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Correlation energies beyond the random-phase approximation: Inhomogeneous
Singwi-Tosi-Land-Sjolander functional applied to spherical atoms and ions
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The inhomogeneous Singwi, Tosi, Land, and Sjolander (ISTLS) correlation energy functional of Dobson,
Wang, and Gould [Phys. Rev. B 66, 081108(R) (2002)] has proved to be successful at predicting correlation
energies in semihomogeneous systems, showing promise as a robust “next step” fifth-rung functional by using
dynamic correlation to go beyond the limitations of the direct random-phase approximation (dRPA), but with
similar numerical scaling with system size. In this work we test the functional on spherically symmetric, neutral,
and charged atomic systems and find it gives excellent results (within 2mHa/e− except Be) for the absolute
correlation energies of the neutral atoms tested, and good results for the ions (within 4mHa/e− except B+). In all
cases it performs better than the dRPA. When combined with the previous successes, these new results point to the
ISTLS functional being potentially suitable for high-accuracy, benchmark DFT correlation energy calculations
in a wide range of systems.
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I. INTRODUCTION

Since their development, density-functional theory [1,2]
(DFT) methods have vastly increased the range of quantum
mechanical problems that can be studied. This wide range
comes through the use of approximation to the exchange-
correlation (xc) physics necessarily introduced to make Kohn-
Sham (KS) theory possible. The most common approximations
such as the LDA [2], GGA [3], and hybrid schemes [4] perform
generally well, but usually give very poor results for electron
correlation alone. In particular they give completely incorrect
physics for van der Waals (vdW) dispersion physics, which
governs the weak bonds between widely separated systems.
This physics can be important in systems where there is a realm
of near-zero density between subsystems, such as in stretched
molecules or lattices. The vdW physics is reintroduced in
the popular vdW-DF [5] group of functionals. However, such
methods fail to reproduce the correct exponent [6] for vdW
power laws U = −CpD−p in zero-gap systems with at least
one long and one short dimension, such as thin slab geometries
and nanowires [7].

An alternative approach to total energy calculations is
to (i) solve for a ground state under a given scheme (e.g.,
LDA) to evaluate V KS(r) and, via the KS Hamiltonian
ĥ = − 1

2∇2 + V KS(r), to evaluate the orbitals and KS en-
ergies through ĥψi = εiψi and the density through n(r) =∑

i fi |ψi(r)|2 where fi is the occupation number of orbital i;
(ii) recalculate the energy using the so-called exact exchange
(EXX) functional for exchange and a different functional for
correlation. Here we use the Hartree and exchange pair density
n2Hx(r,r ′) = n(r)n(r ′) − | ∑i fiψi(r)ψi(r ′)|2 to define the
energy terms EH + Ex = 1

2

∫
d rd r ′
|r−r ′|n2Hx(r,r ′) and we set the

EXX total energy to EEXX = ∫
d r[− 1

2

∑
i ψi(r)∇2ψi(r) +

n(r)V KS(r)] + EH + Ex.
Thus the total energy of a given system can be calculated

exactly from the KS potential, with the exception of one term:
the correlation energy, defined here through Ec = E − EEXX

where E is the true ground-state energy of the system. The
correlation energy term essentially bundles the “difficult”

physics of the true many-electron system into a single term,
which is a highly nonlocal functional of the density and/or
Kohn-Sham orbital wave functions, and must be approximated.
An ab initio way to evaluate correlation energies is to
use time-dependent DFT [8] via the linear density-response
function, the fluctuation-dissipation theorem, and the adiabatic
connection formula to form the “ACFD” functional. In recent
years there has been a large increase in the use of ACFD
functionals, particularly for the evaluation of vdW dispersion.
The majority of these also make use of the direct random-
phase approximation (dRPA) which we define later. A good
discussion on, and summary of the ACFD-dRPA approach can
be found in Ref. [9], although initial calculations on inhomo-
geneous systems were carried out more than a decade ago [10].

Theoretically exact applications of the ACFD involve the
unknown dynamic exchange-correlation kernel f xc, a two-
point function defined as the second functional derivative of
the xc energy via f xc(r,r ′; t − t ′) = δ2Exc/[δn(r,t)δn(r ′,t ′)].
The concept of the xc kernel can also be extended to current-
response theory where the tensor kernel Fxc is known [11] to
be a more “amenable” functional of the density. In practice
f xc must be approximated, and the commonly employed
dRPA involves setting f xc ≈ 0. Perhaps surprisingly, the
ACFD-dRPA functional has generally performed well for
calculating energy differences, but not so well for absolute
energies. Through the years various approximations have
been proposed for the f xc kernel, including the ALDA [12],
energy-optimized kernel [13], and the Petersilka, Gossmann,
and Gross exchange kernel [14]. These have met with varying
degrees of success in different systems, but none has worked
well in a wide range of systems. More recently the exact
exchange kernel f xc ≈ f x has been evaluated [15–18] in
the time-dependent EXX (tdEXX) approach leading, via the
ACFD functional, to excellent results for correlation energies
of atoms and molecules. However this kernel is very difficult
[O(N5)/O(N6) in molecular basis function language] to
calculate in practice, requiring inversion of the response or
solutions of nonlinear eigenequations. Similarly, alternative
approaches such as RPAx [19] and SOSEX [20] exist to
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improve on the ACFD-dRPA by including many-electron
exchange but again these are numerically more difficult
problems than the dRPA.

II. THE ISTLS METHOD

The ISTLS formalism [21,22], extending a total energy
method for jellium [23] to general systems, was developed
as a means of approximating the dynamic interactions in
a sophisticated manner by making use of a self-consistent
pair-correlation function. As shown in Ref. [22] it is equivalent
to self-consistently approximating Fxc in an ACFD functional
and it has so far enjoyed success in semihomogeneous test
systems [21,24–26], most notably correctly reproducing the
difficult transition from a three- to a two-dimensional metal,
something the dRPA fails to do. In some sense the ISTLS
represents the “next step” of ACFD-like approximation:
introducing self-consistent physics to the dynamic tdDFT
calculation in a rigorous manner through Fxc, rather than
deriving f xc or Fxc from the ground-state calculation.

In the original paper [21] on the method, the ISTLS func-
tional was also tested on the helium atom where it performed
very well, calculating the correlation energy to within 0.1 mHa.
Advances in computing power and improvements in numerical
techniques have since allowed for wider testing. Here we
discuss the implementation of the functional in spherical
systems, and test it in a set of spherically symmetric neutral
atoms and ions, including spin-polarized systems such as
atomic sodium and lithium.

III. ISTLS FORMALISM FOR MULTI-ELECTRON ATOMS

The Kohn-Sham equations ĥψi = εiψi can be used to
generate the one-electron-like orbitals of a system with
a time-invariant KS potential V KS. In the absence of a
magnetic field but the presence of a small perturbation to
V KS of form δV (r,t) = δV (r)eiωt we can write the change
in density of the system as δn = ∫

d r ′χ0(r,r ′; ω)δV (r ′) ≡∫
d r ′ν0(r,r ′; ω) · ∇δV (r ′) where χ0 is the bare (noninter-

acting) density-density response of the system, and ν0 is
the bare vector response. The change in current can be
defined via δ j = iω

∫
d r ′P0(r,r ′; ω)∇δV (r ′) where P0 is

the bare current-current response. Using tensor notation,1

it follows from these expressions that χ0 = −∇′ · ν0 and
ν0 = −∇ · P. Each of these has an interacting equivalent (e.g.,
χλ), which corresponds to the response a related system with
electron-electron Coulomb interactions of strength λ but with
the ground-state density unchanged. When λ = 1 these are
equivalent to the response of the system to a change in the
external potential.

The ACFD correlation functional can be defined as

Ec =
∫ 1

0
dλ

∫ ∞

0

ds

π

∫
d rd r ′	λ(r,r ′,is), (1)

1Here and henceforth we define indices μ,ν ∈ (x,y,z), vectors to
be bold v, and tensors to be upright sans-serif T. The tensor T =
v ⊗ u has elements Tμν = vμuν , the vector u = v · T has elements
uμ = vνTνμ, and A : B = ∑

μν AμνBνμ is scalar.

with integrand1 	λ(r,r ′,ω) = [χλ − χ0](r,r ′; ω)v(|r ′ −
r|) ≡ [νλ − ν0](r,r ′; ω) · ∇′v(|r ′ − r|) ≡ [Pλ − P0](r,r ′; ω) :
V(|r ′ − r|). Here v(R) = 1/R is the Coulomb potential
and V(R) = −∇ ⊗ ∇v(R) is its tensor equivalent. We can
explicitly write the bare density-density and density-current
responses as

χ0(r,r ′; is) = 2Re
∑

i

fiψ
∗
i (r)ψi(r ′)Gi(r,r ′), (2)

ν0(r,r ′; is) = Im
∑

i

fi[ψ
∗
i (r)ψi(r ′)∇′Gi(r,r ′)

−Gi(r,r ′)∇′ψ∗
i (r)ψi(r ′)]/s, (3)

where Gi is short-hand for the bare one-electron Greens
function G(r,r ′; εi + is), a solution of [ĥ − �]G(r,r ′; �) =
δ(r − r ′). The current-current response P0 has a similar
expression. The interacting responses are defined via

χλ = χ0 + χ0 �
(
λv + f xc

λ

)
� χλ, (4)

Pλ = P0 + P0 �
(
λV + Fxc

λ

)
� Pλ, (5)

where A � B ≡ ∫
dxA(r,x)B(x,r ′) and we take tensor prod-

ucts where appropriate. It is only in this relationship between
the interacting and noninteracting case that the xc kernel is
involved.

The ISTLS scheme can be written [22] as a tensor Fxc of
the form,

λV + Fxc
λ = 1

s2
gλ(r,r ′)∇ λ

|r − r ′| ⊗ ∇′, (6)

gλ(r,r ′) = n2λ(r,r ′)/[n(r)n(r ′)], (7)

where n2λ is the interacting ground-state pair density at
coupling strength λ and n is the ground-state density. Here we
self-consistently calculate the dynamic interactions via the pair
density n2λ calculated by the fluctuation-dissipation theorem,

n2λ(r,r ′) = n(r)n(r ′) − δ(r − r ′)n0(r)

−
∫

ds

π
χλ(r,r ′; is), (8)

χλ(r,r ′; is) = (∇ ⊗ ∇′) : Pλ(r,r ′). (9)

In practice we must iterate these equations: (i) set gλ ≈ g0

(i.e., Hartree and exchange only) such that g0(r,r ′) = 1 −
[n0(r)n0(r ′)]−1| ∑i fiψi(r)ψ∗

i (r ′)|2, (ii) calculate Pλ via (5)
and (6), (iii) use Pλ to calculate a new gλ via (8), and (iv) use
the new gλ in (ii) and repeat until convergence is reached.

Making use of (6) and (9) we can transform (5) into χλ =
χ0 + Qλ � χλ where Qλ(r,r ′) = ∫

dxν0(r,x) · Fλ(x,r ′) and

Fλ(r,r ′) = gλ(r,r ′)∇ λ

|r − r ′| . (10)

Thus it is possible to evaluate the ISTLS equations using only
χ0 and ν0 and not the full tensor current-current response
P0. This form of the equations is the original [21] approach
to ISTLS calculations. It should be noted that the Petersilka-
Gossmann-Gross (PGG) kernel [14] can be defined in a similar
manner with Qλ(r,r ′) = ∫

dxν0(r,x) · ∇x[g0(x,r ′) λ
|x−r ′| ] ≡∫

d rχ0(r,x) λg0(x,r ′)
|x−r ′| .

In spherically symmetric atoms we can separate the or-
bitals as ψi(r) ≡ ψnlm(r) = Rnl(r)Ylm(r̂) and εi ≡ εnl where

062504-2



CORRELATION ENERGIES BEYOND THE RANDOM-PHASE . . . PHYSICAL REVIEW A 85, 062504 (2012)

Ylm is a spherical harmonic function. The potential is
V KS(r) ≡ V KS(r) and the radial function satisfies ĥlRnl(r) =
εnlRnl(r) where ĥl ≡ − 1

2 {r−1∂r∂rr − l(l + 1)r−2} + V KS(r)
and ∂r ≡ ∂/∂r . It follows from the properties of spherical
harmonics and the definition of the Greens function that∑

m ψ∗
nlm(r)ψnlm(r ′) = 2l+1

4π
Pl(x)γnl(r,r ′) and G(r,r ′; �) =∑

l
2l+1
4π

Pl(x)G�
l (r,r ′) where x = r̂ · r̂ ′, Pl(x) is a Legendre

polynomial of order l and we use the short-hand γnl(r,r ′) =
Rnl(r)Rnl(r ′). Here G�

l satisfies [ĥl − �]G�
l (r,r ′) = δ(r −

r ′)/(rr ′). It also follows from the symmetry of the system
that

χλ(r,r ′; is) =
∑
L

2L + 1

4π
PL(x)χλL(r,r ′; is), (11)

νλ(r,r ′; is) =
∑
L

2L + 1

4π
PL(x)

[
νr

λL r̂ ′ + ν⊥
λLr ′

⊥
]
, (12)

where r ′
⊥ = r̂ − (r̂ · r̂ ′)r̂ ′ = r̂ − x r̂ ′. Thus the response equa-

tion is diagonal in L and χλL = χ0L + QλL �r χλL where
A �r B ≡ ∫ ∞

0 R2dRA(r,R)B(R,r ′).
Making use of the completeness of the polynomials Pl(x)

we define the bare (λ = 0) responses through

χ0L(r,r ′; is) = 2
∑
nll′

KL
ll′γnlReGεnl+is

l′ , (13)

νr
0L(r,r ′; is) = 1

s

∑
nll′

KL
ll′

{
γnl

[
∂r ′ ImG

εnl+is
l′

]

− [∂r ′γnl]ImG
εnl+is
l′

}
, (14)

ν⊥
0L(r,r ′; is) = 1

sr ′
∑
nll′

(
βL

l′l − βL
ll′

)
γnlImG

εnl+is
l′ . (15)

The Clebsch-Gordan-like coefficients KL
ll′ and βL

ll′ are

defined as KL
ll′ = (2l+1)(2l′+1)

4π(2L+1)

∫ 1
−1 dxPlPl′PL and βL

ll′ =
(2l+1)(2l′+1)

4π(2L+1)

∫ 1
−1 dxDlPl′PL where Dl ≡ [∂xPl(x)]. We can

similarly expand the vector kernel (10) of the ISTLS scheme
as

F(r,r ′) =
∑
L

2L + 1

4π
PL(x)

[
F r

L(r,r ′)r̂ + F⊥
L r⊥

]
, (16)

where F r
L = ∑

ll′ K
L
ll′gλl[∂rvl′ ] and F⊥

L = ∑
ll′ β

L
l′lgλlvl′/r .

We define gλl through (7) and (8) but with χλl(r,r ′)
only, and use the Legendre expansion of the Coulomb
potential 1/|r − r ′| = ∑

l vl(r,r ′) (2l+1)Pl (x)
4π

to define vl =
4π

2l+1 min(r,r ′)l max(r,r ′)−(l+1). Finally, using (12) and (16) we
find [27]

QλL = νr
0L �r F r

L + κ̂[ν⊥
0L �r F⊥

L ] − [κ̂ν⊥
0L] �r [κ̂F⊥

L ], (17)

where κ̂fL ≡ KL+1
L1 fL+1 + KL−1

L1 fL−1.
We note that, with the exception of the self-consistency

condition [defined via (8)], all terms are diagonal in s but
couple together different l and involve convolutions over radial
coordinate r . This allows us to evaluate χλL(r,r ′; is) from the
sets {χ0l(r,r ′; is)}l and {ν0l(r,r ′; is)}l provided the set {gλl}l is
already known. Once QλL(r,r ′; is) is calculated the system is
diagonal in L and convolutions are only ever taken across
r . In spin-polarized systems we must also introduce spin
σ =↑↓ such that all radial coordinates are replaced by rσ

and convolutions include a sum over spin.

To solve such a system numerically, we choose a grid of
up to 512 radial points, and solve for the ground state using
the method of Krieger, Li, and Iafrate [28] (KLI). The KLI
approximation predicts EEXX quite accurately, and reproduces
the correct −1/r tail in atoms, a feature not present in LDA or
GGA calculations. As such we feel it is an ideal starting point
for these calculations.

The grid {ri}, its weights {wi}, the radial orbital wave
functions Rnl(ri), KS energies εnl , and the KS potential V KS(ri)
are then stored for later use in the calculation of χ0 and ν0.
The Greens function can be solved quickly at arbitrary l and
� via a shooting method such that

G�
l (r,r ′) = 1

2rr ′Wr

{
I (r)O(r ′) r < r ′

O(r)I (r ′) r � r ′ , (18)

where Wr = I∂rO − O∂rI and I (r) and O(r) are “inner”
or “outer” solutions of [ĥl − �]X(r) = 0 with the boundary
conditions I (r → 0) ∝ rl and O(r → ∞) = 0. Its radial
derivative is then ∂r ′G�

l = D�
l − G�

l /r ′ where

D�
l (r,r ′) = 1

2rr ′Wr

{
I (r)∂r ′O(r ′) r < r ′

O(r)∂r ′I (r ′) r � r ′ . (19)

We choose a set of abcissae and weights for s based on a
Clenshaw-Curtis quadrature scheme, chosen for its accuracy in
integrating Lorentz functions, such that convergence is reached
using at most 50 points. We also exploit the fact that the system
is diagonal in s to calculate and store response functions at a
single s only and cumulatively evaluate integrals for the pair
density and correlation energy. The method is also diagonal
in λ and we solve to high accuracy using λ = 1

3 , 2
3 ,1 with

appropriate weights. We must also choose a cutoff in L which
we set at Lmax = 6. In all tested cases the contribution to the
energy from the L = 5 term is under 0.5%, with at least 97%
of the energy accounted for by L � 3.

Calculations are thus performed as follows: (1) For each l

form the matrices χ0l(ri,rj ; is), νr
0l(ri,rj ; is), and ν⊥

0l (ri,rj ; is)
and, at the first iteration, gλl ≈ g0l(ri,rj ); (2) take the stored
response functions and pair densities {gλl}l , then use quadra-
ture to form QλL(ri,rj ) via (17); (3) solve the matrix equation
χλLij = χ0Lij + ∑

k QλLikwkχλLkj , repeating (1)–(3) for each
L and each s (4) calculate new values for {gλl}l through a
weighted mix of the existing data and the newly evaluated [via
(8)] {gλl}l ; (5) repeat from (1) until converged; (6) reset {gλl

and repeat from (1) for a new λ. Typically it takes between
four and six iterations mixing 70% new and 30% old pair
density to converge a correlation energy. It is worth noting that
at each stage we impose symmetry under exchange of r and r ′
on each gλl . While formally this may differ slightly from the
true ISTLS method, tests indicate that the correlation energy
remains virtually unchanged, while convergence is improved.

IV. NUMERICAL RESULTS

In Table I we present correlation energies for a variety
of spherically symmetric systems. We compare the ISTLS
energies with those from the dRPA and PGG calculated using
the same code, with tdEXX energies from Ref. [15], and
with “exact” correlation energies from benchmark methods
[29–32]. We also include an extrapolation to the Z = ∞ case
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TABLE I. Correlation energies (in mHa) for spherical atoms and
ions. Includes the mean absolute error % (MAE%) for the neutral
atoms (N), ions (I), and all atoms and ions together. He∗ is the
extrapolation to Z = ∞ for a two-electron system.

Atom RPA PGG ISTLS tdEXXa Exactb

He 84.0 44.9 42.3 44 42.0
Li 113 49 41 — 45
Be 181 104 79 102 94
N 336 145 191 — 188
Ne 585 331 405 389 390
Na 612 329 413 — 396
Mg 672 374 458 445 438
P 833 418 563 — 540
Ar 1071 578 744 721 722

MAE% N 76 15 5 —
H− 74.9 43.6 36.4 — 42.0
Li+ 86.7 45.3 42.8 — 43.1
Be2+ 88.3 45.6 43.7 — 44.3
Ne8+ 91.1 46.1 45.4 — 44.7
Hg78+ 92.4 46.3 46.2 — 46.5
He∗ 92.7 46.4 46.4 — 46.9
Be+ 124 51 37 — 47
Li− 146 84 69 — 73
B+ 207 120 86 — 111
Na+ 582 323 404 — 389
Mg+ 623 331 422 — 400

MAE% I 94 7 7 —
MAE% 86 11 6 —

aFrom Ref. [15];
bFrom Refs. [29–32].

for the helium isoelectronic series (labeled He∗) by fitting
Ec(Z) vs 1/Z for Z � 3. We have included only those atoms
and ions that converged under the ISTLS self-consistency loop
with a reasonable mixing coefficient and thus reasonable time.
For benchmarking we compared our dRPA results with those
of Jiang and Engel [30] and found agreement well within
expected methodological bounds.

In general the ISTLS does very well for correlation energies,
outperforming the dRPA in all tested systems, and the PGG
in all but a few systems. In all the systems bar He where
comparable tdEXX results were available [15] it outperforms
the ISTLS, however, this accuracy comes at much greater
computational expense. ISTLS performs less well for ions

than for atoms, with the greatest error in Be+ and B+. It is
possible that, in these cases, the ISTLS iterations converge to
an incorrect result, however, testing this is difficult. For C2+
the ISTLS method did not converge at all, most likely due
to numerical instabilities in the high-density core region. It is
worth noting that the ISTLS always pulls the PGG results back
towards the true value, albeit overly so in some cases. While
the PGG approximation performs slightly better than ISTLS
for some of the smaller systems tested here, it is known to break
down in bulk systems, particularly low density metals where
it undercorrelates [33]. This failure can be seen in the trend
presented here, where the relative absolute PGG error increases
with system size while ISTLS improves. By contrast the ISTLS
performs consistently well for jellium [23], metallic surface
energies [24], across two- and three-dimensional metals [25],
and here in the spherical atoms and ions.

The numerical cost of the ISTLS functional scales with
system size in a similar manner to standard ACFD-dRPA
methods, but with a larger prefactor and slightly larger memory
requirements. In the best case scenario, the ISTLS can scale as
O(N4), while tdEXX and RPAx can scale as O(N5), a saving
of one order. Our ISTLS calculations took between 10 and 20
times as long as the ACFD-dRPA and used around five times
the memory. The detailed method presented here may point the
way to implementation in more general geometries involving
expansions on Gaussian-type and Slater-type orbitals [34].
Implementation in existing plane-wave-based bulk ACFD-
dRPA codes should also be possible, albeit with nontrivial
changes.

V. CONCLUSIONS

Overall, we believe that the ISTLS is an excellent candidate
for a “next step” functional, going beyond the dRPA. The
tests on spherical systems further confirm its versatility,
showing accurate results in systems with vastly different
physics to those previously tested. With work on efficiencies
and implementation it could, in the future, provide viable
benchmark calculations for electronic systems where existing
high-level methods, such as the popular ACFD-dRPA, fail to
achieve the desired level of accuracy and where wave-function
methods are too difficult.
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