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Entanglement between two subsystems, the Wigner semicircle and extreme-value statistics
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The entanglement between two arbitrary subsystems of random pure states is studied via properties of the
density matrix’s partial transpose ρ

T2
12 . The density of states of ρ

T2
12 is close to the semicircle law when both

subsystems have dimensions which are not too small and are of the same order. A simple random matrix model
for the partial transpose is found to capture the entanglement properties well, including a transition across a critical
dimension. Log negativity is used to quantify entanglement between subsystems and analytic formulas for this are
derived based on the simple model. The skewness of the eigenvalue density of ρ

T2
12 is derived analytically, using the

average of the third moment over the ensemble of random pure states. The third moment after partial transpose is
also shown to be related to a generalization of the Kempe invariant. The smallest eigenvalue after partial transpose
is found to follow the extreme value statistics of random matrices; namely, the Tracy-Widom distribution. This
distribution, with relevant parameters obtained from the model, is found to be useful in calculating the fraction of
entangled states at critical dimensions. These results are tested in a quantum dynamical system of three coupled
standard maps, where one finds that if the parameters represent a strongly chaotic system, the results are close to
those of random states, although there are some systematic deviations at critical dimensions.
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I. INTRODUCTION

Quantum entanglement is a central property of quantum
mechanics that is absent in classical physics. Studied since
Schrödinger and the famous paper of Einstein, Podolsky,
and Rosen (EPR) [1], correlations due to entanglement seem
to imply nonlocality. The work of Bell [2] and others led
to inequalities that quantified the extent to which classical
correlations can be surpassed. These inequalities were experi-
mentally verified by Aspect et.al [3]. However, entanglement
has been extensively studied more recently as it is a critical
resource for quantum computation [4], quantum teleportation
[5], dense coding [6], and various other quantum information
tasks [7,8], and to explain the magnetic properties of some
solids [9]. A well-known example of an entangled state is the
spin singlet which is a maximally entangled state of two qubits.

It is known that in a generic or random pure state any of its
subsystems is nearly maximally entangled with the comple-
mentary system [10–13], where the measure of entanglement is
the von Neumann entropy of the subsystem. Here, “random”
means that the state is sampled uniformly from the unique
Haar measure that is invariant under unitary transformations.
Random states occur in many contexts. For example, they are
found as eigenstates of quantum maps whose classical limit is
fully chaotic [14]. For the eigenstates of quantum systems with
classically chaotic, continuous Hamiltonian analogs, one must
account for an effective dimensionality (i.e., energy window
such as the Thouless energy) in addition. With that proviso,
disordered or chaotic ballistic mesoscopic systems [15] exhibit
randomness in their single-particle eigenstates, and in strongly
interacting systems such as medium to heavy nuclei with many
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valence nucleons, there is randomness in the full many-body
eigenstates [16].

The interest in this paper is to study the entanglement
between two blocks comprising, say, L1 and L2 qubits in
a random pure state |ψ〉 of L qubits (L1 + L2 � L) (see
Fig. 1). While one can work with any-dimensional Hilbert
space, this paper puts the results mostly in terms of collections
of “qubits” or spin-1/2 particles, the generalizations being
straightforward. The reduced density matrix, ρ12, of L1 + L2

qubits is obtained by tracing out the remaining L − L1 − L2

qubits:

ρ12 = trL−L1−L2 (|ψ〉〈ψ |) . (1)

The state ρ12 is in general a mixed one [i.e., tr(ρ12)2 �
tr(ρ12) = 1] and the equality holds only if the qubits in the
blocks 1 and 2 are unentangled from the rest. A mixed state of
a bipartite system is separable if and only if it can be written
as∑

i

pi ρ
(1)
i ⊗ ρ

(2)
i with pi � 0 and

∑
i

pi = 1, (2)

where ρ
(1)
i and ρ

(2)
i are density matrices of subsystems 1 and 2,

respectively. Otherwise the state is nonseparable, or entangled.
Given a general state, it is a challenging task to verify if it is
separable or not.

One simple (partial) test for entanglement is Peres’s partial
transpose (PT) criterion [17]. The matrix transpose map
T : ρ → ρT is trace preserving and positive, since for every
ρ � 0, ρT � 0. However, its extension I ⊗ T to a bipartite
system (where I is an identity matrix that acts on the first
subsystem and T acts on the second subsystem) does not
preserve positivity. Hence transposition is a positive but
not a completely positive map and can be used to reveal
entanglement. The map I ⊗ T is called a partial transposition
(PT) since it effects transposition only on the second subsystem
keeping the first subsystem unaltered. The test is partial
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FIG. 1. System of L qubits. L1 + L2 < L.

because it leads to necessary but not sufficient conditions for
entanglement.

Given a bipartite system 1 and 2 having an orthonormal
basis {|i〉|α〉} and density matrix ρ12, the PT with respect to
the second subsystem, denoted as ρ

T2
12 , is given by the matrix

elements(
ρ

T2
12

)
iα;jβ = (ρ12)iβ;jα, (ρ12)iα;jβ = 〈i|〈α|ρ12|j 〉|β〉. (3)

Peres’s partial transpose (PT) criterion states that if ρ
T2
12 is

negative then the state ρ12 is entangled. In this case ρ12 is said
to be a negative partial transpose (NPT) state, otherwise it is a
positive partial transpose (PPT) state and is guaranteed to be
separable only for 2 × 2 and 2 × 3 systems [18]. Entanglement
between 2 qubits in a mixed state is also given by the
concurrence [19,20] which takes values from 0 to 1, where
0 corresponds to an unentangled or a product state and 1
corresponds to a maximally entangled state. For more than two
qubits or higher dimensional quantum spins in a mixed state,
negativity and log negativity [21,22] are used as measures of
entanglement.

In the following, eigenvalues of a density matrix without PT
are denoted by λi and those of ρ

T2
12 by μi . Negativity of the state

ρ12 is defined as the sum of the moduli of the negative eigen-
values of ρ

T2
12 , which is clearly zero for PPT states. Due to

the fact that the trace is preserved under partial transpose the
negativity is also

N (ρ12) =
∑

i |μi | − 1

2
. (4)

Log negativity is defined as

ELN = ln
(∥∥ρ

T2
12

∥∥
1

) = ln

(∑
i

|μi |
)

. (5)

If the log negativity is greater than 0 then the density matrix is
entangled. Otherwise the state ρ12 is separable or it could also
be bound entangled [23]. Bound entangled states are entangled
but they cannot be distilled by means of local operations and
classical communication to form a maximally entangled state.
The distribution of the eigenvalues of ρ

T2
12 is of central concern

in this paper. Note that the trace of the first and second powers
of the density matrix remains unaltered under the PT operation.
The first power to show deviation between the two sets of
eigenvalues is the trace of the third power; that is,

tr(ρ12) = tr
(
ρ

T2
12

) = 1, tr(ρ12
2) = tr

[(
ρ

T2
12

)2]
,

tr
(
ρ12

m
) �= tr

[(
ρ

T2
12

)m]
, m � 3.

The average of tr[(ρT2
12)3] is explicitly evaluated further below,

for both real and complex states, where the average is over

all the pure states |ψ〉 [see Eq. (1)] sampled uniformly.
Interestingly, this quantity is a generalization of one of local
unitary invariants studied for three qubits [24] and therefore is
of broader interest.

The distribution of the eigenvalues; that is, the density
of ρ

T2
12 (i.e., of μi) is of evident importance in a calculation

of the entanglement between subsystems 1 and 2. In this
paper a simple random matrix model is proposed for the
partial transpose, based on the known average of the second
moment. This model quite accurately predicts a transition from
dominantly NPT states to dominantly PPT states as the size of
the subspaces L1 and L2 are varied. The transition region is
an interesting one wherein the extreme eigenvalues of random
matrices determine the nature of the entanglement. Use is made
of the well-known Tracy-Widom distribution to estimate the
fraction of NPT states in the transition to predominantly PPT
ones. The limitations of the simple model are also pointed out,
especially when the skewness of the densities are important
and L1 and L2 differ significantly.

Finally, in this paper a dynamical model of three coupled
standard maps (CSM) or rotors is studied, restricting attention
to the case when they are classically fully chaotic. The
eigenstates of such a system are taken to be the pure states
in Eq. (1) and the entanglement between rotors is studied
via the log negativity measure. While good agreement is
found away from the transition region, there are interesting
deviations in this critical zone. While all standard diagnostics,
such as the distribution of the nearest-neighbor spacings of
the eigenangles, the number variance, the distribution of the
eigenvector components, agree with random matrix theory
(RMT) to a large extent, deviations are seen with respect
to the fraction of NPT states. Stated simply the dynamical
system has systematically more entanglement than predicted
by random matrix theory. These tests are perhaps some of the
more stringent ones of the Bohigas-Giannoni-Schmit (BGS)
conjecture [25] that quantized chaotic systems have spectra
whose statistical properties are modeled by those of random
matrices. These tests are stringent as they rely on outliers
or extreme eigenvalues. In the large–system-dimension limit
(small effective h̄) there does, however, seem to be a tendency
to approach the RMT results.

Works related to the results in this paper have appeared
previously. Recently, Datta [26] has studied entanglement of
random pure states using negativity [17] for equal bipartition
which adds to the full system (L1 = L2 = L/2) and found
that the average negativity is a constant (0.720 37) multiple
of the maximum possible [=(2L/2 − 1)/2]. This is a reflection
of the large entanglement present in random bipartite pure
states; for example, as measured by the von Neumann entropy
of the subsystems [11]. A calculation presented further below
and based on previously derived results in Ref. [27] gives
an explicit expression for the average negativity that is also
slightly different. In this case the eigenvalues μi of the partial
transpose are simply related to the eigenvalues of the reduced
density matrix and, therefore, implicitly, the density of the
eigenvalues μi had been derived even earlier [28].

If the two subsystems do not make up the full system,
Kendon et al. in Refs. [29,30] found numerically that in a
typical random pure state the subsystem consisting of L1 and
L2 qubits is NPT if L1 + L2 � L/2. Analytically, they showed
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that the lower bound on L1 + L2 for ρ12 to be NPT is L/3.
It is shown in this paper that using the simple random matrix
model for the partial transpose leads to the bound on L1 + L2

for ρ12 to be NPT is in fact L/2. In Ref. [31] Carteret has
given a quantum circuit which can determine the spectrum
of ρ

T2
12 by computing tr(ρT2

12)l for all l up to the dimension
of ρ

T2
12 . Then from Peres’s partial transpose criterion one can

determine whether ρ12 is NPT or PPT.
The random mixed states studied in this paper are those

that arise from a partial trace of random pure states selected
according to the Haar measure. Properties of random mixed
states generated according to the measure induced by the Bures
metric [32] have been studied earlier using the von Neumann
entropy and purity in Refs. [32,33]. Multipartite entanglement
for localized states [34,35], and multifractal states (using
the von Neumann entropy) have also been studied [36].
Mathematical work connected to the spectrum of the partial
transpose has appeared very recently in the literature [37,38],
which is of a complementary nature, but with some overlap,
after much of the present work was done.

The structure of the paper is as follows: In Sec. II, some
known and relevant results on the reduced density matrix are
first summarized. The rest of Sec. II is a detailed treatment of
the effect of PT on the reduced density matrix, in particular
a random matrix model is seen to give rise to the observed
Wigner semicircle density of states on PT and predicts the
transition from a predominantly NPT to primarily PPT phase.
Further in this same section we calculate the average of the
the trace of the third power of the density matrix after PT and
show how it is related to an invariant (i.e., the Kempe invariant)
that has been studied earlier in the literature. In Sec. III these
results are used to find the average log negativity between
two subsystems of the tripartite state. In Sec. III B, results on
extreme-value statistics of minima of reduced density matrices
after PT are presented, and it is seen how the Tracy-Widom
distribution gives rise to the fraction of NPT states at critical
dimensions. In Sec. IV, we compare our results of random
states with eigenstates of three coupled quantum standard maps
and find good agreement.

II. STATISTICAL PROPERTIES OF PARTIAL TRANSPOSE

A. On the reduced density matrix of a subsystem

If a bipartite quantum system of Hilbert space dimension
N × M (N � M) is drawn from the ensemble of random
pure states then the joint probability density function of the
eigenvalues [39,40] of the reduced density matrix ρN of a
subsystem of dimension N is

P [{λi}] = KM,N δ

(
N∑

i=1

λi − 1

)
N∏

i=1

λ
β

2 (M−N+1)−1
i

×
∏
i<j

|λi − λj |β, (6)

where β = 1, 2, and 4 for the real, complex, and symplec-
tic case, respectively. The normalization constant KM,N is
calculated using Selberg’s integral [40]. The density of the
eigenvalues, for large N and M , is given by an appropriately

scaled Marcenko-Pastur (MP) function [27,41],

f (λ) = NQ

2π

√
(λ+ − λ) (λ − λ−)

λ
,

λ± = 1

N

(
1 + 1

Q
± 2√

Q

)
, (7)

where λ ∈ [λ−,λ+], Q = M/N , and Nf (λ)dλ is the number
of eigenvalues in the range λ to λ + dλ. For Q = 1 there
is a divergence at the origin. For Q > 1 the eigenvalues are
bounded away from zero.

The purity of the subsystem density matrix ρN is always
larger than 1/N and less than 1. The minimum value is attained
when ρN is maximally mixed, and the maximum is attained
when the subsystems are unentangled. The average purity of
the subsystem ρN is given by Ref. [10]

〈tr[(ρN )2]〉 = N + M

NM + 1
≈ 1

N
+ 1

M
, (8)

with the last approximation being valid for N,M 
 1. The
subsystem entropy is a good measure of bipartite pure state
entanglement and, remarkably, there is an exact formula for
its average evaluated over the probability density in Eq. (6)
[11,42,43]:

〈−tr (ρN ln ρN )〉 =
NM∑

m=M+1

1

m
− N − 1

2M

≈ ln(N ) − N

2M
for 1 � N � M. (9)

In terms of an interpretation, there is practically very little
information about the full pure state in a subsystem, to be
more precise there is less than one-half unit of information on
average in the smaller subsystem of a total system in a random
pure state. The maximum entanglement being ln(N ), there is
near maximal entanglement between any two subsystems of a
random state.

B. Effect of parity transposition on reduced density matrix

Reverting back to the notation of ρ12 as the reduced density
matrix, while its density of eigenvalues is the scaled Marcenko-
Pastur distribution in Eq. (7), we are interested in the spectrum
of its partial transpose, ρ

T2
12 . It is numerically found that, for

L1 = L2, the eigenvalue density of ρ
T2
12 fits the well-known

Wigner semicircle law for any L such that L1 + L2 � L (see
Figs. 2 and 5). Oscillations are found about the semicircle for
very small values of Li , just as in the case of the canonical
ensembles of RMT [44,45]. The figure shows results for L1 =
L2 = 3 and varying L from 12 to 16. The semicircles are fit
according to a center (or shift) and width that is discussed
further below. The rather good agreement with the semicircle
law for the spectrum of the partial transpose is evident. For
instance, in the case when L1 = L2 = L/4 (corresponding to
the case L = 12 in Fig. 2) the rescaled eigenvalues x = Nμ

fit the following formula:

P	(x) = 1

2π

√
4 − (x − 1)2

where − 1 � x � 3 and N = 2L1+L2 . (10)
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FIG. 2. (Color online) Density of states of ρ12 (left) and ρ
T2
12 (right) for L1 = L2 = 3 and where L is the total number of qubits. A vertical

line at the origin has been shown in the right figure to draw attention to the negative part of the spectrum. In each case, 250 complex random
states are used.

Recently, Aubrun [37] has used the binary correlation
method [16] to find a shifted Wigner semicircle law under
PT. However, we use an approximate and simple model that
enables us to see the transition that is observed in Fig. 2 when
the total number of qubits is L = 14. The said transition is
from a predominantly PPT phase when L1 + L2 < L/2 − 1
to a predominantly NPT one when L1 + L2 > L/2 − 1. The
critical case is an interesting one that is fit for the application
of extreme value statistics to find the fraction of NPT states.
In this case the semicircle lower bound is at 0. When L is odd,
however, one finds that there is no L1 + L2 which is critical
in this sense; instead for L1 + L2 � (L − 3)/2 the states are
predominantly PPT and, if L1 + L2 > (L − 3)/2, the states
are predominantly NPT. If one is given a certain number of
qubits L1 + L2, then there is always the case when the total
number of qubits is L = 2(L1 + L2) + 2, which is critical. In
this work most of the calculations are for L even, and there
is a critical subspace dimension L1 + L2 = L/2 − 1. When
L1 + L2 = L, so that the “subsystem” 1 + 2 is, in fact, the
whole system and is in a pure state, much can be said about
the spectrum of the partial transpose. This case, discussed
later in this paper, has a density of states that is not the Wigner
semicircle. However, a semicircle is obtained even from small
deviations of L1 + L2 away from L.

1. Degree of partial derangement in partial transpose

The PT operation partially rearranges the positive matrix
ρ12 through selective exchange of matrix elements. One may
expect that the extent of such a rearrangement will be con-
nected with a deviation from the Marcenko-Pastur distribution
and approach the semicircle law. In other words, the number
of elements exchanged by the PT operation results in a loss
of the particular correlation among matrix elements necessary
to make the original matrix positive. However, the rearrange-
ments do preserve the Hermitian nature of the matrices. Addi-
tionally, for a density matrix of M qubits, the eigenvalues of the
matrix obtained after PT on k qubits are the same as after doing
the partial transpose on the complementary M − k qubits.
Thus, the range 0 � k � M/2 is the full range of interest.

First divide the whole matrix of dimension 2M × 2M into
matrices of dimension 2k × 2k; the number of such matrices
being 22(M−k). PT on k qubits is a full transpose on these
2k × 2k matrices. Therefore, the number of elements getting
exchanged after PT is

# = 22M − 22(M−k)2k = 22M (1 − 2−k). (11)

This number, which is evidently the same for whether the
density matrix is real or complex, is maximum when k = M/2,
and therefore one can expect the maximum loss of correlation
among matrix elements of ρ12 and the development of the
Wigner semicircle law. When k is smaller one still obtains
qualitatively different spectra depending on the density matrix.
In Fig. 3 this is seen, with M = L1 + L2 = 8 and when k(=
L2) varies from 1 to 4. The obtained densities on PT are all very
similar except for the extreme case of k = L2 = 1, when the
skewness is more apparent. Remarkably, the minimum of the
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FIG. 3. (Color online) Density of states after partial transpose for
various L1, L2 and fixed L. The skewness is minimum for L1 = L2 =
4 and maximum when L1 = 1 and L2 = 7. Except for the case when
L1 = 1 and L2 = 7, all other cases are close to Wigner’s semicircle
law.
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distributions remain unchanged even as the maximum shifts
slightly. The question of the skewness is addressed further
below.

2. Model for shifted semicircles

A simple model for the spectral density of ρ
T2
12 , the PT

of a density matrix is suggested by the fact that the first
two moments do not change under the operation of PT. As a
semicircular density depends on just the two moments of mean
and variance, it is proposed to shift and scale the semicircle
of the Gaussian random ensembles to match the first two
moments of ρ12(or equivalently ρ

T2
12). In particular, we assume

that these random matrices belong to the Gaussian unitary
ensemble (GUE). Thus consider

B = A + IN

N
, (12)

where A is an N × N GUE random matrix with the necessary
matrix element variance to match the variance of ρ12 and IN is
the identity matrix. It follows that 〈tr(B)〉 = 1 since 〈tr(A)〉 =
0, where the angular brackets indicate the ensemble average.
The fact that tr(B) is not exactly equal to unity for each and
every member of the ensemble would be expected to have an
influence only for very-small-dimensional cases.

As the eigenvalues of B are all those of A shifted by
1/N , it is sufficient to consider the spectrum of A. Under the
assumption that it is from the GUE it follows that the density
of eigenvalues of B is (for large N )

P (μ) = 2

πR2

√
R2 −

(
μ− 1

N

)2

, −R + 1

N
< μ < R + 1

N
,

(13)

where

R = 2

√
1

N
〈tr(A2)〉 = 2

√
1

N

〈
tr
(
ρ2

12

)〉 − 1

N2
. (14)

Use is now made of the approximate form of the average purity
in Eq. (8) to derive

〈tr(A2)〉 = 1

N3
, R = 2√

N3N
= 2−L/2+1, (15)

where one has also used N3 = 2L3 , N = 2L1+L2 , and L1 +
L2 + L3 = L. If the scaled variable x = μN is used, the
resultant semicircular probability density has a shift of 1 and
a rescaled “radius” R̃ = NR = 2L1+L2−(L/2−1). Explicitly,

P	 (x) = 2

πR̃2

√
R̃2 − (x − 1)2, 1 − R̃ < x < 1 + R̃. (16)

This is the Wigner semicircle law that has been used in Figs. 2
and 3 and illustrates how well this simple model works.

Moreover, this treatment gives the PPT-NPT transition as
well. For if L is an even integer and L1 + L2 = L/2 − 1 then
R̃ = 1 and the radius of the (rescaled) semicircle is such that
the lower limit is exactly at 0. For any L1 + L2 > L/2 − 1
the radius is larger than unity and there are NPT states,
while in the opposite case the lower bound is such that there
are predominantly PPT states. Thus the transition is clearly
indicated in the model of the partial transpose as a shifted
random matrix of the GUE kind. If L is odd, it is clear that

there are no L1, L2 such that the radius is unity, but it is
easy to find that, when L1 + L2 = (L − 1)/2, the radius is√

2 and hence the states are predominantly NPT, while when
L1 + L2 = (L − 3)/2, the radius is 1/

√
2 and hence the states

are predominantly PPT. These are indeed statements that are
based on the model introduced above, but are well corroborated
by numerical simulations as presented, for example, in Table II.

An additional interesting feature is that the model predicts
that the range of the eigenvalues is the same both before and
after the PT. Namely,

N (λ+ − λ−) = 2R̃ = 4
√

N/N3 = 2L1+L2−(L/2−2), (17)

where λ± are the limits of the Marcenko-Pastur distribution
in Eq. (7). This is borne out in Fig. 2. While this is not an
exact equality, it seems to be nearly true statistically. Extreme
deviations from this will occur when the subsystem 1 + 2 is
nearly pure or pure—a case we will discuss later. Is there
some characteristic of the density matrix ρ12 that signals the
PPT-NPT transition? Note that, when L1 + L2 = L/2, ρ12 has
a density of states that diverges at 0 (see Fig. 2) and, for
L1 + L2 > L/2, the density matrix is rank deficient. Whereas
the critical case as far as this transition goes is at L1 + L2 =
L/2 − 1 when the density of states of ρ12 does not diverge at
zero. While the rank of the density matrix mattered in the case
of an entanglement transition observed for definite-particle
states recently [46], it seems to be not exactly the case here, as
there is a case when the density of states of ρ12 is bounded away
from zero, but its partial transpose has a significant measure
of negative eigenvalues and is predominantly NPT.

As is apparent from Fig. 3, the semicircle is not obtained
when one of the subspaces is of very low dimensions, although
interestingly even in this case the minimum eigenvalues after
PT remain nearly the same. We limit most of our discussions
to those cases where the semicircle law is approximately valid.
Another instance where the semicircle law is not valid is when
the third subspace has no qubits; that is, the state ρ12 is itself
pure. This case will be discussed in the next section. More
work needs to do be done in elucidating the boundaries of
the applicability of various densities after PT. For the sake of
clarity averages calculated using the shifted GUE model are
denoted as 〈· · ·〉M , while averages calculated over the ensemble
of random pure states is simply 〈· · ·〉.

3. Third moment, Kempe invariant, and skewness

The lowest-ordered moment which changes after PT is the
third moment [i.e., tr[(ρ12)3] �= tr[(ρT2

12)3]] and it is therefore
interesting to calculate the exact ensemble average 〈tr[(ρT2

12)3]〉
and compare it with that of the simple model above. In the case
of complex random pure states of L = L1 + L2 + L3 qubits,
we find

〈
tr
(
ρ

T2
12

)3〉 = N2
1 + N2

2 + N2
3 + 3N1N2N3

(N1N2N3 + 1) (N1N2N3 + 2)

= N2
1 + N2

2 + 22(L−L1−L2) + 3 × 2L

(2L + 1)(2L + 2)
, (18)
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where Ni = 2Li . Details of the derivation are relegated to the
appendix. In contrast, prior to PT,

〈tr(ρ12)3〉 = N2
1 N2

2 + N2
3 + 3 N1N2N3 + 1

(N1N2N3 + 1) (N1N2N3 + 2)
, (19)

so that

〈
tr(ρ12)3 − tr

(
ρ

T2
12

)3〉 =
(
N2

1 − 1
) (

N2
2 − 1

)
(N1N2N3 + 1) (N1N2N3 + 2)

. (20)

Thus, on average the third moment after PT is smaller than
that before. The equation in Eq. (19) is a special case of
Eq. (18), with the identification of N2 ≡ 1 and N1 ≡ N1N2, as
the original density matrix is the same as a partial transpose
over zero qubits.

The ensemble average of the third moment after PT has
a permutation symmetry, as is clear from Eq. (18). Quite
remarkably, this is true for every realization in the ensemble
and is a property therefore of pure states split in a tripartite
way. To be explicit, in this case the following can be shown to
be true:

tr
(
ρ

T2
12

)3 = tr
(
ρ

T3
23

)3 = tr
(
ρ

T1
31

)3
. (21)

Note that there is no such constraint for the density matrices
ρ12, ρ23, and ρ13 themselves. To our knowledge, this has been
identified as one local unitary invariant for the case of three
qubits [31], but not for general tripartite systems. In the case
of three qubits this quantity, which has however been written
differently, has been called the “Kempe invariant” and denoted
as I5 [24,47,48].

For completeness a proof is now supplied for the identity in
Eq. (21). Let the pure tripartite state and its adjoint be written
in a standard basis as

|ψ〉 =
∑
jkl

ψjkl|jkl〉, 〈ψ | =
∑
jkl

ψ
jkl〈jkl|, (22)

where 1 � j � N1, 1 � k � N2, 1 � l � N3, and ψ is the
complex conjugate of ψ . The following then ensues (repeated
indices are summed over)

ρ12 =
∑

jk,j ′k′
ψjklψ

j ′k′l|jk〉〈j ′k′|,
(23)

ρ
T2
12 =

∑
jk,j ′k′

ψjk′lψ
j ′kl|jk〉〈j ′k′|,

tr
(
ρ

T2
12

)3 = ψjk′lψ
j ′kl

ψj ′k′′l′ψ
j ′′k′l′

ψj ′′kl′′ψ
jk′′l′′

. (24)

Similarly, it follows on tracing out the second system and
taking the partial transpose with the first that

tr
(
ρ

T1
31

)3 = ψj ′klψ
jkl′

ψj ′′k′l′ψ
j ′k′l′′

ψjk′′l′′ψ
j ′′k′′l

. (25)

To see the equality of Eqs. (24) and (25), the following
permutation of the dummy indices suffices: (j → j ′′, j ′′ →
j ′, j ′ → j ) and (k → k′, k′ → k′′, k′′ → k). It seems some-
what unusual to express the Kempe invariant in terms of the
partial transpose, but this indeed seems to be a simple way of
doing so.

Since the quantity is both a local unitary invariant and
invariant under permutation of the systems it serves as some
kind of entanglement measure in itself. Thus the average of
this quantity as found in Eq. (18) is of larger interest as well.

The average Kempe invariant of three qubits is 2/5 while
for three qutrits it is 27/203. According to Ref. [47] it is a
measure of bipartite entanglement; indeed, it is possible that it
is some overall measure of entanglement between any pair of
the tripartite system. For the generalized W state:

|ψW 〉 = α|001〉 + β|010〉 + γ |100〉, (26)

this invariant is

tr
(
ρ

T2
12

)3 = α6 + β6 + γ 6 + 3α2β2γ 2, (27)

which clearly displays the permutation symmetry on in-
terchange of qubits. It follows that 2/9 � tr(ρT2

12)3 � 1, the
smallest value of the invariant corresponding to the W state
with α = β = γ = 1/

√
3. A special case of interest is when,

say, α = 0, but β,γ �= 0, when only the first two qubits
are entangled with each other. It is not hard to show (see
Appendix B) that in this case all the odd moments tr(ρT2

12)(2k+1),
k = 0,1,2, . . . are permutation symmetric, although the third
qubit is clearly special. This property of the higher moments
being permutation symmetric is lost when all three qubits are
entangled.

Although it can be shown that in general tr(ρT2
12)n = tr(ρT3

13)n

only for n = 1,3, (Appendix B), one may also simply offer an
example as provided by the W state with α = √

3/7, β = γ =√
2/7. This leads to (see Appendix C for details)

tr
(
ρ

T2
12

)n = (2/7)n + (2/7)n + (4/7)n + (−1/7)n ,

tr
(
ρ

T3
13

)n = (3/7)n + (2/7)n + [(1 +
√

7)/7]n (28)

+ [(1 −
√

7)/7]n,

and to two integer sequences whose nth terms are tn and t ′n.
These sequences are important because tr(ρT3

13)n �= tr(ρT2
12)n if

and only if tn �= t ′n. The nth term of these sequences are

tn = 3n + (1 −
√

7)n + (1 +
√

7)n, t ′n = 2n + 4n + (−1)n ,

(29)

which generate the sets {5,25,71,265,875,3097, . . .} and
{5,21,71,273,1055,4161, . . .} respectively. The fact that the
trace and the third moment are permutation symmetric is
reflected in the equalities t1 = t ′1 and t3 = t ′3. It can be shown
(see Appendix C) that indeed tn �= t ′n for any other values of n

and hence tr(ρT2
12)n = tr(ρT3

13)n if and only if n = 1 or n = 3.
Ending this digression into the Kempe invariant per se,

one may also compare its average with the third moment for
the shifted GUE matrices in the model of Eq. (12). The third
moment is approximately

〈tr(B3)〉M ≈ 3

N1N2N3
+ 1

N2
1 N2

2

, (30)

neglecting higher-order terms. While this does have the correct
leading behavior, it is not the same as the exact moment and
does not also possess the permutation symmetry noted above.
The difference between this result and the exact moment is of
a lower order than the exact moment:〈

tr
(
ρ

T2
12

)3〉 − 〈tr(B3)〉M ≈ 1

N2
3

(
1

N2
1

+ 1

N2
2

)
. (31)

The skewness of the density of states is zero for the shifted
GUE ensemble, but is nonzero for the PT of the density
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matrices. Skewness γ of a distribution is the normalized third
central moment:

γ = 1

N

N∑
i=1

(
μi − μ

σ

)3

, (32)

where N is number of elements and σ is standard devia-
tion of the sample. Using μ = tr(ρ12)/N = 1/N , and σ 2 =
tr(ρ2

12)/N − μ2 ≈ 1/(N1N2N3) (recall that N ≡ N1N2) leads
to

γ ≈ 1√
N1N2N3

(
N2

N1
+ N1

N2

)
. (33)

In terms of number of qubits the result is that, for large L1,
L2, and L,

γ =
⎧⎨
⎩

2−L/2(2L1−L2 + 2L2−L1 ) (complex states)
2−L/2[2L1−L2 + 2L2−L1

+ 3(2−L1 + 2−L2 )] (real states).
(34)

The case of real states is stated only for completeness, but all
the results presented are for the complex case. The difference
in the real case is also dealt with in the appendix. Thus it
follows that, for a given L and L1 + L2, the skewness is a
minimum for the symmetric case L1 = L2 (cf. Fig. 3) when it
equals 2−L/2+1 and tends to zero as L → ∞. In terms of the
system dimensions it is also clear that when N1/N2 is fixed
and the system dimensions tend to infinity the skewness tends
to zero. To give some numbers, for the cases shown in Fig. 3
with L = 16 and L1 + L2 = 8, the average skewness γ =
0.0078, 0.0165, 0.0628, and 0.2509 when L1 = 4,3,2, and 1,
respectively. These match well with the analytical estimates
above, given that the numerical values were from 1000 trials
with complex states.

III. ENTANGLEMENT

With the statistical properties of the partial transpose,
entanglement between the subspaces 1 and 2 can now be
calculated via the negativity or the logarithmic negativity.

A. Logarithmic negativity

The average log negativity between two subsystems 1
and 2 of dimensions N1 and N2 is now sought. It is
assumed that the system 1 + 2 is a subsystem of a random
pure state in a N1N2N3-dimensional Hilbert space, and
the average is over the ensemble of uniformly distributed
pure states in this space. Recall that the log negativ-
ity is given by ELN = ln(

∑
i |μi |) = ln(1 − 2

∑
i;μi<0 μi) =

ln(1 − 2
∫
μ<0 μ P (μ) dμ), where P (μ) is Wigner’s semicircle

given in Eq. (13). Thus,

〈ELN 〉M = ln

[
2

π
sin−1

(
1

R̃

)
+ 2

3πR̃

√
1 − 1

R̃2
(1 + 2R̃2)

]
,

(35)

where, as defined earlier, R̃ = NR = 2
√

N1N2/N3. This is
valid for R̃ > 1. When R̃ = 1 (or N3 = 4N1N2), which is
the critical case, this formula gives zero for the average log
negativity, while this is not true as discussed below. When
R̃ < 1, PPT states are predominantly obtained and 〈ELN 〉 = 0.
Figure 4 shows how well Eq. (35) works.

0 3 6 9 12 15
Length of block of spins  (L

1
+L

2
)

0

1

2

3

4

5

<
 E

L
N

 >

    L=8
    L=12
    L=16
Analytical Results

FIG. 4. (Color online) Average entanglement in states sampled
according to Haar measure, as measured by log negativity, between
blocks of various sizes compared with analytical result based on the
model [〈ELN 〉M in Eq. (35)]. The sizes L1 and L2 are such that, if
L1 + L2 is even, they are equal and, if it is odd, they differ by 1. The
average log negativity is zero when L1 + L2 < L/2 − 1.

On the other hand for R̃ 
 1, deep in the NPT regime,
Eq. (35) gives

〈ELN 〉M ≈ ln

(
8

3π

√
N1N2

N3

)
. (36)

One may compare this with the maximum possible log
negativity of a state in Hilbert space of dimension N1N2,
as well as the average log negativity over pure states of
subsystem 1 + 2. From Fig. 4 it is clear that there are deviations
when L1 + L2 = L; that is, the subsystem 1 + 2 is pure. If
we put N3 = 1 (equivalently, L3 = 0 or L1 + L2 = L) we
get that 〈ELN 〉M ≈ ln(8

√
N1N2/(3π )). Now we present a

more accurate and independent derivation of the average log
negativity in this case.

1. Entanglement when ρ12 is pure

Bipartite entanglement in a random pure state is known
to be very large. When L3 = 0 the L1 + L2 qubits are in a
pure state. The eigenvalues of ρ

T2
12 are directly related to the

eigenvalues of ρ1, the reduced density matrix of subsystem
1. If the eigenvalues of the latter are λi , i = 1, . . . ,2L1 , from
Schmidt decomposition we have that (ρ12 = |ψ12〉〈ψ12|):

|ψ12〉 =
∑

i

√
λi

∣∣φ(1)
i

〉∣∣φ(2)
i

〉
,

ρ
T2
12 =

∑
ij

√
λiλj

∣∣φ(1)
i

〉∣∣φ(2)
j

〉〈
φ

(1)
j

∣∣〈φ(2)
i

∣∣. (37)

It follows that the eigenvalues of ρ
T2
12 are {λi,±

√
λiλj ; i �=

j, i,j = 1, . . . ,2L1}, the eigenvectors being |φ(1)
i 〉|φ(2)

i 〉 and
|φ(1)

i 〉|φ(2)
j 〉 ± |φ(1)

j 〉|φ(2)
i 〉 when i �= j . The rest of the eigen-

values, if any, are zero.
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FIG. 5. (Color online) Density of (scaled) μ, the eigenvalues after
PT for two different cases. When L = 10 and L1 = L2 = 3, Wigner’s
semicircle law is a good fit. In the case when L = 6 and L1 = L2 =
3 a different distribution is obtained. A corresponding semicircle
of radius 16 is also shown. In general a semicircle is obtained for
L1 + L2 � L.

Thus the average log negativity is found as

〈ELN 〉 =
〈

ln

(
N1N2∑
i=1

|μi |
)〉

=
〈

ln

(
N1∑
i=1

√
λi

)2〉
≈ ln(κ2N1), (38)

where N2 � N1 and the last approximation is valid for N1 
 1.
Here, the number κ is found, from using the Marcenko-Pastur
distribution of Eq. (7), to be

κ = Q

2π

∫ x+

x−

√
(x+ − x) (x − x−)

x
dx

= (
√

Q − 1)

{
2F1

[
1

2
,−1

2
,2,

−4
√

Q

(
√

Q − 1)2

]

− 2F1

[
1

2
,
1

2
,2,

−4
√

Q

(
√

Q − 1)2

]}
, (39)

where x± = (1 ± 1/
√

Q)2 and Q = N2/N1 > 1. In the special
case when N1 = N2, or Q = 1, the integral in Eq. (39) is
elementary and leads to

〈ELN 〉 ≈ ln

[(
8

3π

)2

N1

]
. (40)

This can be compared with Eq. (36) which comes from a
semicircle and the simple model. One sees that they are indeed
close, but intriguingly differ by a square in the constant. We
do not expect the semicircle to hold in the case when N3 = 1
or L1 + L2 = L. Indeed the density of the partial transposed
spectrum is known in this case [28]. Figure 5 shows the
deviation of the spectrum from the semicircle when the system
1 + 2 is a pure state, and a distinctive cusp distribution is seen.
The same figure also shows how poorly a semicircle with the
same first two moments will fare. In the case when L = 6 and
L1 = L2 = 3 the scaled radius of a purported semicircle will

TABLE I. Percentage of NPT states for L1 = L2 and various L

for the critical case when L1 + L2 = L/2 − 1.

L1 L %NPT (complex states) %NPT (real states)

1 6 0.06 ± 0.008 3.18 ± 0.017
2 10 1.40 ± 0.036 7.82 ± 0.085
3 14 1.92 ± 0.065 11.18 ± 0.121
4 18 2.40 ± 0.077 13.43 ± 0.161
5 22 2.60 ± 0.145 15.17 ± 0.35

be [from Eq. (16)] R̃ = 2(L/2+1) = 16, which is also shown
for comparison. A more detailed study of the transition from
the cusp to the semicircle is warranted but not carried forward
here.

We also note parenthetically that the average negativity, as
defined in Eq. (4) when ρ12 is pure and N1 = N2, is given by

〈N (ρ12)〉 =
〈∑

i |μi | − 1

2

〉
≈ 1

2

[(
8

3π

)2

N1 − 1

]
. (41)

This may be compared with an equation for the same quantity
in Ref. [26], which states that 〈N (ρ12)〉 = 0.720 37(N1 − 1)/2,
where the constant was arrived at numerically. One sees that
indeed 64/(9π2) = 0.7205 . . . and hence there is agreement
on the principal term, while the O(1) terms are, however,
different. Indeed, Eq. (41) agrees very well with numerical
results; the differences being indistinguishable from statistical
fluctuations.

B. Extreme value statistics and entanglement at critical case

In the critical case when N3 = 4N1N2, or in terms of the
number of qubits L1 + L2 = L/2 − 1, Eq. (35) predicts zero
log negativity as R̃ = 1. Thus there should be no NPT states.
Numerical calculations, however, show that there is a finite
fraction of NPT states. Moreover, and importantly, this is not
a finite-size effect. Throughout this section we assume the
symmetric case that N1 = N2 so that the semicircle law is
valid for the eigenvalue density after PT. The critical case
corresponds to L = 4L1 + 2. See Table I for a calculation
of the percentage of NPT states in several critical cases for
increasing number of qubits. It is evident that the fraction
of NPT states increases with dimensionality. While it is not
obvious, it is argued that the fraction of NPT states saturates to
a value that is close to 3% and 17% for complex and real states,
respectively. On the other hand, when in the neighborhood of
criticality (in terms of the number of qubits), L = 4L1 + 1 and
L = 4L1 + 3, the percentage of NPT states rapidly increases
to 100% and decreases to 0%, respectively (see Table II). Also

TABLE II. Percentage of NPT states for L1 = L2 and various L

(real states).

L1 L = 4L1 + 1 %NPT L = 4L1 + 3 %NPT

1 5 25.39 7 4.4 × 10−2

2 9 96.82 11 8.3 × 10−5

3 13 ≈100 15 <10−5

4 17 ≈100 19 ≈0
5 21 ≈100 23 ≈0
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FIG. 6. (Color online) Distribution of minimum eigenvalue of ρ
T2
12 for various cases of L1 = L2 and L. The right panel shows the result

upon using a shift which is determined numerically. This corresponds to complex states after rescaling as given in Eq. (43).

one notes that, in these cases, results have been presented for
real states, as the fraction of NPT states are still significant for
small L and the numbers are reliable.

As mentioned earlier, for the critical case the radius of
the semicircle is such that the hard lower limit is exactly at
zero; that is, the scaled radius R̃ = 1. However, it is also
well known that there is a tail to the semicircle in which the
extreme eigenvalues lie. The entire tail is then responsible for
the existence of NPT states at criticality. If we are interested
in the fraction of NPT states, this is the fraction of states such
that μmin, the minimum eigenvalue after PT, is less than 0. At
criticality therefore it is a problem in the theory of extremes.
In the absence of a more elaborate random matrix model, we
can continue to use the simple model introduced earlier and
see how it fares, as the theory of extremes is well developed
for the Gaussian ensembles.

For N × N GUE matrices, the diagonal and off-diagonal
elements (both real and imaginary parts) are drawn from the
normal distributions N (0,σ 2) and N (0,σ 2/2), respectively.
The limits of the semicircle are ±2σ

√
N . While most of the

eigenvalues lie in this range, some do not. The problem of
estimating the number of eigenvalues outside of this range has
been studied for a long time (see, e.g., [49]). The result about
the largest eigenvalue distribution is now stated for σ = 1. If
λmax is the largest eigenvalue, then

x = λmax − 2
√

N

N−1/6
(42)

has a limiting distribution for large N that is not one of the
classical extreme-value distributions, but is the Tracy-Widom
distribution [50,51]. Thus the Prob[λmax � x] → F2(x) and
the probability density of the scaled variable x is dF2(x)/dx,
where F2(x) is obtained from a solution of the Painlevé-II
equation. See, for example, Refs. [52,53] for details of a
numerical procedure that enables this.

Applying the above to the model in Eq. (12), we need
to take into account the shifted center and the appropriate
variance of the elements of the random matrix A. Also we
need to consider that we are interested in the minimum
rather than the maximum, which is fixed easily as the density

of the eigenvalues is symmetric about 0. Thus the density
of the minimum eigenvalue is p(x) = −dF2(−x)/dx. Since
〈tr(A2)〉 = N2σ 2, using Eq. (15) gives the variance of the
diagonal elements of A to be σ 2 = 1/(N2N3). Thus we
need to consider (μ − 1/N) × N

√
N3 as the eigenvalue for

a corresponding zero centered GUE with a unit variance for
its diagonal elements. Thus the appropriate variable for the
minimum eigenvalue after PT is

x = [
√

N3 (Nμmin − 1) + 2
√

N ]N1/6. (43)

Because we are especially interested here in the critical
case when N3 = 4N = 4N1N2, the variable x is simply√

N3N
7/6μmin = 2N5/3μmin. Thus the fraction of NPT states,

say fNPT is simply the area under the universal Tracy-Widom
density, corresponding to x < 0 and keeping in mind that
we are now dealing with the minimum eigenvalue. Thus,
the simple RMT model for the matrix after PT results in the
estimate that

fNPT = 1 − F2 (0) . (44)

Note that this is just a number (independent of matrix dimen-
sions that are assumed to be large) that is numerically found to
be ≈0.03. For the case when L = 22, L1 = L2 = 5 qubits we
find numerically that there are 2.58% of states that are NPT,
thus there is reasonable agreement. Figure 6 shows the distri-
bution of x for two instances of critical dimensions. As the inset
indicates, clearly there is a shift from the Tracy-Widom distri-
bution. Indeed the limitations of the model of the PT as a GUE
member is reflected in the statistics of the extremes in this way.

One needs to add an additional shift for there to be a
good match with the Tracy-Widom distribution. A numerically
determined shift is applied to the two cases and the result is
shown in the right panels of Figs. 6 and 7. The shift is a
positive number s such that x + s is given by the right-hand
side of Eq. (43). If the shifted distribution is used for the cases
when (L = 18, L1 = L2 = 4) and (L = 22, L1 = L2 = 5),
there are ≈2.4% and ≈2.5% of NPT states, in closer agreement
with numerical simulations. Note that the shift will result in a
smaller area as the right end of the integration is moved from
zero to −s. This shift gets smaller for larger dimensionality
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FIG. 7. (Color online) Same as previous figure, but for the case of real states.

and the fraction of NPT states seems to approach the fraction
for the unshifted distribution.

Whereas in this section the primary case of complex density
matrices and the GUE has been considered, the real case is
of considerable interest as well. Prevalence of time-reversal
symmetry in many systems makes the real case important
wherein the density matrix on PT is modeled by matrices from
the Gaussian Orthogonal Ensemble (GOE). While there are
no essential differences in the density of states after PT—both
being close to the Wigner semicircle—they have very distinct
distributions for the extreme eigenvalues. As a consequence,
at the critical case, the fraction of NPT states is considerably
higher for real states. It turns out that the correct scaling
for the real case is the same as that in Eq. (43) and the
distribution of the smallest eigenvalue after PT is shown in
Fig. 7 for the same dimensions as for the complex case. It
is clear from this that the fraction of NPT states is indeed
larger, and is ≈16.8%. In the real case too a shift is needed for
good agreement with the relevant Tracy-Widom distribution,
which is also written in terms of solutions to the Painlevé-II
equation [50,51]. From numerical simulations for the cases
when (L = 18, L1 = L2 = 4) and (L = 22, L1 = L2 = 5),
the fraction of NPT states is 13.4% and 15.2% respectively,
approaching the 16.8%. If the shift is incorporated and then
the fraction is calculated there in good agreement even for
finite L. Thus, for example, in the case when (L = 14, L1 =
L2 = 3) numerical simulations result in 11.16% of NPT states,
while the shift adjusted area under the Tracy-Widom density
gives 11.58%.

1. Average log negativity at critical case

Using the asymptotic Wigner semicircle results in zero log
negativity, yet there is still a fraction of NPT states due to the

TABLE III. Average log negativity for L1 = L2 and various L for
the critical case (complex).

L1 L = 4L1 + 2 Numerical 〈ELN 〉 〈ELN 〉 using Eq. (45)

3 14 7.28 × 10−6 8.39 × 10−6

4 18 9.28 × 10−7 8.95 × 10−7

5 22 9.47 × 10−8 9.79 × 10−8

smallest eigenvalues in the tail. Although the percentage of
NPT states can be quite high, the log negativity of the entan-
glement is small. Numerical simulations indicate that, for at
least the dimensions that have been considered here, if there are
any negative eigenvalues at all on PT, there is only one. Thus
the smallest eigenvalue μmin almost wholly controls the entan-
glement in the critical case. Assuming that this is the case gives

ELN = ln

(∑
i

|μi |
)

= ln

(
1 − 2

∑
i;μi<0

μi

)
≈ −2μmin.

Thus the average log negativity at critical dimensions is given
by

〈ELN 〉M ≈ −2〈μmin� (−μmin)〉
= 2√

N3N7/6

∫ −s

−∞
− (x + s) p (x) dx ∼ N−5/3,

(45)

where �(x) is the Heaviside step function and s > 0 is the
numerically determined shift. The final estimate follows from
the condition of criticality that N3 = 4N1N2 = 4N . Tables III
and IV show how well this estimates the average log negativity
in three cases for both complex and real states, respectively.
One sees that the real states have a larger entanglement or log
negativity in agreement with their also having a larger fraction
of NPT states.

IV. ENTANGLEMENT AMONGST THREE COUPLED
KICKED ROTORS

To study the applicability of the results above to a dynamical
system, this section studies a Hamiltonian system of three
coupled and kicked quantum rotors or standard maps. The

TABLE IV. Average log negativity for L1 = L2 and various L for
the critical case (real).

L1 L = 4L1 + 2 Numerical 〈ELN 〉 〈ELN 〉 using Eq. (45)

3 14 7.62 × 10−5 8.26 × 10−5

4 18 9.41 × 10−6 9.51 × 10−6

5 22 1.13 × 10−6 1.06 × 10−6
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FIG. 8. (Color online) Density of μ, the eigenvalues after PT,
from a thousand eigenstates of U , the quantum map of a set of three
coupled standard maps. Dimensions used are N1 = N2 = 8 and
various N3 for parameter set 1, as used in the text. A vertical line at
the origin has been shown to draw attention to the negative part of
the spectrum.

quantum standard map is one of the most important paradigms
of quantum chaos [54] and has been used extensively from
early on Ref. [55] to study various phenomena such as
dynamical localization [56]. There have been experimental
realizations of the quantum standard map using cold atoms
where dynamical localization in the momentum has been
observed. Two coupled quantum standard maps were used to
study entangling power of quantum chaos [57]. More recently,
there have been studies of three-dimensional (3D) kicked
rotors [58] and many interacting kicked rotors [59].

A single classical standard map on the unit torus is given
by the equations

q ′ = q + p′ (mod 1) ,
(46)

p′ = p + K

2π
sin (2πq) (mod 1) ,

which connects phase-space variables (q1,p1) just before two
consecutive kicks which are separated by a unit of time. The
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FIG. 9. (Color online) Log negativity (ELN ) for 800 eigenstates of
the three coupled standard maps, the unitary operatorU , for parameter
set 1 (see text). The solid horizontal line is the average log negativity
of random states of corresponding dimensions, and is given for all
practical purposes by Eq. (35).

TABLE V. Average log negativity.

N1 N2 N3 Para. set 1 Para. set 2 Real random states

8 8 32 0.3567 0.3558 0.3491
8 8 80 0.1055 0.1054 0.1005
10 10 10 1.0041 1.0035 1.0032
12 12 12 1.0926 1.0922 1.0918
14 14 14 1.1678 1.1676 1.1669

modulo 1 conditions put the map on a phase space torus, which
models conservative systems and Poincaré surfaces of sections
of two-degree-of-freedom systems. Much is known about the
dynamics of the standard map [60]. If K = 0 then the dynamics
is completely integrable. For K ≈ 1 the last KAM rotational
torus breaks, resulting in large scale diffusion in the phase
space. For K < 5 the phase space is a mixed phase space
consisting of both regular and chaotic regions. For K 
 5, the
phase space is nearly completely chaotic with only a possibility
of finding extremely small islands of regular motion.

Higher-dimensional and coupled standard maps have been
previously studied also because new phenomena such as
Arnold diffusion arise [61]. The classical coupled maps that
are studied in this paper are given by the following canonical
or symplectic transformation:

q ′
i = qi + p′

i (mod 1),

p′
i = pi + Ki

2π
sin (2πqi)

+
∑
j �=i

bi,j

2π
sin[2π (qi + qj )] (mod 1), (47)

where Ki are parameters for respective maps and bi,j (i �=
j, bj,i = bi,j ) are the couplings. Here, i,j = 1,2,3 and there
are three coupled rotors, with a single-body potential and
mutual couplings of two-body interactions. Higher dimen-
sional maps such as these are only poorly understood. This
six-dimensional symplectic map is akin to Poincaré surfaces
of section of four-degree-of-freedom systems. However, for
the large parameter values that we have studied the maps are
fully chaotic, and one may consider its quantization to be one
where RMT will be fully applicable. The question that is being
investigated is the entanglement between any two rotors of this
tripartite system as measured by the log negativity.

The quantum standard map is the unitary operator corre-
sponding to the classical map. It propagates states from one
kick to the next. In the position representation it is [56,62]

U (n′,n; K,N ) = 1√
iN

exp

[
−iN

K

2π
cos

(
2π

N
(n + α)

)]

× exp

[
iπ

N

(
n′ − n

)2
]

. (48)

TABLE VI. Average log negativity for critical cases.

N1 N2 N3 Para. set 1 Para. set 2 Real random states

4 4 64 4.40 × 10−3 3.90 × 10−3 5.28 × 10−4

6 6 144 4.85 × 10−4 4.35 × 10−4 2.24 × 10−4

062331-11



BHOSALE, TOMSOVIC, AND LAKSHMINARAYAN PHYSICAL REVIEW A 85, 062331 (2012)

0 1 2 3 4
Nµ

0

0.2

0.4

0.6

0.8

P Γ
(Ν

µ)

Random States
CSM
Wigner’s Semicircle 
  Law

-0.6 -0.3 0
Nµ

0

0.1

0.2

P
Γ(Ν

µ)

0 1 2 3 4
Nµ

0

0.2

0.4

0.6

0.8

P Γ
(Ν

µ)

Random States
CSM
Wigner’s Semicircle 
  Law

-0.2 -0.1 0
Nµ

0

0.04

0.08

P
Γ(Ν

µ)

FIG. 10. (Color online) Density of μ, the eigenvalues after PT, for eigenstates of three coupled standard maps, for various dimensions and
using the parameter set 1 (see text). Panel on the left corresponds to N1 = N2 = 4, N3 = 64 and that on the right to N1 = N2 = 6, N3 = 144,
which are critical cases. The insets show an enlarged view of the region near the origin of the respective figures. A vertical line at the origin
has been shown, as before, to draw attention to the negative part of the spectrum.

The phase space being a torus, the quantum mechanics is
on a finite-dimensional Hilbert space of dimensionality N

which is related to a scaled Planck constant as N = 1/h.
Thus the classical limit is the large-N limit. The position kets
are labeled by n = 0, . . . ,N − 1 with eigenvalues (n + α)/N .
Phase-space reflection symmetry is governed by α and we use
α = 0.35 below to avoid having symmetric states. The unitary
operator corresponding to the three coupled standard maps in
Eq. (50) is given in the position representation by

〈n′
1n

′
2n

′
3|U |n1n2n3〉

=
3∏

i=1

U (n′
i ,ni ; Ki,Ni)

∏
j>i

exp

{
−i

√
NiNj

bi,j

2π

× cos

[
2π

(
ni + α

Ni

+ nj + α

Nj

)]}
. (49)

Each of the standard maps have their own dimensionality Ni .
The effective Planck constant is 1/(N1N2N3).

We study entanglement properties of the eigenstates of U
which are the pure states of a tripartite system and are the
stationary states as far as the quantum map is concerned. To
be more specific, the entanglement between two rotors, 1 and
2, is studied in these eigenstates using log negativity. Two
parameter sets are used below

Para. set 1 : (K1 = 8,K2 = 7,K3 = 6, b1,2 = 1.60,

b1,3 = 1.51, b2,3 = 1.42),

Para. set 2 : (K1 = 15,K2 = 14,K3 = 13, b1,2 = 2.60,

b1,3 = 2.51, b2,3 = 2.42).

Such large values of K and b ensures that the individual
standard maps are chaotic and strongly coupled with each
other. Also the parameters within each set are chosen to be
different to break any permutation-symmetry effects. Using
1000 eigenstates of U , the density of states of ρ

T2
12 is shown in

Fig. 8 for parameter set 1, with the 64 000 eigenvalues at one’s
disposal. Here, we see that the distribution fits reasonably
well with that of a corresponding Wigner’s semicircle law

[see Eq. (13), and recall that R = 2/
√

N1N2N3, N = N1N2].
There are deviations in the tail regions, especially at the large
eigenvalues, and agreement between the two distributions
improves as N3 increases. A similar kind of behavior in the
density of states of ρ

T2
12 for the parameter set 2 was observed

and is not presented here. It is perhaps amusing that the Wigner
semicircle appears, perhaps for the first time, in the study of
a dynamical system, but in the properties of the eigenstates
rather than the eigenvalues.

If 4N1N2 > N3, and a typical random state is NPT, the
eigenstates of the coupled standard maps have a log negativity
that is close to that of random states, but consistently slightly
larger. See Fig. 9 for the log negativity between maps 1 and 2
for a sample set of eigenstates. For parameter set 2 the average
log negativity is closer to that of random states compared to
parameter set 1 (cf. Table V) perhaps reflecting the increased
chaos in the classical system, although most of the standard
diagnostics of quantum chaos, such as the nearest neighbor
spacing statistics, do not differentiate between the two sets.

The increased entanglement, as measured by the log
negativity, for the standard map in comparison to random states
is consistent with lowered multipartite entanglement between
1, 2, and 3, as well as with lowered entanglement between
1 + 2 and 3. In terms of the monogamy of entanglement, 1
and 2 can be more entangled as they are less entangled with
3, as compared to a typical random state. If we view the third
rotor as the environment, it implies a smaller decoherence for
the subsystem 1 + 2. Thus we can say that the log negativity in
these cases furthers the BGS conjecture that quantum chaotic
systems have RMT properties, but at the same time provides
rather stringent and different tests for this. This is even more
acute in the case of critical dimensions.

In the critical cases when 4N1N2 = N3 and the majority of
random states are PPT, but there is a fraction of NPT states,
the average log negativity for the coupled standard maps is
systematically again more than that of the random states of
corresponding dimensions (see Table VI). The distribution of
the eigenvalues after PT, near the left tail in Fig. 10, differs
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TABLE VII. Percentage of NPT states for critical cases.

N1 N2 N3 Para. set 1 Para. set 2 Real random states

4 4 64 29.30% 20.37% 7.82%
6 6 144 23.17% 18.85% 9.99%

from that of random states and is highlighted in the inset of this
figure. Since the area under the curve for μ < 0 is larger for the
eigenstates of the coupled standard map than that of random
states, there is a larger average log negativity for the former
case. Also, using parameter set 2, we see that the average
log negativity of the eigenstates of the coupled standard maps
tends to that of random states, as shown in Table VI.

The percentage of NPT states for two critical cases is
presented in Table VII, where it is compared with that of real
random states of corresponding dimensions. While the log
negativity is itself larger for the standard maps, the differences
are not great. However, in terms of the percentage of NPT
states the differences between the dynamical system and the
random states are stark. This data however does show that the
percentage of NPT states of coupled standard map eigenstates
is closer to that of real random states for parameter set 2
than parameter set 1 (again, maybe a reflection of increased
classical chaos) and that the RMT values may be reached
asymptotically. However, for finite quantum systems, where
other diagnostics indicate agreement with RMT, such tests
seem to show still influences of a dynamical origin.

Finally, the skewness of the density of states of ρ
T2
12 of

the eigenstates of the quantum standard map U is compared
with that of the analytical formula [Eq. (34)] for the real case
in Table VIII. One observes that, as the dimension of the
individual standard maps increases, this skewness tends to
that of corresponding random real states. When the dimension
of the two standard maps 1 + 2 is small and that of the third
is large, the skewness approaches the random case, indicating
once more increased decoherence from the third rotor. A more
systematic study of the coupled standard maps, for various
dynamical regimes and for other dimensions is postponed. The
primary purpose of the present selection is to indicate relevant
dynamical systems where we may see easily the results on
entanglement of partial subsystems.

TABLE VIII. Average skewness.

CSM Para 1 Analytical
N1 N2 N3 [using Eq. (32)] using Eq. (33)

4 4 64 0.1126 6.25 × 10−2

4 4 150 8.05 × 10−2 4.08 × 10−2

4 4 200 7 × 10−2 3.53 × 10−2

8 8 16 0.1150 6.25 × 10−2

8 8 32 8.14 × 10−2 4.42 × 10−2

8 8 80 5.18 × 10−2 2.79 × 10−2

6 6 144 5.74 × 10−2 2.77 × 10−2

12 12 12 7.81 × 10−2 4.81 × 10−2

14 14 14 6 × 10−2 3.81 × 10−2

16 16 16 4.74 × 10−2 3.12 × 10−2

18 18 18 3.86 × 10−2 2.61 × 10−2

V. SUMMARY AND CONCLUSIONS

This paper has dealt with entanglement among two sub-
systems (say 1 and 2) of random tripartite pure states, using
log negativity as the measure. It is found that the state of a
subsystem is typically NPT, and hence entangled, if the number
of qubits in it (L1 + L2) is larger than half the total number (L).
To be precise, the number of qubits in the subsystem should
be larger than L/2 − 1, otherwise the state is typically PPT,
the critical case being when L1 + L2 = L/2 − 1. It is known
that the eigenvalue distribution of the reduced density matrix
of a subsystem is given by the Marcenko-Pastur function; but
it is found numerically that the same for the reduced density
matrix of subsystems after PT is close to the Wigner semicircle
law, especially when the number of qubits in the subsystems is
not very close to the total number of qubits. A simple random
matrix model, proposed herein, captures both the NPT-PPT
transition and the spectral features after PT reasonably well.

An analytical formula for the average log negativity is
derived using the Wigner semicircle law, which is in good
agreement with numerical simulations. This formula deviates
considerably when the number of qubits in the subsystem is
equal to the total number of qubits because the eigenvalue
distribution of the reduced density matrix after PT differs from
the Wigner semicircle law. In this case, using tools of random
matrix theory, an analytical expression for the average log
negativity is given that holds even if the subsystems differ in
size. This also generalizes and augments expressions for the
average negativity in Ref. [26].

An exact expression for the average of the third moment
of the reduced density matrix after PT has also been derived,
both for the complex and real cases. This quantity, which is
the first moment to deviate from that of the density matrix,
is remarkable in possessing permutation symmetry among the
three subsystems. In fact it is proved that this symmetry is
possessed not just on average but by individual states also.
Therefore, it can be considered as a possible measure of
entanglement, especially as it is also a local unitary invariant
and is a qudit generalization of the Kempe invariant I5 [24,47].

Using the Wigner semicircle density, the fraction of NPT
states and hence the average log negativity at criticality is
zero. However, a small but definite fraction of states is found
to be NPT. This fraction and the associated entanglement is
found by using the Tracy-Widom distribution for the extreme
eigenvalues of random matrices, and is in good agreement
with numerics, especially since it is observed that in all the
cases that we have come across, whenever a state is NPT
only one of its eigenvalues is negative. This constitutes the
use of the well-known Tracy-Widom distribution in quantum
information theory.

Finally, eigenvectors of three coupled standard maps (or
kicked rotors) were studied and compared with that of
random real states where the parameters of the map were
adjusted such that the classical dynamics is fully chaotic
and the quantization preserves time-reversal symmetry. While
agreeing for the most part with the results of random states,
deviations are seen prominently at critical dimensions. The
deviations are consistent with the dynamical states possessing
marginally lower tripartite entanglement than random states.
It is interesting that deviations are highlighted in quantities
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studied here, and hence they provide rather stringent tests
of the BGS conjecture that random matrices are models of
quantum chaotic systems.

This work suggests several future directions. For example,
the joint probability density function of eigenvalues after PT
is not known, but lies presumably “between” the Laguerre and
the Gaussian ensembles. Large deviation theory can be used
to give estimates of the extremely small fraction of NPT states
for L1 + L2 < L/2 − 1 when the states are dominantly PPT.
The comparison with dynamical models such as spin chains
and oscillators will be interesting, especially in regimes where
random matrix theory may not hold. Finally, we emphasize the
occurrence of the Wigner semicircle law in quantum chaotic
systems, originating not in the eigenvalues, but in the properties
of eigenfunctions.

APPENDIX A: EXACT EVALUATION OF 〈tr[(ρT2
12 )3]〉

In this Appendix an exact evaluation of the ensemble
average of the third moment of the PT, the first to depart
from that of the density matrix, is calculated. Hence the
skewness of the eigenvalue density of ρ

T2
12 is found. Here, the

notations Ni = 2Li , N = N1N2 and M = N1N2N3 are used.
For a bipartite partition of a pure state of L1 + L2 qubits and
the remaining L3 = L − L1 − L2 qubits, a general state |ψ〉
is given by

|ψ〉 =
N−1∑
i=0

N3−1∑
n=0

ain|i〉|n〉, 0 � L1 + L2 � L. (A1)

Hence the reduced density matrix of L1 + L2 qubits (ρ12) and
tr[(ρ12)3] are given by

(ρ12)ij =
N3−1∑
m=0

aima∗
jm,

(A2)

tr((ρ12)3) =
N−1∑

i,j,k=0

N3−1∑
m,n,p=0

aima∗
jmajna

∗
knakpa∗

ip.

After PT (ρT2
12)ĩ j̃ = (ρ12)ij where

ĩ := g (i,j ) = i − mod (i,N2) + mod (j,N2) ,
(A3)

j̃ := g (j,i) = j − mod (j,N2) + mod (i,N2) .

The function (i,j ) �→ (ĩ,j̃ ) = (g(i,j ), g(j,i)) is bijective and
is its own inverse, since performing PT twice keeps elements
of ρ12 unchanged. This implies that i = g(ĩ,j̃ ) and j = g(j̃ ,ĩ)
[i.e., (ρT2

12)ij = (ρ12)ĩ j̃ ]. Thus we state the following simple
conclusions are useful lemmas:

Lemma 1. ĩ = j̃ if and only if i = j .
Lemma 2. g(i,i) = i.
Lemma 3. If (i,j ) �→ (g(i,j ), g(j,i)) and (i ′,j ′) �→

(g(i ′,j ′), g(j ′,i ′)), and j �= j ′ (i �= i ′), then g(i,j ) �= g(i ′,j ′)
[g(j,i) �= g(j ′,i ′)]. In words, elements that differ in column
(row) position get mapped after PT to positions that differ in
row (column).

The expression for tr[(ρT2
12)3] using Eqs. (A2) and the above

function is

tr
[(

ρ
T2
12

)3] =
N−1∑

i,j,k=0

N3−1∑
m,n,p=0

aĩ1m
a∗

j̃1m
aj̃2n

a∗
k̃2n

ak̃3p
a∗

ĩ3p
, (A4)

where ĩ1 = g(i,j ), j̃1 = g(j,i), j̃2 = g(j,k), k̃2 = g(k,j ),
k̃3 = g(k,i), and ĩ3 = g(i,k). Using this one obtains the
ensemble average 〈tr[(ρT2

12)3]〉 as follows: Here, the fact that
after averaging only even-powered terms will be nonzero and
odd-powered terms will be zero is used. It can be seen in
Eq. (A4) that there are three possible cases for m, n, and
p; namely, m �= n �= p, m = n �= p (which is the same as
m �= n = p and m �= p = n) and m = n = p. In each of these
cases the number of terms that do not vanish on averaging is
first calculated, the last case requiring a somewhat detailed
analysis.

1. Case m �= n �= p

In this case, the only possible nonvanishing term after
averaging is a product of three unequal quadratic terms (i.e.,
ĩ1 = j̃1, j̃2 = k̃2, and k̃3 = ĩ3), which implies that g(i,j ) =
g(j,i), g(j,k) = g(k,j ) and g(k,i) = g(i,k). As a consequence
of Lemma 1 above, one then obtains that i = j = k. Thus, in
this case there are exactly N nonvanishing terms on averaging
Eq. (A4), each of the form |aim|2|ain|2|aip|2.

2. Case m = n �= p

Now there are two possible types of nonvanishing terms,
one a product of three unequal quadratic terms and the other
a product of one quadratic and one quartic term. In the former
possibility, k̃3 = ĩ3, ĩ1 = k̃2, j̃1 = j̃2, and ĩ1 �= j̃1 [i.e., g(k,i) =
g(i,k), g(i,j ) = g(k,j ), g(j,i) = g(j,k), and g(i,j ) �= g(j,i)].
Again using Lemma 1, this implies that i = k �= j . Thus there
are N (N − 1) nonvanishing terms on averaging, each of the
form |aim|2|ajm|2|aip|2.

In the latter case, k̃3 = ĩ3 and ĩ1 = j̃1 = j̃2 = k̃2

[i.e., g(k,i) = g(i,k) and g(i,j ) = g(j,i) = g(j,k) = g(k,j )],
which implies i = k = j . Thus there are N nonvanishing terms
of the form |aim|4|aip|2.

3. Case m = n = p

In this case there are three possible types of nonvanishing
terms: (1) one sextic term, (2) one quadratic and one quartic
term, and (3) three unequal quadratic terms.

(1) One sextic term. This occurs when ĩ1 = j̃1 = j̃2 =
k̃2 = k̃3 = ĩ3; that is, g(i,j ) = g(j,i) = g(j,k) = g(k,j ) =
g(k,i) = g(i,k). This in turn implies that i = j = k. Thus there
are N nonvanishing terms of the form |aim|6.

(2) One quadratic and one quartic term. Corresponding to
such terms there are two cases:

(a) ĩ1 = k̃2, j̃1 = j̃2 = k̃3 = ĩ3, and ĩ1 �= j̃1.
In terms of function g this condition is g(i,j ) = g(k,j ),

g(j,i) = g(j,k) = g(k,i) = g(i,k), and g(i,j ) �= g(j,i). This
implies, using the lemmas above, that i = k and g(j,k) = k

but k �= j . Thus j − mod(j,N2) + mod(k,N2) = k [i.e., j −
mod(j,N2) = k − mod(k,N2) and k �= j ]. In other words, j

and k have to be distinct but have the same quotient on division
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TABLE IX.

(a) (ĩ1 = j̃1) �= (j̃2 = k̃2) �= (k̃3 = ĩ3)
(b) (ĩ1 = j̃1) �= (j̃2 = k̃3) �= (k̃2 = ĩ3)
(c) (ĩ1 = j̃1) �= (j̃2 = ĩ3) �= (k̃2 = k̃3)
(d) (ĩ1 = j̃2) �= (j̃1 = k̃3) �= (k̃2 = ĩ3)
(e) (ĩ1 = j̃2) �= (j̃1 = ĩ3) �= (k̃2 = k̃3)
(f) (ĩ1 = k̃2) �= (j̃1 = k̃3) �= (j̃2 = ĩ3)
(g) (ĩ1 = ĩ3) �= (j̃1 = j̃2) �= (k̃2 = k̃3)

by N2. Here, j and k take values from 0 to N − 1 where
N = N1N2. To find the number of (j,k) pairs that satisfy these
conditions, imagine dividing N into N1 intervals each of length
N2. If j is selected from the N possible numbers, this also fixes
one such interval. The number k must necessarily be in this
interval, but must not be j , which gives a choice of multiplicity
(N2 − 1). Thus there are N (N2 − 1) nonvanishing terms of the
form |ajm|4|akm|2.

(b) ĩ1 = ĩ3, j̃1 = j̃2 = k̃2 = k̃3, and ĩ1 �= j̃1.
In terms of the function g this condition is g(i,j ) = g(i,k),

g(j,i) = g(j,k) = g(k,j ) = g(k,i), and g(i,j ) �= g(j,i). Us-
ing the lemmas above implies that j = k and g(j,i) =
j but i �= j . Thus j − mod(j,N2) + mod(i,N2) = j [i.e.,
mod(j,N2) = mod(i,N2) and i �= j ]. In words, one must count
the number of distinct pairs of integers having the same
remainder on division by N2. This is easily seen from an
argument similar to that in the previous paragraph to be
N (N1 − 1), each corresponding to a nonvanishing term of the
form |aim|2|ajm|4.

Combining these two cases and including the cyclic
permutation of (i,j,k), the total number of nonvanishing terms
of this kind are 3N (N1 + N2 − 2).

We note in parentheses that this is the first instance that
the counting is different from that for evaluating 〈tr[(ρ12)3]〉
in which one has the condition i = j �= k and its cyclic
permutations, implying 3N (N − 1) nonvanishing terms.

(3) Three unequal quadratic terms. For three unequal
quadratic terms there are fifteen possible cases, of which only
seven are distinct up to a cyclic permutation of indices (i,j,k).
These are listed in Table IX and are subsequently analyzed.

(a) (ĩ1 = j̃1) �= (j̃2 = k̃2) �= (k̃3 = ĩ3).
In terms of function g this condition is (g(i,j ) = g(j,i)) �=

(g(j,k) = g(k,j )) �= (g(k,i) = g(i,k)). This gives i = j , j =
k, i = k, i �= j , j �= k, and i �= k, which are incompatible
conditions and hence the number of terms of this kind is zero.
The multiplicity of this case under cyclic permutation of the
labels (i,j,k) is 1.

(b) (ĩ1 = j̃1) �= (j̃2 = k̃3) �= (k̃2 = ĩ3).
In terms of function g this condition is (g(i,j ) = g(j,i)) �=

(g(j,k) = g(k,i)) �= (g(k,j ) = g(i,k)). The first equality gives
i = j , and the inequality g(j,k) �= g(k,j ) implies that j �= k.
However, the second equality (using i = j ) implies that i = k.
Thus these conditions are incompatible and the number of
terms of this kind is zero. The multiplicity of this case under
cyclic permutation of the labels (i,j,k) is 3.

(c) (ĩ1 = j̃1) �= (j̃2 = ĩ3) �= (k̃2 = k̃3).
In terms of function g this condition is (g(i,j ) =

g(j,i)) �= (g(j,k) = g(i,k)) �= (g(k,j ) = g(k,i)). This first
equality gives i = j , while the inequality g(i,k) �= g(k,i) im-

plies that i �= k. Furthermore, g(i,j ) = g(i,i) = i �= g(i,k) ⇒
mod(i,N2) �= mod(k,N2) and i �= g(k,i) ⇒ i − mod(i,N2) �=
k − mod(k,N2) (i.e., the remainder and quotient of i and
k, under division by N2, are not the same). Again dividing
N into N1 intervals each of length N2 gives N (N − N1 −
N2 + 1) as the number of possible triples (i,j,k) that satisfy
these conditions. The multiplicity of this case under cyclic
permutation of the labels (i,j,k) is 3.

(d) (ĩ1 = j̃2) �= (j̃1 = k̃3) �= (k̃2 = ĩ3).
In terms of function g this condition is (g(i,j ) = g(j,k)) �=

(g(j,i) = g(k,i)) �= (g(k,j ) = g(i,k)). The inequalities and
Lemma 1 above imply that i �= j �= k. It is then not hard
to see that the equalities are incompatible with this condi-
tion. For instance (i,j ) �→ (g(i,j ), g(j,i)) whereas (j,k) �→
(g(j,k), g(k,j )), and using Lemma 3 with (i ′,j ′) ≡ (j,k),
g(i,j ) �= g(j,k), which violates one of the requirements. Thus
the number of terms of this kind is zero. The multiplicity of
this case under cyclic permutation of the labels (i,j,k) is 3.

(e) (ĩ1 = j̃2) �= (j̃1 = ĩ3) �= (k̃2 = k̃3).
In terms of function g this condition is (g(i,j ) = g(j,k)) �=

(g(j,i) = g(i,k)) �= (g(k,j ) = g(k,i)). An analysis very sim-
ilar to the previous case shows that these conditions are
incompatible too. The multiplicity of this case under cyclic
permutation of the labels (i,j,k) is 3.

(f) (ĩ1 = k̃2) �= (j̃1 = k̃3) �= (j̃2 = ĩ3).
In terms of function g this condition is (g(i,j ) = g(k,j )) �=

(g(j,i) = g(k,i)) �= (g(j,k) = g(i,k)). The inequalities again
imply that i �= j �= k, however the lemmas do not lead to
incompatible conditions.

g (i,j ) = g (k,j ) ⇒ i − mod (i,N2) = k − mod (k,N2) ,

g (j,i) = g (k,i) ⇒ j − mod (j,N2) = k − mod (k,N2) ,

g (j,k) = g (i,k) ⇒ i − mod (i,N2) = j − mod (j,N2) .

Thus i, j , k have the same quotient on division by N2,
and as they are all distinct they have different remainders. To
find the number of triples (i,j,k) that satisfy these conditions,
once more divide an interval of length N into N1 intervals of
length N2. One can select i in N possible ways, which fixes the
quotient on division by N2. The integers j and k must then be
one of the possible N2 − 1 numbers, without also being equal.
Hence the number of terms of this kind is N (N2 − 1)(N2 − 2).
The multiplicity of this case under cyclic permutation of the
labels (i,j,k) is 1.

(g) (ĩ1 = ĩ3) �= (j̃1 = j̃2) �= (k̃2 = k̃3).
In terms of function g this condition is (g(i,j ) = g(i,k)) �=

(g(j,i) = g(j,k)) �= (g(k,j ) = g(k,i)). A similar analysis as
for the previous case shows that i, j , and k are distinct but they
have a common remainder on division by N2. Thus there will
be N (N1 − 1)(N1 − 2) number of nonvanishing terms in this
case. The multiplicity of this case under cyclic permutation of
the labels (i,j,k) is 1.
Thus the number of terms with a product of three distinct
quadratics, including the multiplicities is 3N (N − N1 − N2 +
1) + N (N1 − 1)(N1 − 2) + N (N2 − 1)(N2 − 2). In contrast
the number of such terms in the evaluation of 〈tr[(ρ12)3]〉
is N (N − 1)(N − 2). In general note that one can recover
results for the density matrix prior to PT from those after PT
by replacing N2 → 1 and N1 → N . Thus the results for PT
present a particular generalization.
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The exact RMT ensemble-average values [63] for the case of complex states are stated below for convenience:

〈|ain|6〉 = 6

M(M + 1)(M + 2)
,〈|ain|4|ajn|2〉 = 〈|ain|4|aim|2〉 = 2

M(M + 1)(M + 2)
,

〈|ain|2|ajm|2|akp|2〉 = 〈|ain|2|aim|2|akp|2〉 = 〈|ain|2|aim|2|aip|2〉 = 〈|ain|2|ajn|2|akp|2〉 =
〈|ain|2|ajn|2|aip|2〉 = 〈|ain|2|ajn|2|ajp|2〉 = 〈|ain|2|ajn|2|akn|2〉 = 1

M(M + 1)(M + 2)
.

These averages are multiplied by the number of nonvanishing terms and by the respective multiplicity for m, n, and p (for
m �= n �= p it is N3(N3 − 1)(N3 − 2), for m = n �= p it is 3N3(N3 − 1) and for m = n = p it is simply N3), and added together.
Use is made of NN3 = N1N2N3 = M and a straightforward simplification of 22 terms results in significant cancellations, leaving
just 4 terms finally. This results in

〈
tr
(
ρ

T2
12

)3〉 = N2
1 + N2

2 + N2
3 + 3N1N2N3

(N1N2N3 + 1) (N1N2N3 + 2)
, (A5)

with the remarkable permutation symmetry evidently displayed.
A similar analysis can be done for the case of averaging only over real states. The counting remains identical to the complex

case, while the averages differ as

〈a6
in〉 = 15

M(M + 2)(M + 4)
,〈a4

ina
2
jn〉 = 〈a4

ina
2
im〉 = 3

M(M + 2)(M + 4)
,

〈a2
ina

2
jma2

kp〉 = 〈a2
ina

2
ima2

kp〉 = 〈a2
ina

2
ima2

ip〉 = 〈a2
ina

2
jna

2
kp〉 =

〈a2
ina

2
jna

2
ip〉 = 〈a2

ina
2
jna

2
jp〉 = 〈a2

ina
2
jna

2
kn〉 = 1

M(M + 2)(M + 4)
.

This leads to the ensemble average

〈
tr
(
ρ

T2
12

)3〉= N2
1 + N2

2 + N2
3 + 3(N1 + N2 + N3 + N1N2N3)

(N1N2N3 + 2)(N1N2N3 + 4)
,

(A6)

where we have used M = N1N2N3.
Using the earlier statement that the averages prior to PT

can be found from those after by the replacement N2 → 1 and
N1 → N = N1N2, one gets

〈tr(ρ12)3〉 = N2
1 N2

2 + N2
3 + 3 N1N2N3 + 1

(N1N2N3 + 1) (N1N2N3 + 2)
,

〈tr(ρ12)3〉 = N2
1 N2

2 + N2
3 + 3 (N1N2 + N3 + N1N2N3) + 4

(N1N2N3 + 2) (N1N2N3 + 4)
,

(A7)

for the complex and real cases, respectively. This indeed agrees
with a previous calculation of this quantity [Eq. (5.11) in
Ref. [32]], where the complex case is considered.

APPENDIX B: TO SHOW tr(ρT2
12 )m �= tr(ρT3

23 )m �= tr(ρT1
31 )m

IN GENERAL FOR m > 3

In this Appendix it is shown that, in general, moments of
order higher than three of the density matrix after PT are not
permutation symmetric. Using Eq. (23) the following equation
is obtained:

tr
(
ρ

T2
12

)3 = ψjk′lψ
j ′kl

ψj ′k′′l′ψ
j ′′k′l′

ψj ′′kl′′ψ
jk′′l′′

. (B1)

Every index of a given tensor is contracted with a correspond-
ing index in a distinct dual tensor. This allows Eq. (B1) to be

associated with a set of triples:

S12 = {(b2,b1,b0) , (b0,b2,b1) , (b1,b0,b2)} . (B2)

This is to be understood as follows: the dual tensors ψ that
appear are labeled in their order or appearance from left to right
as b0, b1, b2 and the first triple (b2,b1,b0) indicates that the first
tensor ψ is such that its first index is contracted with the third
dual tensor, its second with the second, and the third with the
first dual tensor. The second triple refers to the contraction
order for the second tensor and similarly the third. The
association with the set of triples is not unique; for example,
any permutation among the {bi} and/or permutation among the
triples of the set refers to the same quantity. These operations
correspond to differently ordering the tensors and their duals.

Consider the following:

tr
(
ρ

T3
13

)3 = ψjkl′ψ
j ′kl

ψj ′k′l′′ψ
j ′′k′l′

ψj ′′k′′lψ
jk′′l′′

. (B3)

Following the above prescription allows us to assign this
quantity the set

S13 = {(b2,b0,b1) , (b0,b1,b2) , (b1,b2,b0)} , (B4)

which is the same as the one for Eq. (B1) if we interchange b1

and b0.
As a first case it is shown that fourth moment of density

matrix after PT is not permutation symmetric. This leads to the
following sets of triples for tr(ρT2

12)4 and tr(ρT3
13)4, respectively:

S12 = {(b3,b1,b0) , (b0,b2,b1) , (b1,b3,b2) , (b2,b0,b3)} ,

(B5)

S13 = {(b3,b0,b1) , (b0,b1,b2) , (b1,b2,b3) , (b2,b3,b0)} .

(B6)
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It is not hard to see that these two sets are not compatible
under permutations of the {bi}, and hence the fourth moments
are not the same. For example if we identify the first triples in
the two sets, this implies that b0 �→ b1 and b1 �→ b0 (mapping
direction being from S13 to S12). This implies that the second
triple of S13 maps to (b1,b0,−), where the − indicates some
other bi . However, from S12 it is seen that there are no triples
that are like this. In fact any identification of the triples leads
to contradictions.

On similar lines for tr(ρT2
12)n, tr(ρT3

13)n it can be seen that the
associated sets are

S12 = {(bn−1,b1,b0), (b0,b2,b1), (b1,b3,b2),

. . . ,(bn−3,bn−1,bn−2), (bn−2,b0,bn−1)}, (B7)

S13 = {(bn−1,b0,b1), (b0,b1,b2), (b1,b2,b3),

. . . ,(bn−3,bn−2,bn−1), (bn−2,bn−1,b0)}. (B8)

Identify the any triple from S12, (bp,bp+2,bp+1), with any triple
(br,br+1,br+2) from S13, so that br �→ bp, br+1 �→ bp+2, and
br+2 �→ bp+1. It follows that the triple (br−1,br ,br+1) in S13

maps to (−,bp,bp+2). This can match with the corresponding
term in S12, with a bp at the center of the triple only
if (p − 1) mod n = (p + 2) mod n for all 0 � p � n − 1,
which implies that n = 1 or n = 3; these cases correspond
to the trivial tr(ρT2

12) = 1 and the nontrivial quantity tr(ρT2
12)3.

APPENDIX C: REGARDING THE W -STATE EXAMPLE

In this Appendix details of the example in Eq. (26)
with α2 = 3/7 and β2 = γ 2 = 2/7 is provided. Consider the
generalized W state |ψ〉 = α|001〉 + β|010〉 + γ |100〉 where
α2 + β2 + γ 2 = 1. A straightforward calculation gives the
eigenvalues of ρ

T2
12 as {β2, γ 2, [α2 ± (α4 + 4β2γ 2)1/2]/2},

that of ρ
T3
13 as {α2, γ 2, [β2 ± (β4 + 4α2γ 2)1/2]/2} and that of

ρ
T3
23 as {α2, β2,[γ 2 ± (γ 4 + 4α2β2)1/2]/2}. Hence using these

eigenvalues it immediately follows that Eq. (27) holds for ρ
T2
12 ,

ρ
T3
13 , and ρ

T3
23 .

Consider the case for which α = 0 and |ψ〉 = (β|01〉 +
γ |10〉) ⊗ |0〉, so that the first two qubits are entangled and

they are in a product state with the third qubit. In this case the
eigenvalues of ρ

T2
12 are {β2, γ 2, ±βγ } whereas the eigenvalues

of ρ
T3
13 and ρ

T3
23 are {0,0,β2,γ 2}. Thus if and only if n is odd the

following holds:

tr
(
ρ

T2
12

)n = tr
(
ρ

T3
23

)n = tr
(
ρ

T3
13

)n = β2n + γ 2n. (C1)

In general, it follows from considerations elaborated around
Eq. (37) that for any-dimensional tripartite state with only two
subsystems entangled, the odd moments of the density matrix
after PT are permutation symmetric whereas the even moments
are not.

For special values of α, β, and γ it is shown that the
moments of order higher than three of the density matrix after
PT are not permutation symmetric. Special values that are
considered here are α2 = 3/7, β2 = γ 2 = 2/7. In this case
the eigenvalues of ρ

T2
12 are 2/7, 2/7, 4/7, −1/7, and that of

ρ
T3
13 are 3/7, 2/7, (1 + √

7)/7, and (1 − √
7)/7. Thus, the nth

moment of the density matrices after PT are given by Eq. (28).
Note that tr(ρT3

13)n < tr(ρT2
12)n implies that tn = 3n + (1 +√

7)n + (1 − √
7)n < t ′n = 2n + 4n + (−1)n. The recursion

relations for tn and t ′n are given by

tn+3 = 5tn+2 − 18tn, t ′n+3 = 5t ′n+2 − 2t ′n+1 − 8t ′n, (C2)

respectively. For example, the first recursion relation is
obtained by considering 3, (1 ± √

7) as roots of a cubic
polynomial. The method of mathematical induction can be
used to prove that indeed tn < t ′n for n > 3. Assume that
t ′n > tn, t ′n+1 > tn+1, t ′n+2 > tn+2 which is true for n = 4. Then
it is sufficient to show that t ′n+3 > tn+3. It follows from the
assumption that

t ′n+3 = 5t ′n+2 − 2t ′n+1 − 8t ′n > 5tn+2 − 2t ′n+1 − 8t ′n. (C3)

Now if 5tn+2 − 2t ′n+1 − 8t ′n > tn+3 then it follows that 5tn+2 −
2t ′n+1 − 8t ′n > 5tn+2 − 18tn or equivalently 18tn > 2t ′n+1 +
8t ′n. However, from the assumption 18t ′n > 18tn, and hence
18t ′n > 2t ′n+1 + 8t ′n which gives 5t ′n > t ′n+1. Finally, therefore,
3(2n) + 4n + 6(−1)n > 0 which is certainly holds for n > 3.
Thus t ′n+3 > tn+3 for all n > 3, as required to be proven.
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