1/2 → 4So
3/2

has nearly no affect on the ratio values since the M1 rates are
smaller than the E2 rates by several orders.

Finally, we make the following conclusion. Based on a
set of quasicomplete basis, a large-scale MCDF calculation
is carried out and a systematical and uniform convergence
is obtained. The converged forbidden E2 and M1 transition
rates for (2D5/2,3/2 → 4S3/2) with 2.5% uncertainty by taking
into account the large-scale electron correlations (including
valence-excitation and core-excitation correlations) and QED
corrections (especially the Breit interactions) are recom-
mended. A ratio value for the two transitions of 2D5/2,3/2 →
4S3/2 in the limit of high-electron-density is given, that is,
r(∞) = 0.363 ± 0.009. The recommended ratios as well as
the transition rates for 2Do

5/2,3/2 → 4So
3/2 are expected to be

useful for astronomy and astrophysics. In addition, we note that
the forbidden transition rates of different fine structure levels
belonging to the same LS term can differ by 2 orders. We give
a qualitative explanation from the physical picture why such
an interesting phenomenon will happen. This explanation is
useful for qualitatively testing the tiny values of the forbidden
transitions. Furthermore, the E2 and M1 forbidden transition
rates of 2P3/2,1/2 → 4S3/2 are given and the ratio value for
the two transitions in the limit of high-electron-density is
given, that is, r(∞) = 4.99 ± 0.38, which deserve further
study.
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