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We introduce measurement-based quantum repeaters, where small-scale measurement-based quantum
processors are used to perform entanglement purification and entanglement swapping in a long-range quantum
communication protocol. In the scheme, preprepared entangled states stored at intermediate repeater stations are
coupled with incoming photons by simple Bell measurements, without the need of performing additional quantum
gates. We show how to construct the required resource states, and how to minimize their size. We analyze the
performance of the scheme under noise and imperfections, with focus on small-scale implementations involving
entangled states of few qubits. We find measurement-based purification protocols with significantly improved
noise thresholds. Furthermore we show that resource states of small size suffice to significantly increase the
maximal communication distance. We also discuss possible advantages of our scheme for different setups.
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I. INTRODUCTION

Quantum communication is one of the most advanced
applications of quantum-information processing and a ba-
sic tool for quantum cryptography or distributed quantum
computation. While the transmission of quantum information
over distances of about a hundred kilometers has already
been experimentally demonstrated by several groups, both
in optical fibers [1] and free space [2], long-range quantum
communication over continental or intercontinental distances
is still a challenging task. The concept of the quantum repeater
introduced in Ref. [3] provides in principle a scalable way for
long-distance quantum communication, where the overhead
in resources scales only polynomially with the distance.
The quantum repeater combines entanglement swapping [4,5]
and entanglement purification [6–8]—i.e., the generation of
high-fidelity entangled pairs from many copies of noisy
pairs—in such a way that high-fidelity entangled pairs are
generated over large distances. These pairs can then be used
for quantum communication or quantum cryptography, e.g., by
teleportation [4]. In the last decade, various improvements and
experimental proposals for quantum repeaters have been put
forward [9–14], and most of the required building blocks have
already been experimentally demonstrated [15–18]. However,
a full-scale quantum repeater still remains to be built, where
the generation of entangled pairs, entanglement purification,
and entanglement swapping are combined with photon-matter
interfaces in such a way that all components work with
sufficiently high accuracy, i.e., with errors of a few percent.

Here we add a new element to such quantum repeater
schemes, namely, a measurement-based implementation of
the required entanglement purification and entanglement
swapping steps. While in conventional repeater proposals
a sequence of coherent quantum gates and measurements
performed on stored particles is required, in our scheme certain
fixed entangled states are prepared and stored locally and are
then coupled with incoming photons directly via simple Bell
measurements. No further coherent processing is required. One
of the main advantages of such a scheme is that the preparation
of the resource states can be done off-line, and even in a
probabilistic way, without compromising the performance of

the overall repeater scheme. Another immediate advantage is
that it can be sufficient to store only a single qubit in each
quantum memory. In many setups, the preparation of certain
fixed entangled states is significantly easier than achieving a
coherent controlled manipulation of arbitrary quantum states
by means of unitary gates.

We make use of results from measurement-based quantum
computation [19,20], where a fixed entangled state, the so-
called cluster state [21], is used as a resource to perform univer-
sal quantum computation; i.e., an arbitrary sequence of unitary
gates is realized by a sequence of single-qubit measurements
performed on a sufficiently large two-dimensional (2D) cluster
state. As noted in Ref. [22], a specific quantum algorithm or
process can be obtained by using a specific, process-dependent
resource state. In many cases, such a resource state will be
a so-called graph state [23,24]. The advantage of such a
special-purpose measurement-based quantum processor is that
it requires smaller states, i.e., fewer auxiliary qubits. Here we
discuss such a construction for the operations involved in a
repeater scheme. We show how to obtain the required resource
states explicitly, and how to further reduce their size, where
we in fact provide states of minimal size. As a byproduct,
we also obtain measurement-based entanglement purification
protocols, where n noisy entangled pairs are purified to
yield (probabilistically) m entangled pairs of higher fidelity.
Remarkably this approach leads to a significantly larger error
threshold of such purification schemes.

The paper is organized as follows. In Sec. II we in-
troduce basic notation and techniques, and briefly review
the Jamiolkowski isomorphism, quantum repeaters, and
measurement-based quantum computation. Readers familiar
with these topics might move directly to Sec. III. We also
describe two different methods of constructing special-purpose
quantum processors, which we apply in Sec. III to obtain
measurement-based entanglement purification and quantum
repeater schemes with states of minimal size. We analyze the
performance of such measurement-based quantum repeaters in
the presence of noise and imperfections in Sec. IV, and com-
pare the achievable rates and distances when using quantum
repeaters with small-scale quantum processors of limited size.
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We discuss possible advantages of using measurement-based
elements in entanglement purification and repeater schemes
for various setups in Sec. VI, and summarize and conclude in
Sec. VII.

II. BACKGROUND

We first give a short introduction to some important
concepts and schemes which we will need later. In the context
of measurement-based quantum computation the notion of
graph states significantly simplifies the analysis. In addition
we describe the quantum repeater and its building blocks,
entanglement purification and swapping. We discuss two
methods for constructing quantum states that can be used to
perform a specific quantum process, i.e., a unitary circuit or a
combination of a unitary circuit and measurements. The first
method is based on the Jamiolkowski isomorphism [25,26],
while the second method uses the universality of the 2D cluster
state together with simplifications of the state for specific
measurements [22]. Readers familiar with these concepts can
directly jump to Sec. III.

A. Graph states

We start with reviewing graph states and their properties
[23,24]. A graph G is a pair

G = (V,E), (1)

where V ⊂ N and E ⊂ [V ]2. V and E are finite sets, their
elements are called vertices and edges, respectively. Here we
restrict the discussion to simple graphs that contain neither
loops(edges connecting vertices with itself) nor multiple edges
between the same vertices. The neighborhood Na of a vertex
a ∈ V is the set of vertices b with {a,b} ∈ E.

Here we associate with any graph G = (V,E) a graph state
|G〉 in a Hilbert space HV = (C2)⊗V in the following way: for
any a ∈ V , one defines

K
(a)
G = X(a)

∏
b∈Na

Z(b). (2)

X,Y,Z denote the Pauli matrices and the superscript refers to
the particle or Hilbert space on which the operator acts. The
graph state |G〉 is then defined as the common eigenvector
with unit eigenvalue for all a ∈ V ,

K
(a)
G |G〉 = |G〉. (3)

Alternatively |G〉 can be written as

|G〉 =
∏

{a,b}∈E

CZ(a,b)|+〉⊗V , (4)

where CZ(a,b) is the controlled-Z operation on the vertices a

and b, i.e., CZ(a,b) = diag(1,1,1,−1).
Two graph states |G〉 and |G′〉 with associated graphs G =

(V,E) and G′ = (V,E′), respectively, are called local unitary
(LU) equivalent if there exists a local unitary U such that [23]

|G〉 = U |G′〉. (5)

An important tool in the context of graph states is local
complementation, which is very useful if one considers the

effect of Pauli measurements on a graph state. To describe this
concept, we first introduce a few definitions.

From V ′ ⊂ V and a graph G = (V,E) one can obtain a
new graph denoted by G − V ′ by deleting all vertices V ′ and
all edges which are incident with an element of V ′. Likewise
G − E′ refers to the graph where one deletes all edges e ∈ E′
with E′ ⊂ E; and for general F ⊂ [V ]2 we write G + F =
(V,E ∪ F ). With the symmetric difference of E and F ,

E�F = (E ∪ F ) − (E ∩ F ), (6)

one defines G�F = (V,E�F ).
Furthermore, let

E(A,B) = {{a,b} ∈ E : a ∈ A,b ∈ B,a 	= b} (7)

denote the set of edges between two sets A,B ⊂ V of vertices.
Local complementation is now defined as the transformation
τa : G → τa(G), where the edge set E′ of τa(G) is given by
E′ = E�E(Na,Na). The graph states |G〉 and |τaG〉 are LU
equivalent: |τaG〉 = Ua(G)|G〉 with

Ua(G) = (−iX(a))1/2
∏
b∈Na

(iZ(b))1/2. (8)

With local complementation at hand, one can derive simple
rules for the effect of a Pauli measurement on a graph
state, which will become important below in the context of
measurement-based quantum computation. Let

P
(a)
z,± = 1 ± Z(a)

2
(9)

denote the projector onto the eigenvector |z,±〉 with eigenvalue
±1 and similar for X and Y . Then [23,24]

P
(a)
z,±|G〉 = |z,±〉(a) ⊗ U

(a)
z,±|G − a〉,

P
(a)
y,±|G〉 = |y,±〉(a) ⊗ U

(a)
y,±|τa(G) − a〉, (10)

P
(a)
x,±|G〉 = |x,±〉(a) ⊗ U

(a)
x,±|τb0 (τa ◦ τb0 (G) − a)〉,

where the LU operations U
(a)
x,±, etc., can be found in the

Appendix and b0 is an arbitrary vertex in Na .

B. Quantum repeaters

The ability to efficiently establish entangled Bell pairs over
large distances is a key element for quantum networks and
distributed quantum computation. One way to achieve this
is provided by the quantum repeater [3]. The concept of a
quantum repeater allows the creation of entangled pairs with
only polynomial overhead in the distance. To achieve this, one
combines entanglement purification and swapping together
with a quantum memory. Here we use a so-called recurrence
protocol for entanglement purification. It enables the creation
of an entangled pair with higher fidelity from several pairs
of lower fidelity via local operations. Each party performs
single- and two-qubit gates as well as measurements such
that one pair remains. The measurement outcomes determine
whether the purification was successful. There exist protocols
for various numbers of input and output pairs. The output pairs
of a protocol can also be used as inputs again, until the desired
fidelity is reached.

Entanglement swapping enables us to create an entangled
pair between parties A and C given Bell pairs between parties
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A and B, and between B and C, via a Bell measurement on the
two qubits at location B. It is conceptually close to quantum
state teleportation. Unless the Bell pairs and the measurement
are both perfect, the swapping will lower the fidelity of the
final pair. The extension to several pairs is straightforward.

In the quantum repeater scheme, one divides a channel
of length l into N segments (for simplicity it is assumed
that N = Ln for some integer n) and establishes entangled
pairs over each of them. M pairs are used to obtain a pair
of higher fidelity using entanglement purification, where the
precise value of M depends on the protocol, the values of the
initial and final fidelity and the noise of the involved operations.
Then L pairs are connected via entanglement swapping so that
a Bell pair over a larger distance is established. As long as
the fidelity after the swapping remains above the minimal
required fidelity for the purification protocol, one can iterate
this procedure until all segments are connected. Notice that
connection with subsequent purification to the initial fidelity
defines one repeater level, where one faces exactly the same
situation as before, but with pairs of larger and larger distance.
The total number R of elementary pairs is given by

R = N logL M+1, (11)

which shows the polynomial dependence on N and therefore
the distance l ∝ N . For a more detailed description we refer
the reader to Ref. [3].

C. Clifford group

The Clifford group plays a crucial role in entanglement
purification protocols and many quantum error correcting
codes, because many of them solely contain Clifford gates. It is
generated by the CZ, Hadamard, and Uz(π/2) = exp(−iπ/4Z)
gates. Changing the order of a Clifford operation C and a
Pauli operator leaves the Clifford operation unchanged, i.e.,
Cσ = σ ′C, where σ and σ ′ are possibly different tensor
products of Pauli operators.

D. Jamiolkowski isomorphism

The Jamiolkowski isomorphism relates a completely posi-
tive map (CPM) and a state [25]. Here we illustrate it for a map
on two qudits, but the generalization is straightforward. Given
a CPM E acting on systems A1 and B1 with d-dimensional
Hilbert spaces HA1 and HB1 , respectively, the associated state
is

EA1A2,B1B2 = E(PA1A2 ⊗ PB1B2 ), (12)

with

PA1A2 = |φ〉A1A2〈φ|, (13)

where

|φ〉A1A2 = 1√
d

d∑
i=1

|i〉A1 ⊗ |i〉A2 (14)

is a maximally entangled state. In the following we are
restricted to qubits so that d = 2 and |φ〉A1A2 is simply the
Bell state |φ+〉 = (|00〉 + |11〉)/√2. With EA1A2,B1B2 at hand,
one can implement the map E on any state of systems A3

and B3 by performing a Bell measurement {|φk〉} on A2A3

and B2B3 [26], where |φk〉 = I ⊗ σk|φ+〉 with Pauli operators
σ0 = I,σ1 = X,σ2 = Y, and σ3 = Z. However, if one projects
on a Bell state different from |φ0〉 one has to deal with a
Pauli operator that is efficiently implemented before the actual
map E . For measurement outcomes corresponding to |φi〉 in A

and |φj 〉 in B, one obtains ρout = E((σi ⊗ σj )ρin(σi ⊗ σj )). In
general this means that the implementation has failed, unless
one can commute the Pauli operator (σi ⊗ σj ) and map E
without changing map E (but possibly the Pauli operator), and
hence obtain the desired operation up to local Pauli corrections.
For unitary E this is equivalent to E being in the Clifford
group, which is the case for all the protocols we consider.
That is, any unitary in the Clifford group can be implemented
deterministically. To relate EA1A2,B1B2 with a graph state we
compute the rank indices which uniquely identify the graph
states considered in this work [23,27]. The local unitaries
(LUs), which are not specified by this procedure, can be
determined via a numerical optimization.

E. Measurement-based quantum computation

The idea of measurement-based quantum computation
[19,20] is to initially prepare a large entangled state, a so-called
resource state. A quantum circuit is then translated to a
(single-qubit) measurement pattern which implements the
quantum operation. There are several resource states which
allow for universal quantum computation, the most prominent
is the 2D cluster state [21]. It is a graph state with the topology
of a two-dimensional square lattice. The read-in of the initial
state, on which the computation shall be performed, can be
done via joint Bell measurements with the cluster state.

To obtain a resource state for a particular map, one can start
with a sufficiently large 2D cluster state and the measurement
pattern for the desired operation. The effect of any Pauli
measurement included in the measurement pattern on a graph
state is to reduce the number of (connected) vertices by at
least one and to change the edge structure and the local unitary
operations. The resulting state is obviously again a graph
state as can be seen from the transformation rules above;
however, it is no longer universal. In measurement-based
quantum computation all Pauli measurements can be done
beforehand and therefore the size of the graph state is reduced
(see Ref. [22]). In this context it is important to note that any
Clifford gate can be implemented with Pauli measurements
only. Consequently any circuit with n inputs and m outputs
containing only Clifford operations and Pauli measurements
can be realized deterministically on a n + m qubit graph state.
The graph state can be explicitly determined by sequentially
applying the rules (10).

III. MEASUREMENT-BASED ENTANGLEMENT
PURIFICATION AND QUANTUM REPEATERS

In this section we show how to apply the construction
of Secs. II D and II E to obtain states that can be used to
perform entanglement purification [6–8], or the combination of
entanglement purification and entanglement swapping. We use
the Oxford protocol [7] for entanglement purification because
of its fast convergence. It operates on two noisy Bell pairs as
input. Rotations around the x axis by an angle of π

2 on one side
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and −π
2 on the other are followed by a bilateral CNOT gate and

measurements of the target qubits in the computational basis.
The map is thus given by Eρ = OρO† with

O = (
P (At )

z ⊗ P (Bt )
z

)
(CNOT(Ac→t ) ⊗ CNOT(Bc→t ))

× (
e
− iπ

4 X(A)⊗2 ⊗ e
+ iπ

4 X(B)⊗2)
, (15)

where the superscripts A,B refer to the two parties and c,t to
the control and target qubit, respectively.

The purification is successful when both measurement
outcomes coincide. Since all required unitary operations are
in the Clifford group they can be implemented only with
Pauli measurements so that the final graph state only has
qubits for the input and the output. There are no single-qubit
measurements any more, the whole computation is finally
executed by the Bell measurements at the read-in. In the case of
one entanglement purification step there are two inputs and one
output (on each side) and therefore the graph state will have
three qubits. It can easily be determined up to LU operations
since there is only one fully connected three-qubit graph state,
the GHZ state:

|GHZ3〉 = 1√
2

(|000〉 + |111〉). (16)

In general one starts with the whole circuit for the desired map,
which may contain several rounds of purification and swapping
depending on the purpose, and determines the associated
Jamiolkowski state. With this state one identifies the graph
state and the LU operations as described above.

An additional key ingredient for a quantum repeater is
entanglement swapping. It is simply done by a projection
on a Bell state, which can be decomposed into a Hadamard
and CNOT gate, which is in the Clifford group since it can be
constructed from two Hadamard and one CZ gate, followed by
Pauli measurements. Thus in a measurement-based approach
it can be implemented with Pauli measurements only, which
consequently leads to compact resource states. The resource
state which performs two sides of the purification protocol and
entanglement swapping in one step (cf. Fig. 1) has four input
and no output qubits and therefore is a four-qubit graph state.

1

2

3

1 2

3 4

1

2

3

G+
3 |G4 G−

3

FIG. 1. (Color online) Resource states (dark red) for one purifi-
cation step without (top) and with (bottom) integrated entanglement
swapping acting on input Bell pairs (light yellow). When successful,
one long-distance purified output pair is generated from four short-
distance Bell pairs shared between A-C and C-B, respectively. Notice
that the resource states |G+

3 〉 and |G−
3 〉 at the left and right ends

of the Bell pairs are different due to the asymmetry of the Oxford
purification protocol.
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4
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1

2

5
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3 7

4 8

1

2

3

4

5

G+
5 |G8 G−

5

FIG. 2. (Color online) Resource states (dark red) for two purifi-
cation steps without (top) and with (bottom) integrated entanglement
swapping, acting on input Bell pairs (light yellow). When successful,
one long-distance purified output pair is generated. Notice that the
resource states |G+

5 〉 and |G−
5 〉 at the left and right ends of the Bell

pairs are different due to the asymmetry of the Oxford purification
protocol.

The graph states for one and two rounds of entanglement
purification as well as for entanglement purification and inte-
grated swapping are shown in Figs. 1 and 2. The superscripts
+ and − in the resource states refer to the different local
transformations in the purification protocol at the left and right
side, respectively. The LU operations, which are determined
via optimizing the overlap with the desired resource state from
the Jamiolkowski isomorphism, can be found in the Appendix.
Note that they are not unique, but the different solutions only
lead to global phases. In the protocol for the derivation of the
graph states it is assumed that the target qubits are projected on
the |0〉 state. However, this does not mean that the purification
is always successful, as will be explained below.

An important issue is the read-in, done by a joint Bell
measurement on the qubits of the noisy Bell pairs and the graph
state. Whenever one does not project on the Bell state |φ+〉 =

1√
2
(|00〉 + |11〉) one has to deal with an undesired Pauli

byproduct operator. However, since the protocol involves only
unitary gates in the Clifford group and Pauli measurements
the byproduct operator can be commuted through, leading
to a Pauli byproduct operator for the final pair. In addition
the measurement outcomes determine which projection on the
target qubits has in fact been implemented. Recall that only
cases with same measurement outcomes at A and B correspond
to a successful purification, which is hence determined by the
outcome of the Bell measurements. This is because the Pauli
operator from the Bell measurement also has to be commuted
through the projection P0 from the purification protocol and
thereby possibly changes it to P1. From Table I one can
determine the basis correction for the final resulting pair as
well as the actually implemented projections for all possible
projections at the read-in: any possible byproduct operator can
be generated from the four byproduct operators shown in the
table. For concatenated purification the rules simply have to
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TABLE I. Logical table from which effective measurement
outcome and correction operation can be determined. The first
operator of the input acts on the control qubit and the second on the
target qubit. P0 (P1) denotes projection on the |0〉 (|1〉) state. When
concatenated, the Pauli operators are simply multiplied, whereas for
the projections the following rule applies: Pi ◦ Pj = Pi⊕j , where
⊕ denotes addition modulo 2. It is illustrated in more detail in an
example.

Input Effective projection Output

I ⊗ X P1 I
I ⊗ Z P1 Z

X ⊗ I P1 X

Z ⊗ I P1 ZX

be applied repeatedly. We now illustrate this with an example
(see Fig. 3):

Assume that the qubits in box 1 are projected on |ψ+〉 =
(I ⊗ X)|φ+〉, the ones in box 2 on |φ−〉 = (I ⊗ Z)|φ+〉, and
the two others on |φ+〉. In this case on the right-hand (party B)
side the desired protocol with the projection P0 and without
byproduct operator is implemented. However, on the left-hand
side (party A) one has two Pauli operators on the input: X

on the control (cA) and Z on the target (tA) qubit so that the
rules from Table I have to be applied repeatedly. The X on
the control gives an X on the output and the Z on the target
gives a Z on the output so that the final byproduct operator is
XZ which determines the local basis of the resulting Bell pair.
For the projection one finds P1 ◦ P1 = P1⊕1 = P0. Since the
right-hand side is also projected on |0〉, this corresponds to a
successful purification step.

The same can be done for the 4 → 1 entanglement
purification protocol shown in Fig. 2. There, two subsequent
purification rounds on four initial Bell pairs are combined into
a single operation, leading eventually to one purified output
pair. Again, the results of the Bell measurements determine
whether the overall procedure (i.e., all three purification
processes) was successful, and at the same time determine
the local correction operation. One simply takes the local
correction operators from the first two purifications as the
input for the third purification step (see Table I).

There also exist other purification protocols with only
Clifford gates and Pauli measurements that map n pairs to
m pairs, e.g., those based on quantum error correcting codes
introduced in Ref. [28]. These can be implemented on a n + m

qubit graph state as described above and also require only Bell
measurements and no additional single-qubit measurements.

1

2

3

4

A B

cA

tA

cB

tB

FIG. 3. (Color online) Example for the application of Table I.
One purification step is considered. The dashed boxes represent Bell
measurements. For the details see main text.

The same holds for schemes which combine quantum error
correction and entanglement purification [14] as long as only
Clifford gates and Pauli measurements are involved.

IV. INFLUENCE OF NOISE AND IMPERFECTIONS

A. Entanglement purification protocol

In any realistic implementation the quantum operations will
be imperfect. Here we investigate the influence of noise on the
measurement-based entanglement purification protocol. We
consider the influence of imperfect resource states. To this
aim, we use a simple but rather general noise model, where
we assume that each individual particle of the resource state
is subjected to local white noise (LWN). This captures both
the imperfect generation of the resource state, and possible
memory errors during storage. The assumption of LWN can
be argued to correspond to a worst case scenario, since any
kind of local noise can be brought to this form Ref. [29].
Notice that within this model, the fidelity of larger resource
states decreases with system size, thereby capturing the fact
that the generation of larger resource states is increasingly
difficult and/or involves a larger number of operations. We
also assume that the Bell measurements are perfect; however,
an imperfect Bell measurement can simply be included in the
LWN of the resource states, leading to a higher value of LWN.

Given an n-qubit density matrix ρ, the noisy density matrix
reads

ρLWN =
⎛
⎝

n∏
j=1

Dj

⎞
⎠ ρ, (17)

with

Dj ρ = pρ + 1 − p

2
Ij ⊗ trj ρ, (18)

where p ∈ [0,1] quantifies the level of noise.
We now use this error model to determine the noise

threshold for measurement-based entanglement purification
using noisy resource states. The LWN threshold, i.e., the
maximal LWN value such that the fidelity of noisy Bell pairs
still increases if one purifies them with the special resource
states as described above, is determined numerically. We find
a threshold of (1 − p1) = 3.5% for one purification step (|G3〉)
and (1 − p2) = 7.1% for the protocol which concatenates
two purification steps (|G5〉). This corresponds to a fidelity,
i.e., overlap with the desired state, of 92.3% and 76.1%,
respectively. Notice that our results differ from the usual
gate-based approach, where one has noise thresholds for the
single- and two-qubit gates, which do not change when the
protocol is concatenated. Intuitively this can be understood
in the following way: two purification steps can be done
either with three 3-qubit states or with one 5-qubit state
on each side. In the latter case the noise is distributed on
only five qubits instead of nine, which leads to the improved
error threshold and has no analog in the gate-based approach.
Thus the possibility to combine several purification steps and
perform them with a resource state of smaller size allows one
to obtain a significantly improved error threshold together with
a more compact implementation. However, this new protocol
will have a lower success probability, as explained below.
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B. Quantum repeater protocol

Imperfect operations also affect the required overall re-
sources in the quantum repeater scheme. Explicitly the
resources R are given by

R = N logL M+1 (19)

for any quantum repeater independent of the specific imple-
mentation. Here N is proportional to the distance, L is the
number of pairs which are connected at each repeater level
(here we use L = 2), and M is the number of pairs one needs to
obtain one pair of higher fidelity. The value of M is determined
by the explicit purification protocol, the noise of the involved
quantum operations, and their success probability. The scheme
proposed here requires many Bell measurements, so the overall
performance will strongly depend on their success. Let pBell

denote the success probability for a Bell measurement. Then
M ∝ p−2m

Bell for a m → 1 protocol, which clearly shows the
importance of a high probability pBell.

In the case of simultaneous purification and swapping the
total success probability is lower, since one has to require that
the purification for both of the pairs which are connected is
successful in the same step. Consequently one will need more
attempts and thus more resources (photon pairs). The same
holds for the concatenation of two purification rounds where all
three purification steps have to be successful simultaneously.
So there will be a trade-off between minimizing the distributed
resources and the locally stored qubits.

V. COMPARISON OF RATES AND ACHIEVABLE
DISTANCES

To determine the achievable rates we use the model
introduced in Ref. [30] to calculate the fidelity of a photonic
Bell pair transmitted through optical fibers as a function of
distance. The fidelity F for a binary pair, i.e., a mixture of
ρ|φ+〉 and ρ|φ−〉, is given by

F = 1 + V

2
, (20)

where V is given by

V = V 2
opt[tη(1 − D)]2

{[tη + (1 − tη)2D](1 − D)}2
, (21)

where Vopt is the optical visibility, η is the detector efficiency,
and D its dark count rate. The probability of a photon to pass
a given distance of d km without being absorbed, t , is given
by

t = 10−αd/10, (22)

so there are losses of α dB/km. Here we have chosen Vopt =
0.99, η = 0.3, and D = 10−4 as in Ref. [30], whereas for
the damping we assume α = 0.16. Notice that considering
more optimistic parameters leads to a significant reduction
of required resources. We then take a binary state with this
fidelity as our input for the quantum repeater protocol. Any
other kinds of noise such as noisy Bell measurements and
memory errors are included in the LWN per particle of the
resource states. This model allows one to obtain an estimate of
the achievable rates and fidelities independent of the particular
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FIG. 4. (Color online) Achievable fidelity as a function of
distance when considering one purification step per repeater level
with integrated swapping (cf. Fig. 1). Local white noise (1 − p) of
1% per particle for |G3〉 and |G4〉 in (a) and 1% per particle for |G3〉
and 2% for |G4〉 in (b). The curves for more repeater levels start at
lower initial fidelity and drop at larger distances.

physical setup, but should be replaced by a more accurate one
once one considers a specific physical implementation.

We remark that we have assumed perfect quantum mem-
ories (except for the preprepared resource states). We note,
however, that memory errors play a crucial role in quantum
repeater schemes for long-distance communication, limiting
the achievable distance due to waiting times for classical
signals to arrive. The role of memory errors and possible ap-
proaches to increasing achievable distances were investigated
in detail in Ref. [31]. These results—although derived for
gate-based quantum repeaters—are directly applicable also to
the measurement-based implementation we discuss here.

The resulting fidelities for various numbers of repeater lev-
els and different levels of noise are displayed in Figs. 4 and 5.
Here the length of the elementary segments is varied so that one
obtains a continuous plot. It can be seen that for low noise (or-
der of 1% of local white noise per particle) one purification step
per level is enough and that with two purification steps per level
comparatively high noise (several percent) can be tolerated. In
Figs. 4(b) and 5(b) it is assumed that the creation of larger re-
source states leads to higher noise per particle. This then lowers
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FIG. 5. (Color online) Achievable fidelity as a function of
distance when considering two purification steps per repeater level
with integrated swapping (cf. Fig. 2). Local white noise (1 − p) of
4% per particle for |G5〉 and |G8〉 in (a) and 4% per particle for |G5〉
and 7% for |G8〉 in (b). The curves for more repeater levels start at
lower initial fidelity and drop at larger distances.

the maximal reachable fidelity and distance, as compared to
the case of equal level of noise [cf. Figs. 4(a) and 5(a)], but still
allows one to reach the intercontinental scale. Notice that one
can achieve higher fidelities by performing more entanglement
purification steps per repeater level, at the price of an enlarged
overhead. In addition we find that six or at most seven repeater
levels suffice to reach the intercontinental scale.

The overheads, i.e., the number of pairs that have to be sent
through the elementary segments in order to obtain one pair on
the full distance, can be found in Tables II and III. It can be seen
that one can lower the overheads by introducing more repeater
levels, i.e., by making the elementary segments smaller. Note
that the overheads can be reduced if the purification and
swapping are not done in the same step, i.e., by using only
the resource states |G3〉 and |G5〉 (a further reduction for the
case of two purification steps is possible if one uses three
|G3〉 states instead of |G5〉). Other possibilities to significantly
increase the rate are parallelization and multiplexing [12]. In
certain cases one accepts a rate of order of one photon per
minute [30]. Assuming a standard photon source pumped at
10 GHz this then corresponds to an overhead of 6 × 1011.

TABLE II. Achievable fidelity and required resources (total
number of elementary pairs) for different number of repeater levels
when considering one purification step per repeater level with
integrated swapping. Local white noise (1 − p) of 1% per particle
for |G3〉 and |G4〉.

No. Levels Distance (km) Fidelity Overhead

3 1000 95.40% 1.42 × 105

4 1000 95.40% 3.48 × 103

5 5000 92.48% 2.13 × 107

6 5000 94.76% 8.34 × 104

6 10 000 91.88% 6.90 × 107

7 10 000 94.50% 2.35 × 105

8 20 000 94.26% 6.75 × 105

VI. MEASUREMENT-BASED REPEATER SCHEMES FOR
DIFFERENT EXPERIMENTAL SETUPS

In this section we discuss different variants of
measurement-based repeater schemes and possible advantages
of a measurement-based scheme as compared to a gate-based
approach.

A. Variants of measurement-based quantum repeaters

We start by discussing different variants of measurement-
based repeater schemes. As pointed out in the context of entan-
glement purification schemes and entanglement swapping (see
Sec. III), one can reduce the size of the resource states such
that only input and output particles are kept. This remains true
also if one combines two subsequent purification rounds, or
an entanglement purification step followed by entanglement
swapping. However, the reduction of size yields to smaller
success probabilities as we will discuss in the following (see
also Sec. IV B). We compare three different possibilities:

(V1): If one considers two subsequent purification rounds
operating on four entangled input states, the first purification
step involves two three-qubit states at each party (each
resource state consisting of two input particles and one output
particle), and another three-qubit resource state for the second
purification step. In addition, the output particles of the first
purification round need to be coupled to the input particles
of the resource state for the second round by means of Bell
measurements. This involves a total of nine particles at each

TABLE III. Achievable fidelity and required resources (total
number of elementary pairs) for different number of repeater levels
when considering two purification steps per repeater level with
integrated swapping. Local white noise (1 − p) of 4% per particle
for |G5〉 and |G8〉.

No. Levels Distance (km) Fidelity Overhead

3 1000 91.81% 1.10 × 107

4 1000 91.63% 4.36 × 106

5 5000 90.98% 4.55 × 1010

6 5000 91.25% 9.99 × 108

6 10 000 90.95% 7.41 × 1011

7 10 000 91.14% 1.57 × 1010

8 20 000 91.07% 2.30 × 1011
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site, but has the advantage that if one of the purification steps
is not successful, the remaining particles (entangled pairs) are
still unharmed and can be further used, e.g., be combined with
other pairs where first-round purification was successful. In
addition, several independent resource states are used, which
consist of fewer particles as compared to resource states used
in (V2) and (V3) (see below).

(V2): One can combine the two subsequent purification
rounds (three purification processes) into a single one, where
now four input particles are mapped onto one output par-
ticle at each site, i.e., the procedure involves a five-qubit
resource state. Notice that one has a significant reduction of
size of the resource state and there is no need to couple output
particles of the first round to other resource states by means
of Bell measurements; however, all three purification attempts
need to be simultaneously successful. This leads to an overall
smaller success probability as compared to (V1).

(V3): One can combine to some extent the advantages of
schemes (V1) and (V2). On the one hand, one can reduce
the number of particles as compared to scheme (V1), but
keep the advantage of re-using remaining particles or pairs
if some purification step is not successful. On the other hand,
only single-qubit measurements are involved (except the initial
Bell measurements that couple particles of the Bell pairs
to input particles of the resource state), in contrast to the
additional Bell measurements required to connect output and
input particles of different rounds in (V1). This is achieved
as follows: We consider the step-by-step measurement-based
realization of subsequent purification rounds. For scheme
(V3) all measurements (except those on input and output
particles) are performed on the initial (enlarged) resource state.
This is possible because all operations belong to the Clifford
group. However, one could also not perform some of these
measurements. This is exactly what we do here, namely, we
keep intermediate particles that correspond to output states
of the first purification round (these particles coincide with
the input particles for the second purification round). If the
first purification round for one of the pairs turns out to be
not successful, one can simply erase the corresponding output
particles and decouple them from the remaining system. Notice
that this is always possible, because states are local unitary
equivalent to graph states where single particles can be erased
and decoupled from the remaining system by Z measurements
[23]. In this way, the remaining particles which may, e.g.,
correspond to a purified Bell pair can be further used. Notice
that it is also possible to consider larger states that involve not
only four initial Bell pairs, but six or more in such a way that
more than two output particles of pairs resulting from the first
purification round can be combined to participate in the second
purification round (see Figs. 6–8 for schematic illustrations).
This has the advantage that even if one of the first purification
steps is not successful, a second purification step with two
output particles of a successful first purification step can be
performed by means of single-qubit measurements only, and
no coupling between resource states of different rounds by
means of Bell measurements is required.

Notice that similar variants are possible also for other
involved operations, including, e.g., entanglement purification
plus subsequent entanglement swapping, or several subsequent
rounds of entanglement purification (e.g., an 8:1 protocol

FIG. 6. (Color online) Illustration of version (V1). The schematic
setup for two purification steps and one entanglement swapping
is shown. Particles of Bell pairs (light yellow) are coupled via
Bell measurements to neighboring particles of the resource state
(dark red), where output particles of the first purification round
are further coupled to the resource states that perform the second
round of purification. Additional Bell measurement for entanglement
swapping in the middle is required.

corresponding to three rounds). If we look at the overall
repeater scheme, in particular at higher levels, there is also the
need to combine output pairs from lower levels and process
them further using additional resource states. Again, this can be
done with the different variants (V1), (V2), (V3). While (V1)
requires independent resource states of small size but a larger
number of total particles together with additional coupling by
means of Bell measurements, one could use enlarged resource
states as done in (V2) and (V3).

Notice that using (V2) at all levels, i.e., states of minimum
size which combine the purification and swap operations, leads
to a small success probability. In particular this implies that
all purification steps need to succeed simultaneously. This
destroys the polynomial scaling of the repeater scheme for the
overall resources and implies that schemes (V1) or (V3) need
to be used, e.g., at higher repeater levels.

B. Advantages of measurement-based schemes
for different setups

Here we discuss possible advantages of measurement-
based repeater schemes for different setups. First we note
that the measurement-based repeater scheme solely relies
on two ingredients: (i) the generation and local storage of
certain entangled states, all of which are equivalent—up to a
local basis change—to graph states; (ii) Bell measurements
between stored particles and incoming photons or (depending
on the used scheme) two stored particles. In particular,
no coherent two-qubit operations or other interactions are
required. Regarding (i), we point out that the generation of
the entangled states can be done in a probabilistic fashion and
beforehand, i.e., before the transmission of photons through
channels takes place. The states only need to be available
once the transmitted photons arrive. This not only allows

FIG. 7. (Color online) Illustration of version (V2). Same setup
as in Fig. 6 but resource states of minimal size which combine all
purification and swapping steps.
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FIG. 8. (Color online) Illustration of version (V3). Same setup as
in Fig. 6. Here one can allow for one unsuccessful purification step
in the first round. Notice that the figure only provides a schematic
illustration and may not correspond to the actual graph states that are
required to implement the desired operation.

for probabilistic generation schemes, as, e.g., discussed or
implemented in the context of photons (parametric down
conversion, cluster state generation of photons), but also offers
the possibility to use entanglement purification schemes to
increase the fidelity of the preprepared states. It is, however,
crucial that the states can be stored locally [31]. In principle,
all entangled states could be generated by means of photons
(via parametric down conversion, beam splitters, and passive
optical elements), where then the state of each of the photons
is transferred to another quantum-information carrier, e.g.,
an ion, atom, quantum dot, or atomic ensemble, where
the quantum state can then reliably be stored. To this aim
an interface between photons and matter is required (see
Refs. [32,33] and, e.g., [34,35] for recent developments in this
direction), which allows one to transfer the state of the photon
to the storage system. One possibility is that the atomic system
is placed into a high-finesse cavity, and the photonic state is
then mapped to the cavity mode and subsequently onto a single
atomic system, but other schemes such as a storage in an atomic
ensemble or a Bose-Einstein condensate [36] are also possible.

Notice that whenever one uses scheme (V3), it is in principle
sufficient to have only one storage qubit per cavity, because no
interaction between storage qubits is required [37]. In addition,
it is not necessary to transfer the state of the storage qubit to
a photonic state, i.e., a one-way interface is sufficient. This
significantly simplifies the requirements of such measurement-
based schemes compared to those for gate-based approaches.

In certain setups, it might, however, be easier to work
with two storage qubits, one for storing the particle of the
resource state and one for mapping the incoming photonic
state onto, where a Bell measurement is then performed on the
two storage qubits after the successful coupling process. This
makes it easier to implement coupling schemes that allow one
to detect a successful transfer from photonic to atomic degrees
of freedom, or to determine whether a photon actually arrived.
Notice that it is important to only perform measurements on the
stored particle, which might carry a state resulting from many
previous purification and entanglement swapping processes,
when the photon has arrived and the state is successfully
mapped to the storage unit. Otherwise, the advantage of a
quantum memory would be lost.

What seems particularly attractive is that only (proba-
bilistic) photonic entanglement sources suffice, together with

interfaces and storage units that only involve a single qubit
per storage unit. We remark, however, that an “all photonic”
realization without quantum memory leads to extremely
large overheads, simply because all photons have to arrive
simultaneously at all repeater nodes. However, only a very
few additional purification steps suffice to achieve continental
or even intercontinental distances (see Sec. V).

VII. SUMMARY AND CONCLUSIONS

In this work, we presented a measurement-based imple-
mentation of quantum repeaters for long-distance quantum
communication and distributed quantum computation. The
proposed scheme requires only two- and possibly single-
qubit measurements and can integrate several rounds of
entanglement purification and swapping into a single step.
This integration leads to smaller resource states, i.e., states
with fewer ancilla qubits, in addition to significantly higher
error thresholds. Furthermore we found that for reasonable
levels of noise, one or at most two entanglement purification
steps per repeater level, and six levels in total, suffice to reach
the intercontinental scale.

We also discussed some possible experimental implementa-
tions and their advantages. Here it is appealing that the genera-
tion of the resource states can be probabilistic without affecting
the scheme’s performance. Another interesting aspect is that
quantum memories which can store only single qubits can be
sufficient to implement this repeater scheme without the need
of entangling gates between them.
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APPENDIX: LU OPERATIONS

The LU operations for the various resource states shown in
Figs. 1 and 2 are given in Table IV. The LUs that appear in the
transformation rules for graph states under Pauli measurements
are given by

U
(a)
z,+ = I, (A1)

U
(a)
z,− =

∏
b∈Na

Z(b), (A2)

U
(a)
y,+ =

∏
b∈Na

(−iZ(b))1/2, (A3)

U
(a)
y,− =

∏
b∈Na

(iZ(b))1/2, (A4)

U
(a)
x,+ = (iY (b0))1/2

∏
b∈Na−Nb0 −{b0}

Z(b), (A5)

U
(a)
x,− = (−iY (b0))1/2

∏
b∈Nb0 −Na−{a}

Z(b). (A6)
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TABLE IV. LU operations for resource states.

Qubit No. |G+
3 〉 |G−

3 〉 |G4〉 |G+
5 〉 |G−

5 〉 |G8〉

1 (iZ)
1
2 (iZ)

1
2 (iX)

1
2 (iZ)

1
2 (iZ)

1
2 (−iZ)

1
2

2 I X (−iZ)
1
2 (iX)

1
2 Z(iX)

1
2 Z(iX)

1
2 (iZ)

1
2 (iX)

1
2

3 X(−iZ)
1
2 X(−iZ)

1
2 (iZ)

1
2 (iX)

1
2 I Z (iX)

1
2

4 (iZ)
1
2 (−iX)

1
2 (iX)

1
2 (−iX)

1
2 X(iZ)

1
2

5 X(iZ)
1
2 X(−iZ)

1
2 (iZ)

1
2

6 Z(iX)
1
2

7 (−iX)
1
2

8 X(−iZ)
1
2
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