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In this article, we extend recent results concerning random-pair Einstein-Podolsky-Rosen distillation and
the operational gap between separable operations (SEPs) and local operations with classical communication
(LOCC). In particular, we consider the problem of obtaining bipartite maximal entanglement from an N -qubit
W-class state (i.e., that of the form

√
x0|00 . . . 0〉 + √

x1|10 . . . 0〉 + · · · + √
xn|00 . . . 1〉) when the target pairs

are a priori unspecified. We show that when x0 = 0, the optimal probabilities for SEPs can be computed using
semidefinite programming. On the other hand, to bound the optimal probabilities achievable by LOCC, we
introduce entanglement monotones defined on the N -qubit W class of states. The LOCC monotones we construct
can be increased by SEPs, and in terms of transformation success probability, we are able to quantify a gap as
large as 37% between the two classes. Additionally, we demonstrate transformations ρ⊗n → σ⊗n that are feasible
by SEP for any n but impossible by LOCC.
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I. INTRODUCTION

Quantum entanglement is a celebrated aspect of quantum
theory and represents one of the sharpest departures from the
classical world. From a practical perspective, entanglement
provides a key tool for novel technologies such as quantum
teleportation [1], dense coding [2], and entanglement-based
quantum cryptography [3]. Formally treating entanglement as
a physical resource involves specifying a quantitative measure
so that it makes sense to discuss “how much” entanglement
a certain quantum system possesses. For bipartite pure states,
the von Neumann entropy serves as the unequivocal measure
of entanglement [4]. However, for multipartite pure states and
even mixed bipartite states, there does not appear to exist
one unifying entanglement measure [5,6]. Instead, it seems
more appropriate to quantify the amount of entanglement in
a given system relative to some particular task or physical
characteristic.

A necessary (and arguably sufficient) property that every
entanglement measure must satisfy is the so-called local
operations and classical communication (LOCC) constraint
[7–12]. In a realistic multipartite setting, each party will
possess a laboratory in which he or she performs quantum
measurements on only one part of the whole system. At
the same time, the parties may wish to coordinate their
measurement strategies by using a classical communication
channel to share their measurement outcomes. This paradigm
is known as LOCC, and it describes the basic setting for
nearly all practical quantum communication schemes. The
LOCC constraint means that entanglement cannot be increased
on average by LOCC. Therefore, a function μ fulfills the
LOCC constraint if, for any LOCC process that converts ρ

into σi with probability pi , the following inequality holds:
μ(ρ) �

∑
i piμ(σi).
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While it is very easy to describe the idea of LOCC opera-
tions, giving a precise mathematical description is notoriously
difficult [13–15]. For many purposes—such as upper bounding
the success probability of some LOCC task—a finely tuned
description is not necessary. Instead, one can turn to a more
general (but not too general) class of quantum operations and
see what is possible under this relaxation. The most natural
approximation to LOCC is the class of separable operations
(SEPs). For an N -partite quantum system, an operation is
called separable if it admits a Kraus operator representation
E(·) =∑λ Aλ(·)A†

λ, where Aλ = M1,λ ⊗ M2,λ ⊗ · · · ⊗ MN,λ.
As every LOCC is built by a successive composition of local
maps E (k) ⊗ I(k), it follows that every LOCC map is separable.
Compared to a LOCC, the structure of a SEP is easier to
analyze, and studying it has been useful for proving LOCC
impossibility results [7,16–20].

A somewhat unexpected finding is the existence of SEPs
that cannot be implemented by LOCC [13]. A dramatic
example of this is the phenomenon of “nonlocality without
entanglement,” which refers to certain sets of product states
that can be distinguished by SEP but not by LOCC [13,21].
Following the initial finding that LOCC � SEP, additional ex-
amples were constructed that demonstrated this fact [22–26].
Like LOCC, SEPs have the property that they cannot generate
entanglement. Indeed, if a separable map is applied to a
general separable state

∑
i piρ

(1)
i ⊗ · · · ⊗ ρ

(N)
i , the resultant

state will likewise be separable. The fact that LOCC �= SEP
then implies a certain irreversibility to non-LOCC separable
maps since these operations are unable to create entanglement,
but nevertheless, they require some preshared entanglement
to be performed in the multipartite setting. Thus, such maps
may be interpreted as the operational analog to “bound
entanglement” [19], where the latter refers to multipartite
states that cannot be converted into pure entanglement but,
nevertheless, require some initial entanglement to be created.
Consequently, studying the gap between LOCC and SEP is
crucial to understanding the nature of quantum entanglement.

Unfortunately, very little quantitative research has been
conducted into the difference between LOCC and SEP. Thus
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it becomes difficult to say just how much more powerful a
SEP is than LOCC. Previous numerical results that compared
SEP versus LOCC for the task of distinguishing certain
quantum states was very small in scale. For instance, Ref. [13]
demonstrated a minimum of O(10−6) between the two classes
(in terms of the attainable mutual information), while in
Ref. [23], optimal success probabilities in distinguishability
were shown to diverge by at most 0.8%. Recently, however,
we were able to provide the first appreciable gap between SEP
and LOCC in terms of a 12.5% difference in the probability of
successfully performing a particular state transformation [27].
In this article we vastly improve on our previous result and
demonstrate a difference of 37% between LOCC and SEPs.
The key step in proving this result is the construction of new
entanglement monotones for a particular subset of N -qubit
states that can be increased by SEP.

Specifically, we turn to the problem of randomly distilling
an EPR pair from one copy of a multipartite W-class state,
as first initiated by Fortescue and Lo [28,29]. An EPR
random distillation refers to a transformation of multipartite
entanglement into bipartite maximal pure entanglement in
which the two parties sharing the final entanglement are
allowed to vary among the different outcomes. We denote
such a transformation

|ϕ〉1...N → {pij ,|�(ij )〉}, (�)

where |�(ij )〉 is a maximally entangled two-qubit state shared
between party i and party j obtained from |ϕ〉1...N with
probability pij .

It is often more convenient to represent transformation (�)
by a distillation configuration graph G = (V,E ⊂ V × V ) in
which each party i is assigned to a vertex vi ∈ V , and an
edge (i,j ) ∈ E is drawn between vi and vj if and only if pij

is nonzero (see Fig. 1). Let Ek ⊂ E denote the set of edges
connected to vertex vk .

In terms of overall success probability, often the random
distillation of some state can be more efficient than if entan-
glement is distilled to a fixed pair. Perhaps the most impressive
demonstration of this effect is the Fortescue-Lo protocol,
which performs transformations (�) on the three-qubit W
state |W3〉 = √

1/3(|100〉 + |010〉 + |001〉) for any value of
p12 + p23 + p13 less than 1; this should be compared to

FIG. 1. Graph representation G of one particular EPR random
distillation configuration for state |ϕ〉12345. Each edge represents
a possible outcome EPR state shared between the two parties
corresponding to the connected nodes. The probability of obtaining
a given edge is pij > 0, and Ek is the set of all edges connected to
vertex vk .

the maximum probability for transformation |W3〉 → |�(ij )〉,
which is 2/3 for any i �= j ∈ {1,2,3} [28]. The Fortescue-Lo
protocol also extends to distilling an EPR pair from |WN 〉 with
a probability arbitrarily close to 1. Such a finding demonstrates
the importance of considering random distillations in the
multipartite setting.

1. Summary of main results and article outline

This article compares the LOCC versus SEP feasible
probabilities of transformation (�) when |ϕ〉1...N belongs to
the N -qubit W class of states, i.e., any state reversibly ob-
tainable from |WN 〉 = √

1/N (|10 . . . 0〉 + |01 . . . 0〉 + · · · +
|00 . . . 1〉) by LOCC with a nonzero probability. We begin our
investigation in Sec. II with a review of results by Kintaş and
Turgut on the subject of W-class transformations [30]. There
we also define the notation used throughout the paper.

In Sec. III we show that for states of the form√
x1|10 . . . 0〉 + · · · + √

xN |00 . . . 1〉, the possibility of trans-
formation (�) by SEP can be phrased as a semidefinite
programming feasibility question. Thus, numerically it has
an efficient solution. When the initial state is |WN 〉, we are
able to obtain simple necessary and sufficient criteria for
transformation feasibility by studying the dual problem, as
carried out in the Appendix. Note that the results of this section
also provide LOCC upper bounds.

Next, in Sec. IV, we turn to the LOCC setting specifically,
and we introduce two new types of entanglement monotones
defined on the N -qubit Wclass of states. To prove that these
functions are monotonic under LOCC, we decompose a
general LOCC transformation into a sequence of local weak
measurements. However, these functions are not monotonic
under SEPs. While a general separable measurement can
also be decomposed into a sequence of weak measurements,
these measurements need not be local, and our functions
are sensitive precisely to this relaxation in constraint. We
prove that the monotones have operational meanings as the
supremum success probabilities for the distillation of EPR
states for certain distillation configuration graphs. Moreover,
these monotones can be saturated by an “equal or vanish”
measurement scheme, which we describe further in Sec. IV.
Thus we are able to prove LOCC optimal rates for certain
configuration graphs of transformation (�). In particular, we
solve the one-shot analog of “entanglement combing” studied
by Yang and Eisert [31], in which one particular party is
selected to be a shareholder of the bipartite entanglement for
each of the possible outcomes. Formal comparisons between
SEP and LOCC for transformation (�) are made in Sec. V.

Finally, in Sec. VI we move beyond the single-copy case and
investigate a particular n-copy random distillation problem.
Interestingly, we are able to show the existence of a state
transformation |ψ〉〈ψ |⊗n → ρ⊗n that, for any n, is impossible
by LOCC but always possible by SEP. This result is the first of
its kind. Brief concluding remarks are then given in Sec. VII.

2. Relationship to previous work

This article complements recent work we conducted on the
random distillation problem and its connection to the structure
of LOCC [26,27]. In particular, Ref. [26] presents a general
LOCC procedure for completing transformation (�) on W-class
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states and also computes tight bounds for four-qubit systems.
The distinguishing feature of this article is a solution to (�) by
SEPs for a wide class of states and the construction of N -partite
entanglement monotones that generalize those presented in
[27]. Additionally, we consider here the many-copy variant of
the random distillation problem, which has previously only
been investigated in Ref. [29].

II. NOTATION AND THE KINTAŞ AND TURGUT
MONOTONES

Throughout the paper, we deal exclusively with pure states
|ϕ〉1...N . If we wish to express the state as the rank 1 density
operator |ϕ〉〈ϕ|1...N , we will denote it ϕ(1...N). For some
operator A acting on a multipartite state space, we let A	i

denote its partial transpose in the computational basis with
respect to a party (or parties) i.

It is often useful to consider two states equivalent if
they can be reversibly converted from one to the other by
LOCC with some nonzero probability. Such a transformation
is known as stochastic LOCC (SLOCC), and the well-known

criterion for |ϕ〉1...N
SLOCC−→ |ϕ′〉1...N is the existence of invertible

M (k) such that
⊗N

k=1 M (k)|ϕ〉1...N = |ϕ′〉1...N [32]. In this way,
multipartite state space can then be partitioned into SLOCC
equivalence classes.

The N -party W class is the set of states SLOCC equivalent to
|WN 〉 = √

1/N (|10 . . . 0〉 + |01 . . . 0〉 + |00 . . . 1〉), and such
states take the form

√
x0|00 . . . 0〉 + √

x1|10 . . . 0〉 + · · · +√
xn|00 . . . 1〉. More importantly, even after a local unitary

(LU) transformation, |0〉 → |0′〉 and |1〉 → |1′〉, the compo-
nent values

√
xi always remain unchanged for N � 3 [30].

Therefore, we can uniquely characterize any W-class state by
the N -component vector,

�x = (x1,x2, . . . ,xN )

�√
x0|00 . . . 0〉 + √

x1|10 . . . 0〉 + · · · + √
xn|00 . . . 1〉, (1)

and x0 = 1 −∑N
i=1 xi . When N = 2, uniqueness can be

ensured by demanding that x0 = 0 and x1 � x2.
The order in value of these components is highly im-

portant to our investigation. Thus, we often use the indices
{n1,n2, . . . ,nN } = {1,2, . . . ,N} such that xn1 � xn2 � · · · �
xnN

. We let n1(�x) denote the largest component in state
�x = (x1, . . . ,xN ).

A main result of Kintaş and Turgut’s work was proving
that the component values, −x0 and xi for 1 � i � N , are
entanglement monotones [30]. In other words, for an LOCC
transformation converting �x → �xλ with probability pλ, the
relations

x0 �
∑

λ pλxλ,0, xi �
∑

λ pλxλ,i (2)

hold for all 1 � i � N . We refer to these as the K-T monotones
and they place an upper bound of min{xi/yi}i=1...N on the
probability for any W-class transformation �x → �y. Recently,
necessary and sufficient conditions were obtained for when
this upper bound can be achieved [33].

To study the effects of measurement on a W-class state,
first note that any measurement operator A is a 2 × 2
matrix expressible in the form A = U · (

√
a b

0
√

c
), where U

is a unitary matrix. Thus, up to a final LU operation, any
local measurement corresponds to a set of upper triangular
matrices {Mλ}λ with

∑
λ M

†
λMλ = I. When it is party k

who performs the measurement, we denote the measurement
operators M

(k)
λ . It is easy to see that this measurement

on state
√

x0|00 . . . 0〉 + √
x1|10 . . . 0〉 + · · · + √

xN |00 . . . 1〉
will transform the components as

xk → cλ

pλ

xk, xj → aλ

pλ

xj , 1 � j �= k � N, (3)

where pλ is the probability that outcome λ occurs. We can
simplify matters even further by noting that any transformation
possible by LOCC can always be achieved by a protocol in
which each party only performs two-outcome measurements
[34]. Since our chief concern is the possibility of transfor-
mations, we can assume without loss of generality that each
local measurement consists of two upper triangular matrices
{M (k)

1 ,M
(k)
2 } whose entries are

M
(k)
1 =
(√

a1 b1

0
√

c1

)
, M

(k)
2 =
(√

a2 b2

0
√

c2

)
, (4)

with a1 + a2 = 1 and c1 + c2 � 1, in which equality is
achieved by the latter if and only if M

(k)
1 and M

(k)
2 are both

diagonal.

III. SEPARABLE TRANSFORMATIONS

In this section we derive the conditions for which transfor-
mation (�) is possible by SEPs when the initial state is a W-class
state with x0 = 0. As shown in the following lemma, the unique
structure of such states allows for a major simplification in the
analysis.

Lemma 1. Suppose that {
λ := M
(1)
λ ⊗ · · · ⊗ M

(N)
λ }λ=1...t

corresponds to a complete measurement that achieves transfor-
mation (�) with probabilities p12, . . . ,pN−1N when |ϕ〉1...N =√

x1|10 . . . 0〉 + · · · + √
xN |00 . . . 1〉. Then up to LU opera-

tions, there exists a measurement {M̂ (1)
λ ⊗ · · · ⊗ M̂

(N)
λ }λ=1...2t

that achieves transformation (�) with the same probabilities
and with each M̂

(k)
λ being diagonal.

Proof. Up to an LU operation, each M
(k)
λ takes the form

M
(k)
λ = (

√
aλk bλk

0
√

cλk
) so that

∑
λ



†
λ
λ =

∑
λ

N⊗
k=1

(
akλ

√
aλkbλk√

aλkb
∗
λk |bλk|2 + cλk

)
= I. (5)

Let M̂ (k)
λ := (

√
aλk 0
0

√
cλk

). It is straightforward to see that the op-

erators {
̂λ :=⊗N
k=1 M̂

(k)
λ }λ=1...t correspond to an incomplete

measurement that achieves transformation (�) with the same
probabilities as the {
λ}λ=1...t . From Eq. (5), the collection
of separable operators {⊗N

k=1( 0 0
0 |bλk | )}λ=1...t can be combined

with {
̂λ}λ=1...t to form a set which corresponds to a complete
measurement.

One immediate consequence of this lemma is that for any
incomplete separable transformation of the form (�) with∑

λ 

†
λ
λ < I, we can always assume that I −∑λ 


†
λ
λ

has a diagonal representation and is therefore separable. As
a result, when |ϕ〉1...N is a W-class state, it is sufficient to
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consider the feasible probabilities of transformation (�) under
incomplete separable transformations.

Now for measurement {
λ := M
(1)
λ ⊗ · · · ⊗ M

(N)
λ }λ=1...t ,

if we let Sij denote the set of all outcomes λ such that

λ|ϕ〉1...N ∝ |�(ij )〉, we can form a Choi matrix �ij for each
edge (i,j ) ∈ E of graph G [35]:

�ij =
∑
λ∈Sij


λ ⊗ I

(
N⊗

i=1

�(ii ′)

)
(
†

λ) ⊗ I. (6)

Here, 
λ acts on systems 1,2, . . . ,N , while I is the identity
acting on their copies 1′,2′, . . . ,N ′. By Lemma 1, the 
λ can
be taken as diagonal matrices so that �ij has support only
on the span of {|i1i1〉11′ |i2i2〉22′ . . . |iN iN 〉NN ′ }i1,i2,...,iN ∈{0,1}.
Furthermore, since all parties besides i and j hold pure states in
the end, M

(k)
λ must be a rank 1 matrix for k �= i,j and λ ∈ Sij .

Thus, up to LUs and a permutation of spaces, �ij has the form

�(ij ) = χ (ii ′jj ′) ⊗ |0〉〈0|(ii ′jj ′),

where χ (ii ′jj ′) is effectively a separable 2 ⊗ 2 density ma-
trix having support on {|mm〉ii ′ |nn〉jj ′ }m,n∈{0,1}; equivalently,
χ (ii ′jj ′) has a positive partial transpose [36]. In terms of the
Choi matrix, the condition of obtaining |�(ij )〉 with probability
pij is given by

tr1′...N ′(�ijϕ
(1′...N ′)) = pij�

(ij ) ⊗ |0〉〈0|(ij ). (7)

Here we use the fact that ϕ(1′...N ′) is taken to have only real com-
ponents. Finally, the constraint that

∑
(i,j )∈E

∑
λ∈Sij



†
λ
λ �

I is captured by ∑
(i,j )∈E

tr1...N (�ij ) � I. (8)

This construction is completely reversible such that, given
matrices satisfying the above conditions, we can always
construct a separable measurement facilitating transformation
(�) [37]. Thus the necessary and sufficient conditions for a
feasible separable map are 4 × 4 complex matrices χ (ii ′jj ′) for
all (i,j ) ∈ E which satisfy

χ (ii ′jj ′) � 0, [χ (ii ′jj ′)]	i′j ′ � 0, (9)

as well as Eqs. (7) and (8). This is a semidefinite feasibility
problem which can be efficiently solved using a variety of
numerical tools [38]. Furthermore, duality theory can be used
to analytically prove instances of infeasibility. We perform
such an analysis in the Appendix for the initial state |ϕ1,...,N 〉 =
|WN 〉. The result is given by the following theorem, which also
provides an LOCC upper bound.

Theorem 1. For |ϕ1...N 〉 = |WN 〉, transformation (�) with
graph representation G is possible by SEPs if and only if

N2

4

∑
(i,j )∈E

p2
ij � 1,

N

2

∑
(i,j )∈Ek

pij , � 1, 1 � k � N.

(10)

Remark. In practice, it may be helpful to use the inequality∑n
i=1 x2

i � 1
n

(
∑t

i=1 xi)2 so that the first constraint in Eq. (10)

becomes

N2

4|E|

⎛
⎝ ∑

(i,j )∈E

pij

⎞
⎠

2

� 1. (11)

IV. ENTANGLEMENT MONOTONES

In this section, we introduce new entanglement monotones
on the N -qubit W class of states. An important property
of quantum measurements is the universality of weak mea-
surements. This means that any general measurement can
be replaced by a sequence of measurements that obtains
the same overall outcomes but only changes the state by an
arbitrarily small increment with each individual measurement
[13,39]. Consequently, to prove LOCC monotonicity of a
given function, it is sufficient to prove it nonincreasing, on
average, under two-outcome infinitesimal measurements by a
single party. The full generality of the latter consideration
was explored in Ref. [40]. Here, a weak measurement of
{M (k)

1 ,M
(k)
2 } corresponds to (a1,c1,a2,c2) lying in a small

neighborhood of (1/2,1/2,1/2,1/2), and the relatively simple
structure of the W class eases analysis in this infinitesimal
setting.

We define our monotones as follows. For an N -party W state
(x1,x2, . . . ,xN ), set {n1,n2, . . . ,nN } = {1,2, . . . ,N} such that
xn1 � xn2 � · · · � xnN

and consider the continuous functions:

η(�x) = xn1 −
(

1

xn1

)N−2 N∏
i=2

(
xn1 − xni

)
,

(12)

κ(�x) =
N∑

i=2

xni
+ η(�x).

Theorem 2.
(I) η is nonincreasing on average for any single local

measurement in which n1 is the same value for the initial
and all possible final states,

(II) κ is an entanglement monotone. It is strictly decreasing
on average for any nontrivial measurement by party n1.

The three-qubit form of this theorem has been proven in
Ref. [27]. Here, in the general case, our proof technique will
be very similar.

Proof. (I) We consider case-by-case measurements of each
party under the conditions of I. The function η transforms
as η → ηλ for λ = 1,2, and we are interested in the average
change, ηλ = p1η1 + p2η2, under infinitesimal measurements.
First, suppose that party n1 measures. According to Eq. (3),
the average change in η is

η(�xλ) = c1xn1

(
1 −

N∏
i=2

(
1 − a1xni

c1xn1

))

+ c2xn1

(
1 −

N∏
i=2

(
1 − a2xni

c2xn1

))
. (13)

We demonstrate that in the weak-measurement setting, this
quantity is maximized by equality of the upper bound:
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c1 + c2 = 1. Indeed, we have

∂ηλ

∂cλ

∣∣∣∣ a1 = a2 = 1/2
c1 = c2 = 1/2

= xn1

{(
1 −

N∏
i=2

(
1 − xni

xn1

))

−
N∑

i=2

xni

xn1

N∏
j �=i

(
1 − xnj

xn1

)}
(14)

for λ = 1,2, and it suffices to show that this expression is
strictly positive. Now if we differentiate Eq. (14) with respect
to any xnk

, we obtain

N∏
i �=k

(
1 − xni

xn1

)
−

N∏
i �=k

(
1 − xni

xn1

)
+
∑
i �=k

xni

xn1

N∏
j �=i,k

(
1 − xnj

xn1

)

=
∑
i �=k

xni

xn1

N∏
j �=i,k

(
1 − xni

xn1

)
� 0 (2 � k � N ),

and since Eq. (14) vanishes when xnk
= 0 for all nk , it follows

that for nonzero values of xnk
, Eq. (14) is strictly positive. Thus,

the maximal change in η occurs when c1 + c2 = 1. As we are
interested in this upper bound, we assume the measurement is
characterized by a ≡ a1, 1 − a = a2, c ≡ c1, and 1 − c = c2.
We then have

η − η(�xλ) = −xn1

N∏
i=2

(
1 − xni

xn1

)
+ cxn1

N∏
i=2

(
1 − axni

cxn1

)

+ (1 − c)xn1

N∏
i=2

(
1 − (1 − a)xni

(1 − c)xn1

)
. (15)

Expanding this to second order about the point (a,c) =
(1/2,1/2) yields

η − η(�xλ) ≈ 4(a − c)2
∑
i,j

xni
xnj

xn1

N∏
l �=i,j

(
1 − xnl

xn1

)
� 0. (16)

And this expression will be positive whenever a �= c, which
is whenever party n1 performs a nontrivial measurement. In
the case in which party ni performs a measurement for some
i > 1, η changes as

η(�xλ) = xn1 − (a1xn1 − c1xni
)

N∏
j �=i

(
1 − xnj

xn1

)

− (a2xn1 − c2xni

)∏
j �=i

(
1 − xnj

xn1

)
� η(�x). (17)

(II) We can always decompose a general transformation
into a sequence of weak measurements for which either
each measurement satisfies the conditions of I or its pre-
measurement state �y satisfies yn1 = yn2 . In the first case, κ is
monotonic by part I and the fact that

∑N
i=2 xni

is nonincreasing
on average by the K-T monotones. In the second case, we
have κ(�y) = 1 − y0. Since 1 − yλ,0 is an upper bound on
κ(�yλ) for each of the postmeasurement states �yλ, and 1 − y0 is
nonincreasing on average by the K-T monotones, it follows that

κ(�y) �
∑

λ pλκ(�yλ). Thus, κ is an entanglement monotone in
general.

Theorem 2 also applies to any fixed collection of subsys-
tems. Indeed for N -qubit systems, let S denote some subset of
parties, and consider the unnormalized state �s which has |S|
components, each belonging to a different party in S. Then
Theorem 2 also holds for the functions η(�s) and κ(�s). The
proof of this is exactly the same as above, with the added note
that whenever a measurement is performed by a party not in
S, η(�s) and κ(�s) remain invariant on average, which follows
from Eq. (3).

For example, in a four-party system, let S be parties 1, 2,
and 3. Now for any four-qubit state �x, take {xmax,xmid,xmin} =
{x1,x2,x3} such that xmax � xmid � xmin. Then the function

2xmid + 2xmin − xmidxmin

xmax
(18)

is an entanglement monotone.
The condition in part I of Theorem 2 can be extended

beyond single measurements.
Corollary 1. Suppose the transformation �x → {pi, �yi} is

possible by LOCC, where n1(�x) = n1(�yi) for all i. Then η(�x) �∑
i piη(�yi).
Proof. We can partition any transformation into sections

where n1(�x) is the largest component and where it is not. By
weak measurement theory, we can assume that when passing
from one section to the other, we always first obtain a state
�s on the border such that η(�s) = sn1(�x). Therefore, since the
n1(�x) component is always monotonic by the K-T monotones,
(2), we have that η will not have increased on average within
any region for which n1(�x) is not the largest component. For
sections when n1(�x) is the largest, we know that η is monotonic
by part I of the previous theorem.

3. Interpretation of monotones

A natural question is whether the functions η and κ possess
any physical interpretation. Here we show that for states
�x having x0 = 0, 2η(�x) gives the optimal probability for
transformation (�) when the configuration graph G consists
of all edges connected to node vn1(�x). We refer to this as a
“combing transformation” since it represents a single-copy
version of the entanglement combing procedure described in
Ref. [31]. On the other hand, κ(�x) gives the optimal probability
when G is complete, i.e., each vertex is connected to every
other one (see Fig. 2). The following theorem gives a precise
statement of this result.

Theorem 3. For an N -party W state �x = (x1,x2, . . . ,xN ),
let Ptot be the optimal total probability of obtaining an EPR
pair by LOCC, and Pk the optimal total probability of party k

becoming EPR entangled. Then
(I) Ptot < κ(�x), and

(II)

Pk �
{

2xk if xk < xl for some l,

2η(�x) if xk � xl for all l.

When x0 = 0, the upper bound in I can be approached
arbitrarily closely, while in II it can be achieved exactly.
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FIG. 2. Distillation configurations for η vs κ . Top: A “combing-
type” distillation: when x0 = 0, 2η(�x) is the optimal probability for
a random distillation in which party n1 shares one-half of each EPR
pair. Bottom: A “complete-type” distillation: when x0 = 0, κ(�x) gives
the optimal probability for a random distillation in which the target
pairs are any two of the parties.

Proof. First recall that κ(�(ij )) = 1. Then the upper bounds
follow from Theorem 2 and the K-T monotones. Assume now
that x0 = 0. To show that the upper bounds are effectively tight,
we construct a specific protocol based on an “equal or vanish”
(e/v) measuring scheme [28]. On its own, an e/v measuring
scheme is just one way in which a W-class state |ϕ〉1...N can
be converted into either EPR pairs or W states |Wm〉 for 3 �
m � N . Each party k performs a two-outcome measurement
for which outcome 1 is a state whose kth component equals
the maximum component, and outcome 2 is a state whose kth
component is 0. The specific measurement operators are given
by M1 = diag[

√
xk

xn1
,1] and M2 = diag[

√
1 − xk

xn1
,0]. When

each party does this, the possible resultant states are |�(n1k)〉
for n2 � k � N , |Wm〉 for 3 � m � N , or a product state
(see Fig. 3).

For a complete-type distillation, the parties first perform e/v
measurements and then implement the Fortescue-Lo Protocol
on the resultant |Wm〉 states. When xn1 = xn2 for an initial state
�x, a product state is never obtained by the e/v measurements,
and the total success probability is therefore arbitrarily close to
1. When xn1 > xn2 , we prove the success rate by induction on
the number of parties. For N = 2, the rate of κ(�x) = 2xn2

can be achieved [41]. Suppose now that probability κ is
obtained arbitrarily close with N − 1 parties, and consider
the N -party case. If party n2 is the first to perform an e/v
measurement, then with probability q this measurement will
raise his component to equal the largest; i.e., the resultant
state �y has yn1 = yn2 . Thus, random EPR distillation can be
accomplished deterministically on �y. For the “vanish” outcome
occurring with probability 1 − q, the resultant state �z is shared

FIG. 3. A three-qubit “equal or vanish” measurement scheme.
The initial state is (x1,x2,x3) with x1 > x2 > x3 and x0 = 0. Bob
(party 2) measures first and either obtains a state in which his
component is a maximum or becomes entangled in the other two.
In the next round Charlie (party 3) performs the same type of
measurement. The possible outcome states are |W3〉, |�(12)〉, |�(13)〉,
and a product state. A “complete-type” distillation begins with
this measurement scheme and then the Fortescue-Lo protocol is
performed on the |W3〉 outcome. A “combing-type” distillation is
exactly this measurement scheme except that the premeasurement
state of |W3〉 is converted into either |�(12)〉 or a product state (and
not |W3〉).

among N − 1 qubits with zni
= xni

xn1 −xn2
xn1 (1−q) for ni �= 2. By the

inductive hypothesis, we then have

ptot(�x) = q + (1 − q)

[
1 −
(

1

zn1

)N−3 N∏
i=3

(zn1 − zni
)

]

= 1 − xn1 − xn2

xn1

(
1

xn1

)N−3 N∏
i=3

(
xn1 − xni

)

= 1 −
(

1

xn1

)N−2 N∏
i=2

(
xn1 − xni

)
. (19)

For a combing-type distillation, when xk � xl for some
party l, 2xk is known to be an achievable rate [42,43]. When
xk > xl for all parties l, the procedure is for each party to
perform an e/v measurement (in any order), except that when
the first party l obtains an “equal” outcome, a nonrandom
EPR distillation is made between party k and party l. This
occurs with total probability 2xl , and a completely analogous
inductive argument to the one given above shows that this full
measurement scheme succeeds with probability exactly equal
to η(�x). �

Remark. We make two remarks here. First, for three-
qubit systems, combing- and complete-type transformations
represent the only two types of random distillations. Thus, for
three-qubit states with x0 = 0, Theorem 3 gives a complete
solution to transformation (�). Second, a natural question
is whether the “equal or vanish” scheme is always optimal
for distilling EPR pairs. In other words, for some random
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FIG. 4. LOCC vs SEP for the maximum probability of party 1
becoming EPR entangled as a function of N when the initial state

is
√

1
2 |10 . . . 0〉 +

√
1

2(1−N) (|01 . . . 0〉 + · · · + |00 . . . 1〉). The LOCC

probability is 1 − (1 − 1
N−1 )N−1. A gap of 37% exists between SEP

and LOCC.

distillation configuration graph G, is it always best to first
perform e/v measurements and then implement the Fortescue-
Lo protocol? We have found that this is not the case, and we
describe specific counterexamples in Ref. [26].

V. SEP VS LOCC

In this section we use results from Sec. III and Theorem 3
to compare the distillation performances of SEP and LOCC. In
particular, we consider an N -qubit combing-type distillation.

The state we consider is |ψ1/2〉1...N =
√

1
2 |10 . . . 0〉 +√

1
2(1−N) (|01 . . . 0〉 + · · · + |00 . . . 1〉). By LOCC, the optimal

probability for a combing-type transformation is

2η(ψ1/2) = 1 −
(

1 − 1

N − 1

)N−1

−→ 1 − e−1, (20)

where we have taken the limit for large N . However, it is easy
to see that the following SEPs (defined up to a reordering of
spaces) represent a complete measurement which, with total
probability 1, will obtain an EPR pair shared by the first party:

Mk = I(1) ⊗
√

1
N−1 |0〉〈0|(k) + |1〉〈1|(k)

N⊗
j �=1,k

|0〉〈0|(j )

for 1 < k � N,

M0 =
√√√√I −

N∑
i=1

M
†
kMk. (21)

We plot this separation between LOCC and SEP as a function
of N in Fig. 4.

VI. MULTICOPY DISTILLATIONS

So far we have only considered transformations of a
single W -class state. However, in this section, we consider
a particular n-copy variant of transformation (�). While
the following discussion pertains to the tripartite case, its
generalization to more parties is straightforward.

Suppose the trio starts with n copies of the state |ψ1/2〉 =√
1/2|100〉 + 1/2(|010〉 + |001〉), and they wish to distill n

EPR pairs such that Alice is always one of the shareholders
(actually Bob and Charlie need not have the same components
in the following argument). The problem can be phrased as
follows:

|ψ1/2〉⊗n → |�(AB)〉⊗k|�(AC)〉⊗n−k

(22)

with probability pk =
(

n

k

)/
2n for k = 0, . . . ,n.

This is a combing-type transformation, and by the previous
section we know that for any n, the transformation can always
be completed with probability 1 by SEP. On the other hand,
even if the parties are allowed to act coherently on the n copies
of their local state, the following theorem still gives a no-go
result.

Theorem 4. The transformation given by Eq. (22) is not
possible by LOCC for any n. Nor is it possible for any other
distribution of the specified target states.

We give the proof below. The only technical component
needed is Lemma 2, which relies heavily on the special form
of state |ψ1/2〉. The main idea is that when viewed as a
bipartite transformation with respect to A:BC, the reduced-
state entropies are the same for the initial and all the final states.
Consequently, the reduced-state entropy must remain invariant
for each measurement outcome in the LOCC protocol, and
following the lines of Theorem 1 in Ref. [44], this implies that
Alice is restricted to performing only LUs.

However, due to the form of |ψ1/2〉, invariance of the
reduced state entropy also implies that Bob and Charlie can
perform only LUs, as we now show. Without loss of generality,
suppose that Bob acts first, before Charlie, in the protocol.
Since Alice can only have performed an LU up to this point,
Bob and Charlie’s reduced state is(

1

2
|00〉〈00| + 1

2
|�〉〈�|
)⊗n

= 1

2n

∑
x∈{0,1}n

|x̃〉〈x̃|, (23)

where we introduce the notation that for a binary vector x ∈
{0,1}n with components xi ∈ {0,1}, the corresponding string
x̃ has symbolic components x̃i = 00 if xi = 0 and x̃i = � if
xi = 1. For example,

x = 010 ⇒ |x̃〉 = |00〉|�〉|00〉.
The reason for introducing this notation becomes evident in
the following.

Lemma 2. (i) For x,y ∈ {0,1}n, let S ⊂ {0,1}n be the set
such that b ∈ S if bi = 0 whenever xi · yi �= 1. Then for any
operator A acting on Bob’s system,

〈x̃|A ⊗ I|ỹ〉 ∝
∑
b∈S

〈x + b|A|y + b〉. (24)

(ii) If 〈x̃|A ⊗ I|ỹ〉 = 0 for all x �= y ∈ {0,1}n, then 〈x|A|y〉 =
0 for all x �= y ∈ {0,1}n. (iii) If 〈x̃|A ⊗ I|x̃〉 = k for all x ∈
{0,1}n, then 〈x|A|x〉 = k for all x ∈ {0,1}n.

Proof. Part i can be verified from the relations 〈00|T ⊗
I|00〉 ∝ 〈0|T |0〉, 〈00|T ⊗ I|�〉 ∝ 〈0|T |1〉, 〈�|T ⊗ I|00〉 ∝
〈1|T |0〉, and 〈�|T ⊗ I|�〉 ∝ 〈1|T |1〉 + 〈0|T |0〉. For ii, we
use induction on log2 |S|, i.e., on the number of coordinates
simultaneously equal to 1 in both x and y. By part i, when
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log2 |S| = 0, then the statement is easily seen to be true from
Eq. (24) since the only b ∈ S is the all-zero vector �0. Now
suppose the claim is true when log2 |S| = m, and consider two
vectors x, y such that log2 |S| = m + 1. Again, by part i,

0 = 〈x̃|A ⊗ I|ỹ〉 ∝
∑

�0�=b∈S

〈x + b|A|y + b〉 + 〈x|A|y〉.

But for �0 �= b ∈ S, the strings x + b and y + b will have no
more than m coordinates that are both equal to 1. Therefore, by
the inductive assumption, each term in the sum vanishes, and so
〈x|A|y〉 = 0. Part iii can be proven by using a similar inductive
argument and noting that, for 〈x̃|A ⊗ I|x̃〉, the proportionality
factor in part i is 1/|S|.

Now let M be one of Bob’s measurement operators. By
invariance of the von Neumann entropy, we must have [45]

n = S

⎛
⎝ 1

2npM

∑
x∈{0,1}n

M ⊗ I|x̃〉〈x̃|M† ⊗ I

⎞
⎠

� H

{ 〈x̃|M†M ⊗ I|x̃〉
2npM

}
x∈{0,1}n

� n, (25)

which requires that 〈x̃|M†M ⊗ I|x̃〉 is some positive constant
for all x ∈ {0,1}n and the M ⊗ I|x̃〉 are orthogonal. By ii and
iii of Lemma 2, this is only possible if M†M is proportional to
the identity. In other words, M is of the form

√
pU for some

unitary U .
In the next round of measurement it will be Charlie’s

turn. However, the above argument will apply for Charlie’s
measurement even after Bob performs an LU rotation. Thus,
in all rounds the parties can perform LUs and therefore
transformation (22) cannot be accomplished by any LOCC
protocol.

Up to a conditional LU transformation, transformation
(22) can be phrased as the mixed-state transformation
|ψ1/2〉〈ψ1/2|⊗n → σ⊗n, where

σ = 1/2(|�(AB)〉〈�(AB)| ⊗ |0〉〈0| + |�(AC)〉〈�(AC)| ⊗ |1〉〈1|).
Here, the |0〉 and |1〉 is classical information accessible to
all parties, and it encodes which particular duo holds the
EPR state. Thus, LOCC impossibility of transformation (22)
means that the transformation |ψ1/2〉〈ψ1/2|⊗n → σ⊗n is LOCC
infeasible.

Finally, we can consider the asymptotic setting and when
the trio wishes to distill maximal entanglement with unit
efficiency such that the entanglement is distributed equally
to the pairs Alice-Bob and Alice-Charlie. More precisely, we
seek for every n an LOCC map 	n such that

tr
[
	n
(
ψ⊗n

1/2

) · �(AB)⊗n/2�(AC)⊗n/2]→ 1.

In fact, as given by the entanglement combing protocol
in Ref. [31], this transformation is asymptotically feasible.
Moreover, their protocol holds for various distributions of final
entanglement and not just equal shares between Alice-Bob and
Alice-Charlie. Consequently, we have shown that for particular
state transformations, SEP > LOCC regardless of the number
of copies considered. However, when the same transformations
are considered in asymptotic form, we have that SEP = LOCC.

VII. CONCLUSION

In this article, we have studied the random distillation of W -
class states by SEPs and LOCC. Based on the transformation
results of bipartite pure states [46], one may suspect that
SEP and LOCC have equivalent transformation capabilities.
However, here we have shown that SEP is strictly more
powerful.

For SEPs, the general solution to transformation (�) can
be solved by semidefinite programming optimization when
x0 = 0. This then places an upper bound on the problem
for LOCC. Tightening the LOCC bound requires analyzing
each configuration graph on a case-by-case basis. Two par-
ticular transformations we have considered are combing- and
complete-type transformations (Fig. 2). Theorem 3 provides
an upper bound for the success probabilities of these trans-
formations. For states with x0 = 0, the upper bounds can be
approached arbitrarily close.

To obtain these results, our general strategy has been
(i) to start with a general W -class state and compute the
combing- or complete-type transformation probability using
an e/v’ protocol and (ii) to prove that the general probability
expression (as a function of components xi) is an entanglement
monotone. This strategy isolates essential properties of LOCC
beyond the tensor product structure of its measurement
operators as it has generated entanglement monotones that
can be increased under SEPs.

When x0 �= 0, we know these upper bounds are not
tight, a prime example being the state

√
1 − 3s|000〉 +√

s (|100〉 + |010〉 + |001〉) with s > 0. For a combing-type
transformation of this state with Alice always being a share-
holder in the outcome entanglement, the probability of success
is upper bounded by 2η = 2s. However, it is known that such
a rate cannot be achieved [30,33]. We leave it as an open
problem to determine the optimal random distillation rates
when x0 �= 0.

In terms of success probability, Fig. 4 shows a maximum
percentage difference of roughly 37% for the combing-type
distillation. We conjecture that much larger gaps between SEP
and LOCC exist than the ones shown in this article. Even for
state |WN 〉, we predict that different distillation configuration
graphs G restrict the feasible probabilities for LOCC much
stronger than the separable upper bounds of Theorem 3 (see
Ref. [26] for more details).

Finally, we observe that for particular random distillations,
the advantage of SEP over LOCC does not appear in the
asymptotic setting, while it does when only finite resources
are considered, regardless of the amount. While we have
shown this specifically for transformation (22), the result holds
true for more general combing-type transformations. This
suggests that the intriguing conjecture that SEP and LOCC
are operationally equivalent in the many-copy limit. It is our
hope that this article will lead to a deeper understanding of
multipartite entanglement and the structure of LOCC.
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APPENDIX: DUAL SOLUTION TO |WN〉 DISTILLATION BY SEP

We begin by writing Eqs. (8) and (9) in standard semidefinite programming form. Fix some encoding function φ : E → |E| and
define the matrices:

F1 =

⎛
⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠⊕

⎛
⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ , F2 =

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠⊕

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ ,

F3 =

⎛
⎜⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎠⊕

⎛
⎜⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎠ , F4 =

⎛
⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎠⊕

⎛
⎜⎝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞
⎟⎠ ,

F5 =

⎛
⎜⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

⎞
⎟⎠⊕

⎛
⎜⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

⎞
⎟⎠ , F6 =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠⊕

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ ,

F7 =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎠⊕

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎠ , (A1)

G
(ij )
1 = [−1]

|E|⊕
k=1

[0]
φ(i,j )−1⊕

k=1

[0]4×4 ⊕ F1

|E|⊕
k=φ(i,j )+1

[0]4×4,

G
(ij )
2 = [0]

|E|⊕
k=1

[0]
φ(i,j )−1⊕

k=1

[0]4×4 ⊕ F2

|E|⊕
k=φ(i,j )+1

[0]4×4,

G
(ij )
3 = [0]

|E|⊕
k=1

[0]
φ(i,j )−1⊕

k=1

[0]4×4 ⊕ F3

|E|⊕
k=φ(i,j )+1

[0]4×4,

. . .

G
(ij )
7 = [0]

φ(i,j )−1⊕
k=1

[0] ⊕ [−1]
|E|⊕

k=φ(i,j )+1

[0]
φ(i,j )−1⊕

k=1

[0]4×4 ⊕ F7

|E|⊕
k=φ(i,j )+1

[0]4×4,

G0 = [1]
|E|⊕
k=1

[1]
|E|⊕

φ(i,j )=1

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

0 0 0 0

0 Npij

2
Npij

2 0

0 Npij

2
Npij

2 0

0 0 0 0

⎞
⎟⎟⎟⎠⊕

⎛
⎜⎜⎜⎜⎝

0 0 0 Npij

2

0 Npij

2 0 0

0 0 Npij

2 0
Npij

2 0 0 0

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦ . (A2)

Then Eqs. (9) and (8) are captured by the existence of x
(ij )
k ∈ C such that

G0 +
∑

(i,j )∈E

7∑
m=1

x(ij )
m G(ij )

m � 0, (A3)

with the additional constraints that ∑
(i,j )∈Ek

Npij

2
� 1 for 1 � k � N. (A4)

The dual problem to this asks

max −tr(ZG0), s.t. 0 = tr
(
ZG(i,j )

m

)
for all G(i,j )

m , Z � 0. (A5)
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A critical relationship between the dual and the primal formulations is that if (A3) can be satisfied for some x
(ij )
k , then for any

Z satisfying the constraints of (A5), we must have tr(ZG0) � 0. Thus infeasibility is proven by the existence of some Z � 0
such that tr(ZG

(ij )
m ) = 0 for all G

(i,j )
m and tr(ZG0) < 0. We construct a certificate for infeasibility as follows. For each (i,j ) ∈ E,

define the matrix

Z(ij ) =
[

1

|E|
] φ(i,j )−1⊕

k=1

[0] ⊕
[
N2p2

ij

4

] |E|⊕
k=φ(i,j )+1

[0]
φ(i,j )−1⊕

k=1

[0]8×8 ⊕ [0]4×4 ⊕

⎛
⎜⎜⎜⎝

1 0 0 −Npij

2

0 0 0 0
0 0 0 0

−Npij

2 0 0
N2p2

ij

4

⎞
⎟⎟⎟⎠

|E|⊕
k=φ(i,j )+1

[0]8×8. (A6)

The claim is that the matrix

Z :=
∑

(i,j )∈E

Z(ij )

is dual feasible with tr(ZG0) < 0 whenever N2

4

∑
(i,j )∈E p2

ij > 1. Indeed, it can easily be seen that Z � 0 and tr[ZG
(ij )
m ] = 0 for

1 � m � 7 and (i,j ) ∈ E. And finally,

tr[ZG0] = 1 + N2

4

∑
(i,j )∈E

p2
ij − N2

2

∑
(i,j )∈E

p2
ij < 0.

We have thus proven Theorem 1.
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