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Entanglement dynamics of two qubits in a common bath
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We derive a set of hierarchical equations for qubits interacting with a Lorentz-broadened cavity mode at zero
temperature, without using the rotating-wave, Born, and Markovian approximations. We use this exact method
to reexamine the entanglement dynamics of two qubits interacting with a common bath, which was previously
solved only under the rotating-wave and single-excitation approximations. With the exact hierarchy equation
method used here, double excitations due to counter-rotating-wave terms are found to have remarkable effects

on the dynamics and the steady-state entanglement.
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I. INTRODUCTION

Decoherence is one of the most important problem in
quantum information processing [1]. The description of this
difficult problem usually involves various approximations.
During the dynamic evolution, the system and the bath are
mixed, and a perturbative treatment is required such that we can
trace out the degrees of freedom of the bath. This perturbation
is known as the Born approximation. Moreover, if the time
scale of the bath is much shorter than that of the system, the
Markovian approximation is often applied.

An effective method that avoids the above two approx-
imations was developed by Tanimura et al. [2-4], who
established a set of hierarchical equations [4] that includes
all orders of system-bath interactions. The derivation of the
hierarchy equations requires that the time-correlation function
of the bath can be decomposed into a set of exponential
functions [4]. At finite temperature, this requirement is fulfilled
if the system-bath coupling can be described by a Drude
spectrum. The hierarchy equation method is successfully used
in describing quantum dynamics of chemical and biophysical
systems [3—6], such as the light-harvesting complexes [6], of
which the temperature of the environment is high enough, and
the coupling between the system and the environment is too
strong to enable a Born approximation. However, the powerful
hierarchy equation method was seldom used in studying
decoherence effects in quantum information [7]. First, the
operating temperature of qubit devices is very low. If we use
the Drude spectrum, a numerical difficulty arises since the
time-correlation function of the bath should be decomposed
into a very large set of exponential functions [3]. Actually, the
temperature of qubit devices is low enough that we can use
a zero-temperature environment to model the decoherence.
Second, the Drude spectrum is not quite general in qubit
devices, especially when the qubit is placed in a cavity, and
its environment is usually modeled by a Lorentz-broadened
cavity mode.

In this paper we find that the hierarchy equation can also
be derived at zero-temperature if we employ a Lorentz-type
system-bath coupling spectrum. The set of hierarchy equations
derived here provides an exact treatment of decoherence
and employs neither the rotating-wave, Born, nor Marko-
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vian approximations. System-bath correlations are here fully
accounted during the entire time evolution, as compared to
traditional master equation treatments, the correlations are
truncated to second order. High-order correlations are shown
[8] to be very important, even producing a totally different
physics. Moreover, the hierarchy equation we derive here is
found to be effective in the single-mode case and is a promising
method for studying strong- and ultrastrong-coupling physics
[7,9].

We use the hierarchy equation method to study a model of
two qubits interacting with a common bosonic bath, which is
widely considered in studying decoherence-free subspace [10]
and bipartite entanglement dynamics [11]. This model was
solved exactly [1,12] under the rotating-wave approximation
(RWA). It is not surprising that entanglement can be generated
for a separable initial state, since the bath induces an effective
qubit-qubit interaction. Another observation based on the RWA
lies in the steady-state entanglement, which is determined only
by the overlap between the initial state and the decoherence-
free state, independent of the system-bath coupling [12]. This
is because the dynamics of the qubit is restricted to a single-
excitation subspace. However, when the counter-rotating terms
are accounted, double excitation occurs and the steady-state
entanglement vanishes for certain system-bath couplings. We
will demonstrate this observation below.

II. HIERARCHY EQUATION METHOD

Here we first consider qubits interacting with a bosonic
bath, also known as the spin-boson model:

H = Hg 4+ Hp + Hyy, (1)

where Hj is the free Hamiltonian of the qubit and (with7 = 1)

HB = Za)kblbk,
k

Hi =Y V(gibi + gib)). ©)
k

where b,t and by, are the creation and annihilation operators of
the bath, V is the operator of the qubit, while g; is the coupling
strength between the qubit and the kth mode of the bath.
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The exact dynamics of the system in the interaction picture
can be derived as [4]

(”(r)—Texp{ /dtzfdt1V(t2) [CR(t, — 1) V (1)*

+iC'(ta—1)V (n)"]} ps (0), 3)

if the qubit and bath are initially in a separable state,
i.e., p(0) = ps (0) ® pp, where pp = exp(—BHg) /Zp is the
initial state of the bath, with 8 = 1/T (with kg = 1) and Zp
is the partition function. In Eq. (3), 7 is the chronological
time-ordering operator, which orders the operators inside the
integral such that the time arguments increase from right to left.
Two superoperators are introduced: A*B = [A, B] = AB —
BA and A°B ={A, B} = AB + BA. Also, CR (1, — ;) and
C'(t, —t,) are the real and imaginary parts of the bath
time-correlation function

C(—n)=(B()B(1))
respectively, and

B(t) =Y (gbre ™™ + gible'™"). 5)
k

=Tr[B(t) B(t) pg]l. (4

Equation (3) is difficult to solve directly, due the time-ordered
integral. An effective method for this problem was developed
[2-5] by solving a set of hierarchy equations, such as the form
of Eq. (9). The hierarchy equations are obtained by repeatedly
taking the derivative of the right-hand side when the system-
bath coupling is described by the Drude spectrum J (w) =
%% at finite temperatures, where 7 is the reorganization
energy(, and . is the decay rate of the bath correlation
function. A key condition in deriving the hierarchy equation
is that, with the Drude spectrum, the correlation function (5)
can be decomposed into a sum of exponential functions of
time as C (t, — 1) = Zk frexp(—yx), where y; = 27Tk(l
8k.0) + w:b o are the Matsubara frequencies. The hlerarchy
equation method enables a rigorous study of decoherence-
related effects in chemical physics and biophysics [6]. In such
systems the coupling strength between the system and bath
is not always weak, and the temperature 7 is so high that
only a few Matsubara terms could provide enough numerical
precision [3]. However, the number of Matsubara terms in
the expansion increases with decreasing temperature, which is
difficult to handle numerically. This problem becomes serious
when we consider qubit devices, which are generally prepared
in nearly zero-temperature environments, and thus prevent the
use of the original hierarchy equation method. Fortunately,
the exponential decay of bath correlation functions at zero
temperature occurs in many quantum computing devices, such
as cavity-qubit systems, where the coupling spectrum between
the qubits and cavity modes is usually Lorentz type, but not
Drude type, so in that case the hierarchy method can also be
applied.

Now we consider qubits interacting with a single mode
of the cavity, with frequency wg. Due to the imperfection of
the cavity, the single mode is broadened and the qubit-cavity
coupling spectrum becomes Lorentz type:

J) =+ M

T (w — wo)? + y?’ ©
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where A reflects the system-bath coupling strength, y is the
broadening width of the cavity mode, and 7. = 1/y is the
lifetime of the mode. At T =0, if the cavity is initially
in a vacuum state ®;|0y), the time-correlation function (5)
becomes

Cty—t)=rexp[—(y +iwp) |2 —11]], @)

which is an exponential form that we need to use for
the hierarchy equations. In the single-mode limit, y =0
and C (t, — t1) = Aexp(—iwg |t — t1]|), and we see that X is
related to the square of the Rabi oscillation frequency.

To derive the hierarchy equation in a convenient form,
we further write the real and imaginary parts of the time-
correlation function (7) as

k()= i L, cly= i(—l)k 2
P 2 ’ 21

e " (8)
k=1

where v, = y + (—1)*iwy. Then, following procedures shown
in Appendix and Ref. [2,4], the hierarchy equations of the
qubits are obtained:

2
—(H +7i-V)oi (1) —i ) V> 0irz, ()
k=1

9
_?ttz
azQ()

2

A
-i3 D oV + (=D Velgia (1),

k=1

€))

where the subscript 77 = (n1, n,) is a two-dimensional index,
with 12y > 0, and ps (1) = 0(0.0) (). The vectors é; = (1, 0),
é,=1(0,1), and ¥ = (v, o) = (y — iwp, ¥ + iwg). We em-
phasize that g; () with 7 # (0,0) are auxiliary operators
introduced only for the sake of computing, they are not density
matrices, and are all set to be zero at t = 0. The hierarchy
equations are a set of linear differential equations and can be
solved by using the Runge-Kutta method. The contributions
of the bath to the dynamics of the system, including both
dissipation and Lamb shift, are fully contained in the hierarchy
equation (9). The Lamb shift term [13], which is related to the
imaginary part of the bath correlation function, can be written
explicitly in the common non-Markovian equations. Since the
real and imaginary parts of the bath correlation function are
taken into considered here, the effects of the Lamb shift exist
in the hierarchy equations, although not in an explicit form.

For numerical computations, the hierarchy equation (9)
must be truncated for large enough 7. We can increase the
hierarchy order 7 until the results of pg(¢) converge. The
terminator of the hierarchy equation is

bl oL
5,08 (1) = —(iHg + N - V)i (1)

5 2
_ ,'5 X:nk[vX + (=D Vileoy_ g ), (10)

k=1

where we dropped the deeper auxiliary operators 0, ; - The
numerical results in this paper were all tested and converged,
and the density matrix pg(?) is positive.
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III. ENTANGLEMENT OF TWO QUBITS
IN A COMMON BATH

Below we apply the hierarchy equation (9) to a widely
studied model: two qubits interacting with a common bath.
The model is used to study decoherence-free space [10],
bath-induced entanglement [12], and other related topics [11].
In previous works [12,14,15], the RWA was used, and the
exact dynamics could be found only in a single-excitation
subspace. Without using the RWA, the model was also studied
[16-18] in a perturbative way. However, if the system-bath
coupling becomes strong enough, which is explored in recent
experiments [9], both the RWA and perturbation methods
fail. Therefore the hierarchy method is very suitable in such
conditions.

Consider two qubits interacting with a common bosonic
bath. The system Hamiltonian in Eq. (1) is now given by

Hs = Zto1. + o, (11)
and below we consider w|, = wy, = wy, i.€., the resonant case.
The system operator in Eq. (2) is set by V = a0, + 0209,
and for simplicity, we consider oy = o = 1. This model is
exactly solvable [12] when the RWA is applied and the initial
state is of the form

¥ (0)) = [c1 (0) [1)1]0)2 + 2 (0) [0)1]1)21 () 0c).  (12)
k

The time evolution is then given by

¥ (6) = [e1 (1) [1)110)2 + €2 (1) [0)1]1)21 ) 10k)
k

+ Y )10)110)]14), (13)
k

where |1;) denotes that only the kth mode of the bath is excited.
The explicit forms of ¢; (¢) and ¢, (¢) are given in Ref. [12].
The time evolution of the density matrix is

0 0 0 0
0 la®F  a®e@) 0
PO=1 0 e lenp 0 :
0 0 0 1-la@®P =l

(14)

which is obviously restricted to a single-excitation space, and
thus the concurrence of the above density matrix is

CH)=2|ci ()5 (). (15)

We first compare the above results with our hierarchy
method for the initial state |4 (0)) = |0);]0),, shown in Fig. 1.
The system-bath coupling is set by A = 0.1wy, which already
enters the strong-coupling regime. Such an initial state does
not evolve under the RWA, and then no entanglement will be
produced. However, from Fig. 1 we observe the generation
of considerable entanglement, even with large y. The RWA
fails in predicting the real physics. Since the coupling is
strong, the oscillation for small y case is drastic. The sudden
vanishing and revival of entanglement were observed, and
with increasing of y, the oscillations of the concurrence were
suppressed. It should be emphasized that, when y = 0, the
results obtained by the hierarchy equations coincide with our

PHYSICAL REVIEW A 85, 062323 (2012)

0.25F

- ”Y=7u

<
— ©
(92 e}

Concurrence
>

0.05

UJot

FIG. 1. (Color online) Concurrence versus time for the initial
state | (0)) = |0),]0), with different values of y. Here A = 0.1wy is
in the strong-coupling regime. In the single-mode limit, y = 0, the
result of the hierarchy equation (solid) coincides with direct numerical
calculations (circles). The entanglement suddenly vanishes, and
revivals are observed. When increasing y, the oscillations and the
maximum entanglement are suppressed. Under the RWA, the initial
state does not evolve, and the entanglement stays at zero.

exact numerical results obtained by solving the single-mode
Hamiltonian directly. Therefore, by using a unified method,
we can study the dynamics of the system interacting with a
bath from the single-mode to multimode regime.

Another interesting result here is about the steady-state
entanglement. Under the RWA, the dynamics is in the single-
excitation subspace, only two states are independent, |¢1) =
(J0y1[1)2 £ ]1)1]0)) /\/5. The state |¢_) is decoherence-free;
this means that if the initial state has nonvanishing overlap
with |@_), the steady state is entangled, and the concurrence
becomes

C (t — 00) = C (lp-)) Ho—1¥ (0> = [o_Iy (), (16)

which is independent of the system-bath coupling strength A
and the bath-decay rate y. However, if A is not very small,
although |¢_) is also decoherence-free, Eq. (16) should be
reexamined by using a more rigorous treatment, since double
excitations need to be accounted. Actually, the reliability of
the RWA was discussed in many papers [16-24]. As shown
in Refs. [19,24], counter-rotating-wave terms can induced a
significant shift in the population of the steady state even in
the bad-cavity case.

In Fig. 2 we show the results given by the hierarchy method.
The initial state there is [(0)) = (2]0);]1)2 + [1)1]0)2)/+/5.
According to Eq. (16), the concurrence of the steady state
is 0.1. We can see in Fig. 2(a)-2(c) that increasing y the
concurrence of the steady state decreases. In Fig. 2(d), we show
that for a given A = 0.01wy, the steady-state entanglement
vanishes when y is larger than a critical value. This reflects the
importance of the counter-rotating-wave terms, which break
the single-excitation condition and give a totally different
steady-state entanglement. Similar results are obtained in
Ref. [24], where the increase of the cavity decay rate is found
to decrease the maximum of induced entanglement, and the
steady state that computed without RWA has no entanglement
but finite discord. This simple example indicates that some
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FIG. 2. (Color online) (a)-(c) Dynamics of the concurrence
computed with the hierarchy equations (solid) and exact results
under the RWA (dashed). The coupling strength A = 0.01wy is
so strong that the RWA is invalid. With increasing y, the non-
Markovian oscillations disappear. It is interesting that the steady-state
entanglement obviously depends on y, which cannot be predicted by
using the RWA. The steady-state entanglement is shown in (d), and
it vanishes if y is larger than a critical value.

exact results previously obtained under the RWA need to be
reexamined.

IV. CONCLUSION

In summary, we derive a set of hierarchy equations at zero
temperature with a Lorentz spectrum. This set of equations
is very suitable for qubit-cavity systems, especially when
the interaction is so strong that the RWA and perturbative
methods break down. It even works well when the bath
has only one single mode. Moreover, this equation is very

' tz 2 A
ps () =U (@) {Texp (— /dtzfdtl V (1)~ Z Ee
o Jo —
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flexible. For example, if the qubits interact with several cavity
modes, each broadened into a Lorentz form, then the bath
correlation functions can also be expanded as several expo-
nential functions. Thus the form of the hierarchy equations
remains. The hierarchy equations are applied to reexamine
the dynamics of two qubits interacting with a common bath.
Previous works usually employed the RWA, and the results
were restricted to the single-excitation space. This is not the
case in this paper, since we do not use the RWA, and the
counter-rotating-wave terms will cause double excitations.
We found that the steady-state entanglement depends on the
system-bath coupling spectrum. For a given coupling strength
A, there will be no steady-state entanglement when y is
larger than a critical value. The exact dynamics exhibits a
totally different physics, compared to the RWA model, which
motivates the reexamination of many previous approximate
studies.
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APPENDIX: DERIVATION OF
THE HIERARCHY EQUATIONS

Below we derive the hierarchy equations. First, inserting
the correlation function (7) into Eq. (3), we find

G (1) (= DE YV (n)"]) 0s (0)} Ut (r)

=U(@) {Texp |:/dt2/dt1d> (l‘z)Zg*w(tz “)@k (tl)i| 0s (0)} Ut ), (A1)
where U(t) = exp[—i (Hs + Hp)t], and the two new superoperators
o(t)=—-iV(@),
| A
O (1) = —%[V(t)X + =DV )] (A2)

in order to make the following discussion clearer and simpler. Equation (A1) is a time-ordered integral equation, which is not easy
to solve directly. The idea of the hierarchy equation method [2,4] is to transform such an integral equation to a group of ordinary dif-
ferential equations. The derivation of the hierarchy equations is straightforward: taking the time derivative of Eq. (A1) repeatedly.
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We first take the time derivative of Eq. (A1) and obtain

9 2
5Ps (0= —iHps () + @Y Fi(0), (A3)
k=1
where
t t 5] 2
Fe)y=Um®T :/ dte 0@, (1) exp |:/ dt2/ dt, @ (tz)zev”(’r")&, (l1):| } ps (0)U (D). (A4)
0 0 0 o

Thus the solution of pg (¢) is determined by (1) its own free evolution and (2) the dynamics of F, (¢). The initial condition of F (¢) is
Fi(0) =0, (A5)

which is a direct result of Eq. (A4). To solve for F; (¢), we need its differential equation. Before taking the time derivative of
Fi (t), we first introduce the following useful notations [4]:

00,0 ) =ps(), ca0®=F @), oon®)=F(@). (A6)
Then Eq. (A3) can be rewritten as

2

d . .
PR (1) = —iHg ps (1) + Plo o) (1) + 00,1 (D], = —i Hg ps (1) + © ZQ(O,O)JrEk ), (A7)
k=1
where ¢; = (1, 0)and ¢, = (0, 1).
The differential equations of (o) () and g 1) (¢) are obtained as
2
9 .
57200 (1) =—(Hg +vi)ou,n @)+ ZQ(I,O)+Ek () + ©100,0) (1),
k=1
R (AB)
0 R
3,000 (1) = —(Hg + ooy () + @ > e01+a (1) + 2000 (1)
k=1

where we find three new auxiliary matrices:

t 2 t t 2
Q(z,O)(l)=U(t)T“: /0 dre“'“”@l(r)} exp UO dn fo dncb(tz)Ze“k“z‘“@)k(n)”ps(ow(rﬁ . (A9)

k=1

o, (1) = U(I)T{ |:/ d.’:e—m(l—r)@l (.L.)i| |:/ d.[e—vz(t—r)@z (.L.)i|
0 0

t t 2
X exp [ / dty / dn® (1) Y e e, (tl):| } ps (O)U (1) (A10)
0 0 k=1

t 2 t t 2
0y =UM0T { |:/ dfefvzofr)@z (‘L’)] exp |:/ dtzf dty @ (1) Z €vk(t27t‘)®k (tl):| } ps (O)U (I)T . (Al1D)
0 0 0

k=1
By repeating the above procedures, we find

2 2

d e
01 (1) = —H +ii - D)oz () +® Y onea () + Y mOoi-, (1. (A12)
k=1 k=1

where 71 = (n1, np) is a two-dimensional index, with ny), > 0. The two-dimensional vector b = (vy, v2) = (y — iwy, y + iwy).

The auxiliary matrix is
t ny t na
0o =U0T [ / dre™""9@, (r)] [ / dre—vz<’-f>®2(z)]
0 0

t zz 2
X exp [ / dn / dn® ()Y e e, (zl)} }ps O U ). (A13)
0 0

k=1
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Inserting Eq. (A2) into Eq. (A12), we obtain the explicit form of the hierarchy equation as

ot k=1

The initial conditions are

07 (0) = {83 ©

3 L 2 P
-0 (1) = —(GH +ii - 9)0i () =i Y V¥oie, (0= i5 Y mlV* + (=1 VVlaia ().

(A14)
k=1

forn; =n, =0,
forn; >0, np, > 0.

Although the explicit form of pj (¢) is complicated, we need only to focus on its differential equations, which can be solved

directly by using the traditional Runge-Kutta method.
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