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Proposal for a scalable universal bosonic simulator using individually trapped ions
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We describe a possible architecture to implement a universal bosonic simulator using trapped ions. Single
ions are confined in individual traps, and their motional states represent the bosonic modes. Single-mode linear
operators, nonlinear phase shifts, and linear beam splitters can be realized by precisely controlling the trapping
potentials. All the processes in a bosonic simulation, except the initialization and the readout, can be conducted
beyond the Lamb-Dicke regime. Aspects of our proposal can also be applied to split adiabatically a pair of ions
in a single trap.
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I. INTRODUCTION

Coherently manipulated photons have been proposed to
be a good candidate for testing the foundation of quantum
mechanics [1], performing quantum computations [2,3], con-
ducting high-precision measurements [4], and many other
applications. However, because of poor sources, detection inef-
ficiencies, and weak photon-photon interactions, implement-
ing these proposals for large-scale devices is very difficult.
Some other well-controlled quantum systems can simulate the
photonic system if it also exhibits bosonic properties [5]. More
specifically, a universal bosonic simulator (UBS) should be
able to reproduce the evolution of a bosonic system under the
most general form of Hamiltonian. This requirement is not too
stringent, as the evolution can be approximated to arbitrary
accuracy by a sequence of basic operators that belong to a
universal set [6]. Lloyd and Braunstein [7] proved that the
simplest universal set of basic operators was comprised of all
single-mode linear operators, at least one multimode operator,
and at least one nonlinear element. Efficiently performing these
basic operations is hence necessary for any implementation of
the UBS.

Ion traps are a suitable candidate for implementing a UBS,
in which a high degree of controllability has been demonstrated
[8]. The motion of laser-cooled ions is quantum in nature,
and the excitations of the motional states, i.e., phonons,
exhibit bosonic behavior. The collective displacement and
momentum of the ions are analogous to the quadratures
of light fields. Any arbitrary motional state can be created
by combining techniques such as sideband transition [9],
parametric amplification [10], and adiabatic passage [11]; in
particular, the creation of Gaussian states [12] and nonclassical
states [12,13] from the ground state has been experimentally
demonstrated. When applied to nonground states, some of
these techniques can achieve single-phonon linear or nonlinear
operations. Interaction between phonon modes at the few-
quanta level has also been observed. For example, nonlinear
beam splitting on a single ion has been performed by applying
a Raman field [14]; coupling two phonon modes has also
been demonstrated through the Coulomb interaction between
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two separately trapped ions [15,16], or two ions in the same
trap [17,18].

The idea of using trapped-ion systems for UBS was first
proposed by Wineland et al. [19]. Their simulator is a chain of
ions trapped by a harmonic potential. If all three motional
degrees of freedom are incorporated, a trap with N ions
can at most offer 3N phonon modes. This architecture is in
principle scalable, because the number of ions in a trap is
not fundamentally limited. However, the addition of ions will
narrow the frequency gap between phonon modes; sideband
transition should be conducted slowly to avoid significant
errors [20]. In addition, a measurement on one phonon mode
via resonance fluorescence may cause significant heating of
the ion chain, which distorts the states of other phonon
modes. These shortcomings limit the number of modes and
the population of phonons that can be simulated accurately.

The problem of an excess of ions in a single trap also appears
in ion-trap quantum computing [8]. Kielpinski, Monroe, and
Wineland (KMW) [21] have proposed a modified approach in
which ion qubits are stored in separate locations of an array of
traps, so that the manipulation on one qubit negligibly affects
the others. Considerable advances in experimental realization
of these ideas have been made in the past few years [22,23];
in particular, entanglement gates have been performed on ions
which were initially greatly separated, and ions have been
moved between traps.

In this paper, we propose using the KMW architecture to
implement a UBS on a trapped-ion system. We consider each
ion to be stored in a separate harmonic trap in which only
one bosonic mode is present. All single-mode operations can
be conducted by either changing the storage trap potential or
by laser manipulations. The linear beam splitter is based on
the Coulomb interaction, which is the same principle as the
kinetic energy exchange in Refs. [15,16]. However, we require
the distance between the ions to be variable in order to speed up
the process. Ions can be transported in specific trajectories that
do not cause motional excitations [24,25]. The advantages of
our scheme are that the quality of each operation is independent
of the number of modes involved in the simulation, and the
initialization and readout of any one mode will not distort the
others.

We begin by presenting the setup and the physical model of
our proposal in Sec. II A. Useful mathematical techniques are
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introduced in Sec. II B. The implementation of single-mode
operations is then introduced in Sec. III. In Sec. IV, we
show that a linear beam splitter can be implemented by
precisely combining and splitting two traps through changing
the quadratic and quartic potentials. Initialization and readout
of phonon states are presented in Sec. V. This article is
concluded in Sec. VI with some discussion.

II. IONS IN HARMONIC TRAPS

A. Model

We assume ions are tightly trapped in the y and the z

directions by a strong ac field while a weaker dc potential is
applied along the x direction. We assume this configuration
would effectively restrict the ion to move along only the
x direction because the excitations in other directions are
negligible.

The configuration of our system is schematically shown in
Fig. 1. Ions are trapped in an array of harmonic storage traps,
and only one ion is present in each trap. The distance between
the equilibrium position of two neighboring traps is L, which
is sufficiently large that Coulomb coupling between the ions
can be neglected. Hence the total Hamiltonian of the system
is given by

Ĥ0 =
∑

n

p̂2
n

2m
+ 1

2
mω2

0x̂
2
n, (1)

where the subscript n denotes the quantities belonging to the
ion in the nth trap, and x̂n is the operator of the nth ion’s
location measured from the equilibrium position of the nth
trap. The annihilation and the creation operators of the phonon
mode of the nth ion are given by

ân =
√

mω0

2h̄
x̂n + i

√
1

2h̄mω0
p̂n,

(2)

â†
n =

√
mω0

2h̄
x̂n − i

√
1

2h̄mω0
p̂n.

The ions are cooled to both the motional and electronic
ground state before an input state is created. The trapping
potentials will be varied, but the potentials should return to the
original form in Eq. (1) after each operation. Thus, an operation
is characterized by the transformation of the motional state in

FIG. 1. The configuration of our ion-trap UBS is an array of
storage traps. Only one ion is trapped in each trap, which is a harmonic
well. The traps are separated by a distance L, which is large enough
to prevent disruption from the others. The position displacement of
the ith ion xi is accounted for with respect to the trap center.

the interaction picture, i.e.,

|ψI (T )〉 = Ŝ|ψI (0)〉, (3)

where Ŝ ≡ exp(iĤ0t/h̄)ÛS is the S-matrix, and ÛS is the
evolution operator in the Schrödinger picture. Then the
annihilation operator of a phonon mode in the interaction
picture is transformed as

ân → Ŝ†ânŜ = Û
†
S ânÛSe

iω0T . (4)

We will omit the n in future discussions of single-mode
operation.

B. Lewis-Riesenfeld theory

The Schrödinger equation with a time-dependent harmonic
potential will frequently be encountered in future sections, i.e.,

i∂t |ψ〉 = Ĥ (t)|ψ〉 ≡
(

p̂2

2m
+ 1

2
mω2(t)x̂2

)
|ψ〉. (5)

Lewis and Riesenfeld analyzed the problem of time-varying
harmonic oscillators by considering the invariant operator
given by the following expression [26,27]:

Î(t) = (bp̂ − mḃx̂)2

2m
+ 1

2
mω2

0x̂
2 = h̄ω0

(
Â†(t)Â(t) + 1

2

)
,

(6)

where a dot denotes a time derivative. The dimensionless
function b(t) satisfies the auxiliary equation

b̈ + ω2(t)b − ω2
0

b3
= 0, (7)

and the operators Â(t) and Â†(t) are the raising and lowering
operators of the eigenstates |λn,t〉 of Î(t), i.e.,

Î(t)|λn,t〉 = λn|λn,t〉, (8)

Â(t)|λn,t〉 = √
n|λn−1,t〉, (9)

Â†(t)|λn−1,t〉 = √
n|λn,t〉, (10)

with λn being the corresponding eigenvalues. Because the
invariant operator is defined to satisfy

ih̄∂t Î(t) + [Î(t),Ĥ (t)] = 0, (11)

the values of λn remain unchanged, and the eigenstates |λn,t〉
are always orthogonal during the evolution, i.e.,

〈λm,t |[ih̄∂t − Ĥ (t)]|λn,t〉 = 0, if n �= m. (12)

The evolution operator of the system from time t to t ′ thus
takes the form

Û (t,t ′) =
∞∑

n=0

ei(n+ 1
2 )[�(t)−�(t ′)]|λn,t〉〈λn,t

′|, (13)

where the phase is chosen as

�(t) = −
∫ t

0

ω0

b2(t ′′)
dt ′′, (14)

such that the states ei(n+ 1
2 )�(t)|λn,t〉 are solutions of Eq. (5).
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When the harmonic well is static, i.e., ω is a constant, the
general real solution of Eq. (7) is

b =
√

ω0

ω

√
cosh δ + sinh δ sin(2ωt + ϕ), (15)

where δ and ϕ are constant parameters. In our case, we are
only interested in the operations where the trapping potential
are steady before and after the operation, i.e.,

ω(ti) = ω(tf ) = ω0, (16)

where ti and tf are the starting and ending time of the
operation. For simplicity, we assume both δ = 0 and ϕ = 0
at the beginning, such that b(ti) = 1. In general, the values
of δ and ϕ have to be determined by integrating Eq. (7). The
invariant operator Î(t) is identical to Ĥ (t) at t = ti , so we have

Â(ti) = â. (17)

After the operation, the lowering operator becomes [26]

Â(tf ) = η(tf )â + ζ (tf )â†, (18)

where

η(t) = 1

2

(
1

b
+ b − i

ḃ

ω0

)
, (19)

ζ (t) = 1

2

(
1

b
− b − i

ḃ

ω0

)
. (20)

The absolute magnitudes of η(t) and ζ (t) are

|η(t)| = cosh
δ

2
; |ζ (t)| = sinh

δ

2
, (21)

in which the normalization condition |η|2 − |ζ |2 = 1 is satis-
fied automatically.

The action of the harmonic potential variation is accounted
for by the evolution operator, i.e., Ô = Û (tf ,ti). It is readily
seen that the raising operator is related to the annihilation
operator as

Â(tf ) = ei[�(tf )−�(ti )]Û (tf ,ti)âÛ †(tf ,ti). (22)

Using Eq. (4), we deduce the transformation of the annihilation
operator as

â → η∗(tf )ei[�(tf )−�(ti )+ω0(tf −ti )]â

−ζ (tf )e−i[�(tf )−�(ti )−ω0(tf −ti )]â†. (23)

A generalization of Lewis-Riesenfeld theory, including the
motion of the trap center, is given in Appendix A.

III. SINGLE-MODE OPERATIONS

Any single-mode linear operator can be achieved by
alternatively applying the displacement operators, phase-shift
operators, and squeezing operators [7,28]. For ion-trap bosonic
simulations, each of these operators could be implemented
by constructing specific Hamiltonians using laser interaction.
However, the accuracy and speed are limited by the validity
of the Lamb-Dicke approximation (LDA), unless compli-
cated higher-order corrections are considered [14,19,20].
We consider an alternative approach that the operators are
implemented by varying the harmonic trapping potentials.
In addition, applying perturbatively a quartic potential to

(a) (b) (c)

FIG. 2. (a) A displacement operator is implemented by changing
the trapping center of the harmonic well. (b) A phase-shift operator
or a squeezing operator is implemented by varying the harmonic
potential strength. (c) An extra quartic potential is applied to
implement the nonlinear phase gate.

the storage trap can achieve a nonlinear phase gate, which
is a nonlinear operator that comprises the universal set of
operators. Both harmonic potential and quartic potential can
be implemented in experiments [29]. All of the operations are
assumed to operate from t = 0 to t = T . A summary of the
operations is shown in Fig. 2.

A. Displacement operator

A displacement operator, D̂(α) = exp(αâ† − α∗â), trans-
forms the annihilation operator as

â → D̂†(α)âD̂(α) = â + α, (24)

where
√

2h̄/mω0Re(α) is the shift of the ion’s position,
and

√
2h̄mω0Im(α) is the shift of the ion’s momentum. The

operator can be achieved by applying two radiation fields
with close frequencies to induce a Raman transition. If the
frequency difference of the Raman fields is resonant to the
red sideband of the ground electronic state, the effective
Hamiltonian is then proportional to â + â† at the first order of
the LDA and the rotating-wave approximation (RWA), while
the internal state remains at the ground state [12,13,20].

Another way of performing the displacement operator is
to move the harmonic trap, i.e., replacing the storage trap
Hamiltonian by the displacement operator Hamiltonian,

ĤD = p̂2

2m
+ 1

2
mω2

0[x̂ − s(t)]2, (25)

where s(t) specifies the path of the trap center. Assume the
trap center was initially located at the origin, i.e., s(0) = 0.
We require the trapping center returns to the origin after the
operation, i.e., s(T ) = 0. After the operation, every coherent
state |χ〉 will become

|χ〉 →
∣∣∣∣
(

χ −
√

mω0

2h̄

∫ T

0
ṡ(t) exp(iω0t)dt

)
e−iω0T

〉
(26)

up to a global phase that will not affect the simulation
result [30]. Since the result applies to every coherent state,
the annihilation operator transformed according to Eq. (4) is

â → â −
√

mω0

2h̄

∫ T

0
ṡ(t) exp(iω0t)dt ≡ â + α[s(t)], (27)

where the displacement α is a functional of s(t). We note that
many different forms of s(t) can produce the same α. A method
to obtain an s(t) for a specific α is described in Appendix B.

B. Phase-shift operator

A phase-shift operator P̂(φ) = exp(−iφâ†â) transforms
the annihilation operators as

â → P̂†(φ)âP̂(φ) = âe−iφ. (28)
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The operator can be implemented by applying a laser field
to the ion, where the laser frequency is detuned from any
electronic transition. The ac Stark effect produced by the
field will disturb the electronic ground-state energy and hence
induces a phase shift.

Leibfried et al. [14] implemented the phase-shift operator
by applying a perturbative quadratic potential εx̂2. Under the
RWA, the term h̄ε(ââ† + â†â)/2mω0 dominates the perturba-
tion and produces a phase shift. In this approach, the validity
of the RWA requires that the strength of the perturbation,
h̄ε/2mω0, be much smaller than the energy of a phonon h̄ω0.
The requirement implies that the duration of a phase-shift
operator, which scales as

√
m/ε, should be much longer than

1/ω0.
The operation time can be reduced to the same order as 1/ω0

if the strength of the harmonic trap changes nonperturbatively,
i.e., replacing the storage-trap Hamiltonian by the phase-shift
operator Hamiltonian:

ĤP = p̂2

2m
+ 1

2
mω2(t)x̂2. (29)

The trapping frequency should be the same as that of the
storage trap before and after the operation, i.e., ω(0) =
ω(T ) = ω0. The effect of this potential can be considered
analytically using the Lewis-Riesenfeld theory [26] introduced
above. Because the amplitude of each motional Fock state
remains the same after the phase-shift operator, it implies that
|λn,0〉 = |λn,t � T 〉 = |n〉 up to a phase where |λn,t〉 is an
eigenstate of the invariant operator at time t . This criterion is
equivalent to requiring the corresponding auxiliary function
of ω(t), bφ(t), which follows Eq. (7), to satisfy the boundary
conditions:

bφ(t � 0) = 1; bφ(t � T ) = 1. (30)

Then the final lowering operator will consist of only the
annihilation operator, i.e., η(t � T ) = 1, ζ (t � T ) = 0. Ac-
cording to Eq. (23), the overall effect of the harmonic potential
variation will transform the annihilation operator as

â → âei[�(T )+ω0T ], (31)

which is obviously a phase-shift operator.
There is no unique form of ω(t) and bφ(t) that satisfies all the

above conditions; therefore we have the freedom to choose ω(t)
in a manner that is convenient in practice. Alternatively, we
can initially guess a b(t) and obtain the corresponding ω(t) for
the experiment. A possible choice is bφ(t) = 1 − k exp[−(t −
T/2)2/σ 2], where 1/σ � T is the characteristic time scale of
the operation; k is chosen to produce the desired phase shift.
There is no fundamental limitation on the magnitude of σ ,
so our phase-shift operator implementation can be processed
indefinitely fast, which can even be faster than 1/ω0 if the
apparatus permits.

C. Squeezing operator

A squeezing operator Ŝ(g) = exp[(g∗â2 − gâ†2)/2] trans-
forms the annihilation operator as

â → Ŝ†(g)âŜ(g) = cosh |g|â − g

|g| sinh |g|â†. (32)

A squeezing operator is usually implemented by applying an
interaction that the Hamiltonian involves second-order terms
in the annihilation and the creation operators, i.e., â2 and â†2.
Such a Hamiltonian can be realized by Raman interaction with
effective frequency 2ω0, which is initiated by applying two
radiation fields with 2ω0 difference in frequency. However,
the magnitude of the potential generated by the Raman fields
must be much smaller than 2h̄ω0 to satisfy the RWA. The
operation time of the squeezing operator will then be much
longer than 1/ω0.

Our approach is to use a time-varying trapping potential,
i.e., replacing the storage Hamiltonian by the squeezing
operator Hamiltonian:

ĤS = p̂2

2m
+ 1

2
mω2(t)x̂2. (33)

The trapping frequency is required to return to that of the
storage trap after the operation, i.e., ω(0) = ω(T ) = ω0. The
operation will transform the annihilation operator according to
Eq. (23), which is apparently a squeezing operator if |ζ (T )| �=
0. The magnitude of the squeezing parameter is given by |g| =
δ/2 according to Eq. (21), in which the δ has to be obtained by
integrating the auxiliary equation (7), with the ω(t) applied in
the operation. The phase of the squeezing operator g/|g| comes
from the complex nature of ζ (T ) and η(T ), and the phase shift
of [�(T ) + ω0T ] in Eq. (23). The effect of this operation can
be accounted for by analytically solving the time-dependent
harmonic oscillator, so the operation time is not limited by the
validity condition of the RWA.

The applied potentials of ĤS and ĤP are both time-varying
harmonic wells; the only difference is the time variation of
the trapping frequency ω(t). Unless ω(t) is specially designed
as shown in Sec. III B, the operation of varying the harmonic
potential would be a squeezing operator with some squeezing
parameter crucially depending on ω(t). The ω(t) that generates
a specific squeezing parameter can be obtained by the method
detailed in Appendix C.

D. Nonlinear operator

Nonlinear operators transform an annihilation operator to
an operator involving quadratic and higher-order terms in â

and â†. It can be achieved by applying a Hamiltonian that
is at least third order of â and â†. One implementation is to
exert a radiation field that is resonant to high-order sideband
frequencies. For example, a Raman field with the effective
frequency 3ω0 can provide a Hamiltonian scaling as (â3 − â†3)
at the third-order expansion of the Lamb-Dicke parameters
[12]. The major problem of this approach is that the validity
of both the LDA and the RWA has to be satisfied, so the
undesired Hamiltonians are suppressed. The consequence is
that the power of the radiation field is constrained, which limits
the speed of the operation. Nonetheless, our architecture can
facilitate this laser-mediated nonlinear operator, because the
mode spectrum is simplified since only one bosonic mode is
exhibited in each trap.

A nonlinear operator can also be implemented by switching
on an additional quartic potential, i.e.,

Ĥ4(t) = Ĥ0 + V̂4(t) ≡ Ĥ0 + F(t)x̂4. (34)
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In the interaction picture with respect to Ĥ0, the quartic
potential becomes

V̂ I
4 = F(t)h̄2

(2mω0)2
[(6â†2â2 + 12â†â + 3)

+ a†2(4â†â + 6)ei2ω0t + â†4ei4ω0t + H.c.]. (35)

If the variation of F(t) is slow enough, the off-resonant terms
can be eliminated by the RWA; the only effective terms are

ĤN ≡ F(t)h̄2

(2mω0)2
(6â†2â2 + 12â†â + 3). (36)

By applying the quartic potential from t = 0 to T , the S-matrix
of the operation in the Schrödinger picture is given by

Ŝ4 = e−iμ(T )(6â†2â2+12â†â), (37)

where

μ(t) =
∫ T

0

F(t ′)h̄
(2mω0)2

dt ′. (38)

We have neglected the unimportant global phase and have
employed the fact that [Ĥ0,ĤN ] = 0.

The speed of the operation is mainly determined by the
validity of the RWA. According to Ref. [31], the application
of the RWA is equivalent to collecting the leading-order terms
in a series expansion of time-averaged Hamiltonians. The suf-
ficient condition for a valid series expansion is that the
largest eigenvalue of ĤN/h̄ should be much smaller than the
off-resonant frequencies, which are multiples of ω0 in our
case. Although ĤN/h̄ has unbounded eigenvalues, the series
expansion is still valid if the maximum phonon number nmax in
each mode is small. To estimate the RWA validity condition,
we approximate F(t)h̄2/(2mω0)2 by h̄μ(T )/T because V̂4

is slowly varying. The maximum eigenvalue of ĤN in our
simulation is hence n2

maxμ(T )/T , which gives a valid RWA
when

n2
maxμ(T )

ω0T
� 1. (39)

Arbitrary evolution of a single-phonon mode can be realized
by repeatedly applying the linear operators and the nonlinear
phase-shift operator [7]. The idea is to consider the intertwine-
ment of the infinitesimal evolution of two Hamiltonians Ŷ and
Ẑ , i.e.,

eiŶδt/h̄eiẐδt/h̄e−iŶδt/h̄e−iẐδt/h̄ = ei[Ŷ,Ẑ]δt2/h̄2 + O(δt3). (40)

If the O(δt3) terms are neglected, the resultant operation of this
sequence is effectively the evolution of a new Hamiltonian
[Ŷ,Ẑ]. Evolution of new classes of Hamiltonians will be
generated by using this trick again; the evolution of the desired
Hamiltonian is eventually produced.

The corresponding Hamiltonian of a linear operator consists
of second or lower orders of â and â†. For our selection of
linear operators, the Hamiltonians of D̂(α), P̂(φ), Ŝ(g) are
respectively proportional to â, â†â, â2 and their Hermitian
conjugates. Hamiltonians with higher than second order of â

and â† cannot be generated by intertwining the linear operators;
therefore the nonlinear phase-shift operator is required to
implement UBS.

IV. TWO-MODE OPERATION

In Sec. III, we examined the techniques to realize single-
mode operations. We now turn our attention to mixing two
modes, analogous to a beam splitter in optics. A linear beam-
splitting operation B̂(θ,φ) transforms two boson modes as

â1 → B̂†â1B̂ = cos
θ

2
â1 + i sin

θ

2
eiφâ2;

(41)
â2 → B̂†â2B̂ = i sin

θ

2
e−iφ â1 + cos

θ

2
â2.

A 50:50 beam splitter corresponds to the case θ = π/2.
The whole beam-splitter process is summarized schemat-

ically in Fig. 3. Displacing harmonic wells are applied from
t = −T/2 to transport the ions from the storage traps to the
pick-up distance and then switched off at t = −T ′/2, then
a double-well potential is immediately switched on to relay
the transportation. The separation of the double well shrinks
and then expands; the two ions are brought to proximity and
then separated. The two encoded phonon modes interact via
the Coulomb interaction between the ions. The double-well
potential finally separates the ions to the pick-up distance and
then switches off at t = T ′/2. Then two moving harmonic
wells are switched on immediately to transport the ions back
to the storage traps at t = T/2.

In this section we set the origin of position X = 0 as the
midpoint between the two storage traps. We assume the system
is both spatially and dynamically symmetric about the origin.
To simplify the discussion, we will separate the evolution of
the classical motion and the quantum fluctuations by defining

X̂i ≡ X̄i + q̂i ; P̂i ≡ P̄i + π̂i , (42)

where the subscripts i = 1,2 denote the ions involved in
the beam-splitter operation; X̂ and P̂ are the total position
and momentum operator; X̄i and P̄i = m ˙̄Xi are the classical
position and momentum of the ith ion; and q̂i and π̂i are the

I

II

III

IV

V

FIG. 3. Displacement of ions and variations of potentials during a
beam-splitter operation. The origin is defined as the midpoint between
two storage traps. Step I, ions are transported by the harmonic well
from storage traps to the pick-up position. Step II, the double well is
switched on to pick up ions. Step III, separation of the double well
shrinks. Step IV, separation of the double well extends and brings the
ions back to the pick-up position. Step V, the double well is switched
off, and the harmonic wells pick up ions and bring them to the storage
traps.
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operators accounting for the quantum fluctuation of position
and momentum about X̄i and P̄i , respectively. The aim of
our beam splitter is to transform the quantum fluctuations of
the two ions according to Eq. (41), whereas the ions will be
classically stationary at the storage traps before and after the
operation, i.e.,

X̄1

(
−T

2

)
= X̄1

(
T

2

)
=−L

2
; X̄2

(
−T

2

)
= X̄2

(
T

2

)
= L

2
;

(43)

P̄1

(
−T

2

)
= P̄1

(
T

2

)
= P̄2

(
−T

2

)
= P̄2

(
T

2

)
= 0. (44)

At the storage traps, the quantum fluctuations are the same as
the phonon quadratures defined in Eq. (1), i.e.,

q̂i |storage = x̂i ; π̂i |storage = p̂i . (45)

The core component of our phonon beam splitter is a
double-well potential with varying well separation. It can be
constructed by a quartic potential A(t)X4 and a harmonic po-
tential B(t)X2, which can be implemented in experiments [29].
The evolution of the motional state follows the Schrödinger
equation ih̄∂t |ψ〉 = ĤBS(t)|ψ〉, where

ĤBS(t) = P̂ 2
1

2m
+ P̂ 2

2

2m
+ B(t)

(
X̂2

1 + X̂2
2

) + A(t)
(
X̂4

1 + X̂4
2

)
+ e2

4πε0(X̂2 − X̂1)
, (46)

and |ψ〉 is the total wave function. We have assumed the ions
cannot pass through each other due to the strong Coulomb
repulsion, so X2 > X1 is always true.

In terms of the variables in Eq. (42), the Schrödinger
equation becomes

ih̄∂t |ψ̃〉 = (H0 + Ĥ1 + ĤB)|ψ̃〉, (47)

where H0 and Ĥ1 collect the terms with the zero- and
first-order quantum fluctuations, and H̃B contains the rest;
|ψ̃〉 is the state of the quantum fluctuations. The first
term H0 = P̄ 2

1 /2m + P̄ 2
2 /2m + A(t)(X̄4

1 + X̄4
1) + B(t)(X̄2

1 +
X̄2

1) + e2/4πε0(X̄2 − X̄1) is the total mechanical energy of the
system; it only contributes to an unimportant global phase. The
second term Ĥ1 vanishes if the classical equations of motion
are satisfied, i.e.,

˙̄Xi = P̄i/m,

˙̄P i = −4A(t)X̄3
i − 2B(t)X̄i + e2X̄i

4πε0|X̄i |(X̄2 − X̄1)2
.

Because of the symmetry, we have X̄1(t) = −X̄2(t) and
P̄1(t) = −P̄2(t). The classical separation between the ions
is defined as r = X̄2 − X̄1, and then the equation of motion
reduces to the following:

r̈ = −A(t)

m
r3 − 2B(t)

m
r + e2

4πε0mr2
. (48)

If the quantum fluctuation of position is much smaller than
the separation of ions, i.e.,

√
〈δq̂2〉/r � 1, then ĤB can be

approximated by a quadratic Hamiltonian, viz.

ĤB ≈ Ĥ2 = π̂2
1

2m
+ π̂2

2

2m
+

(
3

2
A(t)r2 + B(t)

) (
q̂2

1 + q̂2
2

)
+e2(q̂2 − q̂1)2

8πε0r3
. (49)

Instead of staying in the bases of individual ions, it is
advantageous to consider the center-of-mass mode (+ mode)
and breathing mode (− mode). The position and momentum
operators are defined as

q̂± = q̂2 ± q̂1√
2

; π̂± = π̂2 ± π̂1√
2

. (50)

In the new basis, Eq. (49) can be decoupled as two harmonic
oscillators,

Ĥ2 = π̂2
+

2m
+ 1

2
mω2

+(t)q̂2
+ + π̂2

−
2m

+ 1

2
mω2

−(t)q̂2
−, (51)

where the mode frequencies are

ω+(t) =
√

3A(t)

m
r2 + 2B(t)

m
; (52)

ω−(t) =
√

ω2+(t) + e2

2πε0mr3
. (53)

The annihilation operators of the modes are defined as

Â± =
√

mω±
2h̄

q̂± + i

√
1

2h̄mω±
π̂±. (54)

Changing the magnitude of the double well will result in
either squeezing or phase shifting the + mode and the − mode.
Because there is no excitation after a beam splitting, the
double-well operation should give only a phase shift. For
simplicity, we assume the quartic and the harmonic potentials
are adjusted to produce a constant ω+, i.e.,

3A(t)

m
r2(t) + 2B(t)

m
= ω2

+(t) = ω2
0. (55)

According to Eq. (23), the + mode remains unchanged after
the operation, i.e., Â+ → Â+.

We require that the double-well operation is merely a phase-
shift operator on the breathing mode, i.e., the annihilation
operator transforms as Â− → e−iθ Â−, where θ = [−�(T ) −
ω0T ] according to Eq. (23). The phonon modes of individual
ions then transform as

Â1 → 1√
2

(Â+ − e−iθ Â−) = cos
θ

2
Â1 + i sin

θ

2
Â2; (56)

Â2 → 1√
2

(Â+ + e−iθ Â−) = i sin
θ

2
Â1 + cos

θ

2
Â2, (57)

which is a beam-splitter operation. We have neglected the
unimportant global phase e−iθ/2, and the phase φ in Eq. (41)
can be rectified by applying local phase-shift operators.

The pick-up distance should be large enough that ω− and
ω+ should be roughly the same according to Eq. (53), i.e.,
ω−(T ′/2) = ω−(T ′/2) = ω0. To produce only a phase shift
on − mode, the ω−(t) should produce an auxiliary function
b(t) that satisfies b(−T ′/2) = b(T ′/2) = 1. We can control
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the strength of the quartic and harmonic potentials, A(t) and
B(t), to produce an appropriate ω−(t) while preserving ω+(t).
The appropriate time variations of A(t) and B(t) exist and are
not unique; they can be chosen in a manner that is convenient
in practice. In Appendix D we suggest a method to obtain A(t)
and B(t) from a speculative b(t).

Before and after the double-well operation, the ions are
transported back and forth between the storage traps and the
pick-up distance (steps I and V). If both the transporting
harmonic potentials and the double-well potential can be
switched on and off quickly, the pick-up process can be con-
ducted smoothly that the phonon states will not be disturbed.
The pick-up distance is arbitrary; it can be chosen in a manner
that is favorable in experiments.

The ions’ classical velocity in the double-well operation is
determined by the choice of A(t) and B(t). The velocity at
the pick-up distance, ˙̄Xi(−T ′/2) and ˙̄Xi(T ′/2), is obtained by
integrating the equation of motion Eq. (48) and the condition
of a vanishing velocity at the turning point, i.e., ṙ(0) = 0.
In step I, the transporting harmonic wells should increase
the classical velocity of the ions from 0 at the storage trap
to ˙̄Xi(−T ′/2) at the pick-up distance. Similarly in step V,
the transporting harmonic wells should reduce the classical
velocity from ˙̄Xi(T ′/2) at the pick-up distance to 0 at the
storage traps. The classical position and momentum of the ions
in the transportation process depend on the trap center ξi(t) of
the transporting harmonic well, of which the Hamiltonian is
ĤT = P̂ 2

i /2m + mω2
0[X̂i − ξi(t)]2/2. Using the variables in

Eq. (42), the classical equation of motion is

m ¨̄Xi(t) = ω2
0[ξi(t) − X̄i(t)], (58)

where the exact solution can be found in Ref. [30]. Appropriate
ξi(t), which produces the X̄i and P̄i that match the boundary
conditions at t = −T/2, − T ′/2,T ′/2,T /2, can be obtained
by the inverse-engineering method [24] and can be further
optimized to minimize various anharmonic effects [25]. The
evolution of the quantum fluctuations in the transportation
follows the Hamiltonian

ĤT = π̂2
i

2m
+ 1

2
mω2

0q̂
2
i . (59)

Obviously, the phonon states will not be disturbed by ĤT and
hence the transportation. All in all, the operation from step I
to step V realizes a phonon beam splitter, i.e., Eq. (41), on the
phonon modes in neighboring storage traps.

Now let us consider the errors in the beam-splitter opera-
tion. The transportation in steps I and V would cause small
error if the harmonic well is sufficiently accurate. The pick-up
process is assumed to be fast enough so that it does not
cause significant error. Thus, most of the error is expected
to come from the double-well process. The main problem
is that the anharmonic terms in ĤB , which are the terms
with at least third order of quantum fluctuations and are not
covered by Ĥ2, would produce unwanted excitation or a phase
shift. The error is expected to be magnified if more phonons
are involved in the beam splitter, because the significance of
the quantum fluctuation is characterized by

√
〈q̂2〉/r , which

increases with phonon number. A faster operation also causes
more significant errors, because some of the anharmonic terms

would be suppressed by RWA if the operation is slow. The
evolution of phonon states is calculated in Appendix E when
some anharmonic terms are included in the Hamiltonian. We
find that a beam splitter can be conducted as fast as 3 μs if there
are less than eight phonons involved in each 40Ca+ ion trap.

The technique of double-well operation can also be applied
to split adiabatically a pair of ions in a single trap; details are
provided in Appendix F.

V. INITIALIZATION AND READOUT

Manipulation of trapping potentials is sufficient for ini-
tializing arbitrary Gaussian phonon states, which can be
created by applying linear operators to the ground motional
states. However, non-Gaussian phonon states, such as Fock
states and the Schrödinger’s cat state, have to be generated
by laser interaction. When comparing with the previous
UBS proposal that incorporates a chain of ions in a single
trap [19,20], our architecture simplifies the laser-mediated
state initialization. Because the ions are separately trapped,
sophisticated techniques to prevent the laser operation from
disturbing other ions, such as using composite pulses and
shielding, are no longer necessary.

Information about the phonon states can be extracted
by the three measurement schemes suggested in Ref. [20]:
using adiabatic transfer, postselection techniques, and multiple
electronic states. The adiabatic transfer is achieved by exerting
a Raman pulse whose frequency is slowly increased from lower
to higher than a sideband frequency [11]. The phonon-dressed
electronic states transfer as |gn〉 ↔ |e(n − 1)〉, while |g0〉
remains unchanged. The fluorescence measurement scheme in
ion-trap quantum computing is conducted after one round of
adiabatic transfer, i.e., by applying a strong laser pulse resonant
to the transition frequency between |g〉 and some other unstable
electronic state of the ion; significant fluorescence is detected if
the electron is in the state |g〉. A positive measurement outcome
is produced if the original phonon state is |0〉. This procedure is
equivalent to the nondistinguishing number detector in optical
experiments. If the frequency detuning and the Rabi frequency
of the Raman field are both tuned, an adiabatic transfer can
be achieved for a single mode with 0.99 fidelity in as fast as
80 μs [20,32].

If more rounds of adiabatic transfer and carrier
pulses are applied, a fluorescence measurement can pro-
duce the projection-value measure (PVM), {∑m

n=0 |n〉〈n|,∑∞
n=m+1 |n〉〈n|}, which can distinguish if the phonon popu-

lation is more or less than an integer m. If there is another
metastable electronic state, then any Fock state |m〉 can
be deterministically measured by the PVM {|m〉〈m|,I −
|m〉〈m|}, where I is the identity matrix. By incorporating with
the displacement operator, any coherent state |α〉 can also
be deterministically distinguished by the PVM {|α〉〈α|,I −
|α〉〈α|} [33]. To the best of our knowledge, detectors with these
PVM have not yet been developed in optical experiments.

The postselection measurement method is applicable only
if a negative fluorescence measurement causes negligible
distortion on the resultant phonon state. Postselection quantum
information protocols, such as the linear optics entanglement
gate [2], can be achieved by using this measurement method.
A sideband pulse is applied to transit some unwanted
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superposition to |e〉, while the desired outcome state remains
in |g〉. The unwanted superpositions will be removed if the
fluorescence measurement with respect to |e〉 gives a negative
result. Repeating this process will increase the amplitude of
the desired outcome state in the residual phonon state.

If the maximum number of phonons in a mode is known as
nmax, and there are nmax metastable electronic states available
for manipulation, each Fock state with phonon number smaller
than or equal to nmax can be projectively measured, i.e.,
phonon number distinguishing measurement. The principle is
to associate each phonon Fock state to an electronic state; the
fluorescence measurement is then conducted on the electronic
states one by one. The sequence of pulses employed to measure
a motional state with nmax = 2 is given in [20].

In all three measurement schemes, our architecture is more
favorable than the previous proposals in Ref. [19,20] that trap
a chain of ions in a single harmonic potential. Because the ions
are individually trapped, the recoil of an ion after fluorescence
measurements does not distort other phonon modes. The
spectral distribution of resonance is also simplified because
only one mode is present in each trap; the speed of sideband
transition is hence increased as a stronger pulse can be used
without the concern of accidental mode mixing.

VI. CONCLUSION

We have described a possible architecture to implement the
universal bosonic simulator using individually trapped ions.
The excitation of an ion’s quantized motion can simulate a
bosonic mode. Linear single-mode operations can be realized
by changing the strength and the trapping center of the
harmonic potential at the storage trap. A nonlinear phase-shift
operator can be implemented by perturbatively exerting a
quartic potential. A linear beam splitter is implemented by a
double-well potential with varying separation; the Coulombic
interaction between the ions ensues from the interaction
between phonons. By applying the operators alternatively,
arbitrary bosonic evolution can be effectively simulated [6,7].

All linear and nonlinear operators can be conducted
without laser interaction; hence the speed of the operations
is not limited by the Lamb-Dicke approximation. However,
all the laser-mediated techniques of the previous proposals in
Refs. [19,20], which employ a chain of ions in a single trap,
are applicable to our architecture. Because only one phonon
mode is associated with each trap, the resonant frequency
spectrum is much simpler than a trap with multiple ions. The
requirement of the rotating-wave approximation is also less
stringent due to the absence of accidental mode mixing. In
addition, measuring a phonon mode by laser keeps the other
phonon modes undistorted.

Provided that the quality and the controllability of the
harmonic potential are fine enough, the operation time of
the single-mode linear operators has no fundamental limit,
and a two-mode operator can be implemented within tens
of 1/ω0 if the phonon number in each interacting mode is
less than 10. Although the speed of the nonlinear operator is
relatively slower, various interesting bosonic phenomena can
be investigated using only linear operators.

Recently, Aaronson and Arkhipov [34] proposed that if
there exists a classical algorithm that efficiently samples the

probability distribution of a linear bosonic network, then the
polynomial hierarchy would collapse to the third level, which is
generally believed to be impossible in computer science [35].
In other words, an approximate bosonic sampler should be
a machine having post-classical computing power; building
such a machine can verify the power of quantum computer.
Aaronson and Arkhipov [34] suggest that a boson sampler
involving n = 10−50 bosons and about ∼n2 to ∼n5 log2 n

modes suffice to achieve the goal. The scalability, speed,
theoretical quality, and measurement flexibility of our ion-
trap bosonic simulator architecture offer the possibility of
demonstrating such postclassical computation in the not-too-
distant future.
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APPENDIX A: GENERALIZED SOLUTION
OF THE HARMONIC OSCILLATOR

We have introduced a method to individually implement
the displacement operator and the squeezing operator. In fact,
both operators can be implemented in one operation, which
employs a harmonic trap with both the strength and the center
of the trap varying, i.e.,

ih̄∂t |ψ(t)〉 =
(

p̂2

2m
+ 1

2
mω2(t)[x̂ − s(t)]2

)
|ψ(t)〉, (A1)

where |ψ(t)〉 is the solution of the equation. This generalized
harmonic oscillator has been investigated in the context of the
evolution of number states [36] and the variation of quadratic
operators in the Heisenberg picture [37]. We here formulate
the previous results to fit in our purpose of bosonic simulation,
i.e., to consider the evolution of the annihilation operator in
the interaction picture according to Eq. (4).

We define the displaced state as

|χ (t)〉 = D̂†[β(t)e−iω0t ]|ψ(t)〉, (A2)

where D̂ is the displacement operator; the displacement is
given by the expression

β(t)e−iω0t =
√

mω0

2h̄
xc(t) + i

√
1

2h̄mω0
pc(t). (A3)

If xc and pc are the classical position and momentum of the ion,
respectively, i.e., they obey the classical equation of motion,

ẋc(t) = pc(t)/m; ṗc(t) = −mω2(t)[xc(t) − s(t)], (A4)

and then the displaced state follows the equation

ih̄∂t |χ (t)〉 =
(

p̂2

2m
+ 1

2
mω2(t)x̂2

)
|χ (t)〉, (A5)

which can be solved by the Lewis-Riesenfeld theory. An
unimportant global phase has been neglected in the above
derivation.

The operation runs from t = 0 to T . The trap center and
strength should return to that of the storage trap at t = T . The
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evolution operator of the displaced state in the Schrödinger
picture Ûχ,S transforms the annihilation operator as

Û
†
χ,S âÛχ,S = η∗(T )ei�(T )â − ζ (T )e−i�(T )â†. (A6)

The evolution operator of |ψ(t)〉 is related to Ûχ,S by

ÛS(t) = D̂[β(t)e−iω0t ]Ûχ,S(t). (A7)

Using Eq. (4), we can deduce that the transformation of the
annihilation operator in the interaction picture is

â → η∗(T )ei[�(T )+ω0T ]â − ζ (T )e−i[�(T )−ω0T ]â† + β(T ).

(A8)

If b(t) is known, β(T ) can be obtained as [37]

β(T ) = i

√
m

2h̄ω0

∫ T

0
b(t)ω2(t)s(t)e−i�(t)dt

× [η∗(T )ei[�(T )+ω0T ] + ζ (T )e−i[�(T )−ω0T ]]. (A9)

The total operation is obviously a squeezing operator
followed by a displacement operator shifting the classical
position and momentum of the ion. The squeezing parameter is
exactly the same as that of the center-fixed squeezing operator
in Sec. III C for the same ω2(t). A desired operation can be
constructed by first obtaining a ω2(t) that produces the desired
squeezing parameter, and then finding a form of s(t) that can
produce the desired displacement β(t) following the equation
of motion Eq. (A4).

APPENDIX B: CONSTRUCTION
OF THE DISPLACEMENT OPERATOR

The variation of the harmonic trap center s(t) that produces
a specific displacement α0 can be obtained systematically by
the inverse engineering method in Ref. [24]. We here present
a simpler method that employs the linearity of displacements
and paths. First of all, two arbitrary paths are speculated, s1(t)
and s2(t); both paths satisfy the boundary conditions s(0) =
s(T ) = 0. According to Eq. (27), the paths will produce two
displacements, α1 ≡ α[s1] and α2 ≡ α[s2]. We require that α1

and α2 not be scaled by a real number; otherwise, another path
s3(t) has to be speculated. If the requirement is satisfied, there
must exist two parameters, γ1 and γ2, such that

α0 = γ1α1 + γ2α2. (B1)

Then the path s(t) = γ1s1(t) + γ2s2(t) will give the desired
displacement α0.

APPENDIX C: CONSTRUCTION
OF THE SQUEEZING OPERATOR

For a particular ω(t), the auxiliary function b(t) should
behave as Eq. (15) at t � T after integrating Eq. (7) with the
boundary condition b(t � 0) = 1. To construct a squeezing
operator with the desired squeezing operator g, we have to
find an ω(t) that generates the parameter δ = 2|g| for b(t � T ).
Such a condition can be satisfied by a wide range of ω(t); a
particular ω(t) can be obtained inversely from a constructed
b(t). An example is

bS(t) =
√

cosh δ + sinh δ sin(2ωt)h(t) + [1 − h(t)], (C1)

where h(0) = 0 and h(T ) = 1. ω(t) should be continuous
before and after the operation, so bS(t), ḃS(t), and b̈S(t) have
to be continuous at t = 0 and t = T . For instance, h(t) =
10(t/T )3 − 15(t/T )4 + 6(t/T )6 meets the requirement. The
time variation of ω(t) can be obtained by inputting bS(t) into
Eq. (7).

So far we have neglected the phase of the squeeze operator.
In the construction described above, the phase of the operation
originates in the phase of ζ (T ) and η(T ), as well as the
phase shift in Eq. (23), i.e., exp (i[�(T ) + ω0T ]). The ω(t)
is the unique factor determining the total phase, which is,
in general different from the desired value g/|g|. The phase
is possible to be rectified by first calculating the total phase
shift generated from our choice of ω(t). Then appropriate
phase-shift operators are applied before and after the squeezing
operator to compensate the extra phase shift.

The condition of b(−T/2) = b(T/2) = 1 implies that
ω2

− = ω2
0 before and after the operation. According to Eq. (53),

this variation of ω2
−(t) implies that the varying double-well

potential would bring two ions to proximity and then separate,
as we have expected at the construction.

APPENDIX D: CONSTRUCTION OF THE BEAM SPLITTER

Similar to the discussion in Sec. III B, there are countless
forms of ω−(t) that can achieve a phase-shift operator on the
breathing mode. It is generally difficult to guess the trapping
potential magnitudes, A(t) and B(t), that can produce an
appropriate ω−(t); they could be chosen only by trial and error.
Alternatively, we outline the procedure of acquiring A(t) and
B(t) inversely from an intellectually speculated b(t).

Consider the operation of double-well runs from −T/2
to T/2. b(t � −T/2) and b(t � T/2) are the necessary
conditions for a phase-shift operator. An example would be

bB(t) = 1 − ke−t2/σ 2
, (D1)

where σ � T determines the time scale of the operation, and
the value k is chosen to generate the desired phase shift.

The corresponding ω−(t) can be deduced inversely from
Eq. (7). The time variation of the ion separation r(t) is then
obtained from ω2

−(t) by Eq. (53). A constraint on A(t) and
B(t) is obtained using the equation of motion Eq. (48) and the
time variation of r(t). Together with Eq. (55), the unique form
of A(t) and B(t) can then be found.

APPENDIX E: ACCURACY OF THE BEAM SPLITTER

The quality of the beam-splitter operation would be
degraded by the anharmonic composition of the Hamiltonian
ĤB , which is higher than second-order quantum fluctuation
that is not covered by the approximated Hamiltonian Ĥ2, i.e.,

ĤB = Ĥ2 −
√

2e2q̂3
−

2πε0r3(r + √
2q̂−)

+
√

2A(t)r(3q̂2
+q̂− + q̂3

−)

+ A(t)

2
(q̂4

+ + 6q̂2
+q̂2

− + q̂4
−). (E1)

When comparing with Ĥ2, the magnitude of the anharmonic
terms is roughly offset by

√
〈q̂2〉/r that scales as

√
n̄, where n̄

is the average number of phonons involved in the simulation.
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The actual error produced crucially depends on the b(t)
chosen. To demonstrate the feasibility of our beam splitter,
we numerically simulate a 50:50 beam splitter using the bB(t)
in Eq. (D1). Only the steps involving the double well are
investigated (steps II–IV in Fig. 3); the pick-up process and
the harmonic well transportation are assumed to be error free.
The evolution of the motional states is tracked by numerically
integrating the Schrödinger equation with the Hamiltonian in
Eq. (E1). For simplicity, the interaction terms between the +
and − modes are replaced by the expectation value, e.g., q̂2

+ →
〈q̂2

+〉, in the evolution of − mode; this treatment is accurate in
our case because the back reaction scales as

√
〈q̂2〉/r , which

is small.
We consider the ions to be 40Ca+ and the trapping

frequencies of the storage traps are ω0 = 2π MHz. The pick-up
position is set as 50l0 from the midpoint of the ions, where
l0 ≡ 3

√
e2/4πε0mω2

0 ≈ 4.45 μm is the ions’ separation if
they are placed in a single harmonic well. The operation speed
is adjusted by tuning the characteristics time σ , and the value
of k is respectively chosen for each σ to generate the desired
phase shift. A quality beam splitter should produce a final state
whose phase and fidelity are close to those in the ideal case.

We set the input states of both the center-of-mass mode and
the breathing mode to be pure Fock states, i.e., |ψ(−T/2)〉 =
|n+〉|n−〉, such that the final states should be the same as
the input states up to a phase. We find that the output
fidelity of any |n+〉|n−〉 input is higher than that of a
| max{n+,n−}〉| max{n+,n−}〉 input, so only the runs with
n+ = n− are shown in Fig. 4 for comparison. The double-well
process generates less than 1% error when ω2

0σ
2 � 7 for

nmax � 8; the total process time is about only 20/ω0 ≈ 3.1 μs.
In addition, the phase errors are less than 1% in all the runs.
We conclude that for a bosonic simulation with single-digit
number of phonons in each mode, a quality phonon beam
splitter can be implemented within a few microseconds.

The accuracy of the beam splitter is worsened, as expected,
when more phonons are involved, because the factor

√
〈q̂2〉/r

FIG. 4. Fidelity of the phonon state after a 50:50 beam-splitter
operation with ω2

0σ
2 = 2,3,4,5,7,9. Total time for the double well

to bring ions from and back to the pick-up position (steps II−IV
in Fig. 3) are about 11,13,15,17,20,22 × 1/ω0, respectively. The
minimum separation between ions is about 1 l0 in all six runs. The
dotted line shows a benchmark of 0.99 fidelity.

increases. A higher operation speed also exacerbates the error.
When considering Eq. (E1) in the interaction picture with
respect to Ĥ2, the terms that are third order to

√
〈q̂2〉/r are off-

resonant. These nonlinear terms’ contributions are suppressed
by the RWA if the terms’ variation is slow; then the effective
Hamiltonian would be reduced to the fourth order of

√
〈q̂2〉/r .

On the other hand, the off-resonant terms are significant for a
high-speed operation because the RWA is less effective.

APPENDIX F: ION SEPARATION WITHOUT HEATING

The usual processes of ion separation is to first reduce the
trapping potential, and then an additional potential is raised
in the middle of the trap [38]. A fast process would heat
up the ion significantly. In quantum computation, the side
effect of heating can be compensated by subsequent cooling
that does not disturb the quantum information encoded in the
electronic states. However, the time taken by ion cooling limits
the operation speed of the ion-trap quantum computer. Here
we propose an alternative method to separate the ions, which
can be rapidly conducted with minimal heating, by using an
extra quartic potential.

The configuration we are considering is the same as that
in Sec. IV, where the Hamiltonian of the system is given in
Eq. (46). The ions are initially in the motional ground state
at a common harmonic well with trapping frequency ω0, i.e.,
A(0) = 0 and B(0) = mω2

0/2. Our aim is to separate the ions
to distant storage traps with frequency ω0 with no motional
excitation apart from the errors caused by the nonlinear terms.
The initial center-of-mass mode frequency is ω0 and the
breathing mode frequency is

√
3ω0 [39]. Similar to the phonon

beam splitter, we require 3A(t)r2/m + 2B(t)/m = ω2
0 such

that there is no excitation in the center-of-mass mode. For the
breathing mode, it can be shown that b(t � 0) = 1/4

√
3 is

equivalent to the case of a single harmonic trap. Any b(t) with
the boundary conditions

b(t � 0) = 1

4
√

3
, b(t � T ) = 1 (F1)

can give the potential variation that retains the breathing mode
in the ground state. ḃ(t) and b̈(t) should also be continuous
throughout the process unless r changes extremely fast. An
example is

bE(t) =
(

1

4
√

3
− 1

)
e−t3/σ 3 + 1, (F2)

where σ is some characteristic time scale of the operation.
After the ions’ separation is large enough that the Coulom-

bic interaction is negligible, the double-well potential can be
switched off and then the ions are picked up by two moving
harmonic wells. The velocities of the ions at the pick-up
locations can be calculated by time differentiating Eq. (53)
once with the ω2

−(t) obtained from Eq. (7). The two displacing
harmonic wells, of which the trapping frequencies are ω0,
should decelerate the ion motion to rest at the storage traps;
the time variation of the potential can be deduced from the
inverse engineering method of Ref. [24]. The whole process
is summarized in Fig. 5. Inverting the whole ion-separation
process can bring two individually trapped ions to a common
trap.
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I

II

III

FIG. 5. Variations of potentials during heatless ion separation.
Step I, a quartic potential is added to the common trap to form a
double well. Step II, the double well extends and separates the ions
to pick-up position. Step III, the harmonic wells pick up the ions and
bring them to storage traps.

Similar to the phonon beam splitter, the error of this
ion-separation method is produced by the anharmonicity of
the quartic potential and the Coulomb interaction, as shown
in Eq. (E1). The magnitude of the generated errors highly
depends on the b(t) chosen, but a faster ion-separation process
would generally create more error because the RWA becomes
less effective.

To demonstrate the feasibility of our scheme, the evolution
equation (E1) is numerically integrated using the bE(t) in
Eq. (F2) with σ = 2. For simplicity, we assume the operators
of the other mode can be approximated by the expectation
value, i.e., q̂n

± ≈ 〈q̂n
±〉 in the equation of the ∓ mode. This

assumption is accurate because the back reaction produces
only higher-order corrections to the already small errors. Our
calculation simulates only the process of the double-well
extension (step I to II in Fig. 5); heating effects caused by
the pick-up and harmonic well transportation are negligible
if the processes are well controlled. We consider the ions to
be Ca+ and ω0 = 2π × 106 Hz, where the initial separation
is r0 ≈ 4.45 μm. After separating the ions from r0 to about
100r0, only about 0.001 quanta is excited for both the +
mode and the − mode. The duration of this process is about
5 × 1/ω0 ≈ 0.8 μs. Because the transportation of the ions
from the pick-up position to the storage traps (step III in Fig. 5)
can be arbitrarily fast [24], the time duration of the whole
ion-separation process can be as short as 1 μs with minimal
heating.
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