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Capacities of linear quantum optical systems
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A wide variety of communication channels employ the quantized electromagnetic field to convey information.
Their communication capacity crucially depends on losses associated to spatial characteristics of the channel
such as diffraction and antenna design. Here we focus on the communication via a finite pupil, showing that
diffraction is formally described as a memory channel. By exploiting this equivalence we then compute the
communication capacity of an optical refocusing system, modeled as a converging lens. Even though loss of
information originates from the finite pupil of the lens, we show that the presence of the refocusing system
can substantially enhance the communication capacity. We mainly concentrate on communication of classical
information, the extension to quantum information being straightforward.
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I. INTRODUCTION

The most prominent candidate for implementing long-
distance quantum communication is undoubtedly represented
by the electromagnetic field (EMF) [1]. Although quantum
information theory is more commonly represented in terms of
discrete variables (e.g., qubits), information is most naturally
encoded in the EMF by means of continuous variables, which,
in the quantum domain, are described by bosonic degrees of
freedom. Moreover, all the fundamental quantum information
tools and protocols have been demonstrated for continuous
variable systems [2,3], from quantum computation [4] to
quantum error correction [5,6], quantum teleportation [7],
and quantum key distribution [8–10]. Here we consider the
problem of optical quantum communication [11–13], and
compute the communication capacity, that is, the maximum
rate at which information can be reliably transmitted. Although
we explicitly consider communication of classical information
[14], our results are immediately extensible to the case of
quantum information [15].

The most general and simple, although physically relevant,
mathematical model of optical communication line is the
Gaussian channel [16], which describes the linear propagation
of the EMF. In the classical domain, the ultimate limits
for communication via Gaussian channels were provided
by the seminal work of Shannon [17]. In the quantum
domain, the structure of Gaussian channels is notably rich
[18], with nontrivial properties in terms of degradability [19]
and security [20,21]. However, a full information theoretical
characterization has been presently achieved only for certain
families of channels, such as the lossy channel [22–24]. These
results have been applied to compute the maximum rate
of reliable communication via attenuating media, as optical
fibers, wave guides, and via free-space propagation [13,25,26].
Moving along this line we provide the information theoretical
description of the effects of the signal propagation through
lossy communication channels with linear characteristic. After
introducing the general methods, we consider the example
of an optical refocusing system with finite pupil, which is

schematized as a thin lens which is placed between the sender
of the message and the receiver under focusing conditions.
Notwithstanding its relatively simple structure this setup
captures the basics features of all those situations in which a
transmitted signal is either focused on a detector by a suitable
optical system prior to the information decoding process,
or where it has to be refocused by a suitable repeater to
allow long-distance communication, for example, by means
of parabolic antenna for satellite communication [27].

We explicitly discuss how the signal diffraction through
the optical system can be formally described as a quantum
channel with correlated noise (memory channel) [28], where
correlations are quantified in terms of the associated Rayleigh
length. Therefore, the information theoretical characterization
of the resulting quantum channel is carried out using tools
and methods that have been previously applied to quantum
memory channels [29]. In this framework the main effect
of the signal propagation through the optical system is to
introduce the diffraction of light caused by its finite pupil,
leading to bandwidth limited communication [30]. However,
when compared with the free-space communication scheme
[26], the presence of the refocusing apparatus may yield an
improvement in the channel capacity of the system. This
possibility has been put forward in Ref. [31]. Here we provide
a detailed derivation of the channel model together with the
analysis of results in several configurations. Furthermore,
we also extend the approach to encompass the case of
nonmonochromatic light.

The article proceeds as follows. In Sec. II, we provide
the general model for communication via lossy multimode
quantum optical channels. In Sec. III, we introduce a simplest
example of such a system, communication through a converg-
ing lens with finite pupil, and show that it can be formally
described as a channel with correlated noise. In Sec. IV
we quantize this system, whose communication capacity is
computed in Sec. V for the case of monochromatic light. We
then compare the communication via the refocusing system
with the free-space setting in Sec. VI. Section VII is devoted
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to the extension to the nonmonochromatic case, and Sec. VIII
is for final remarks.

II. COMMUNICATION CAPACITY OF QUANTIZED
LINEAR OPTICAL SYSTEMS

Consider a linear optical system with a set of M transmitter
modes, labeled by i, and N receiver modes, labeled by j .
In the case of radio-frequency or microwave communication,
for example, the transmitter and receiver could be antennae.
For optical communication, the transmitter could be a laser
coupled to a telescope, and the receiver could be a telescope
coupled to a charge-coupled-device (CCD) array. Transmitter
and receiver modes typically have both spatial characteristics
determined by the optical properties of the setup, and tem-
poral characteristics, determined by the frequency and band-
width of the radiation employed in the communication. The
transmittivity matrix Tji gives the fraction of light from the ith
transmitter mode that is received at the j th receiver mode. We
would like to determine the maximum amount of information
that can be sent for fixed total input power.

First, consider the purely lossy case, in which noise from
the environment is negligible. This is the case, for example,
for free-space optical communication in a thermal background.
The addition of noise is considered below. When there is just
one transmitter mode and one receiver mode, the channel is
simply the lossy bosonic channel, whose classical capacity is
known [22]: If the loss is η and the single-use average photon
number is n̄, then the number of bits that can be sent down the
channel is g(ηn̄), where

g(x) :=
{

(x + 1) log2(x + 1) − x log2 x for x > 0,

0 for x � 0.
(1)

The capacity is attained by sending coherent states down the
channel. If there are M parallel channels, with average photon
number n̄i for the ith channel, then the capacity is simply the
sum of the capacities for the individual channels.

In our case, we have a single multimode lossy channel
with transmittivity matrix Tji , which mixes the input modes
together. This channel can be transformed into a set of parallel
channels by using the singular value decomposition. The
singular value decomposition states that any N × M matrix
T can be written as

T = V�U , (2)

where V is an N × N unitary matrix, � is an N × M matrix
with entries only on the diagonal, and U is an M × M unitary
matrix. In our case, we can write the transmittivity matrix T

in components as

Tji =
∑

k

Vjk

√
ηkUki , (3)

where {√ηk} are the singular values of the transmittivity
matrix. The singular value decomposition shows that any
multimode lossy channel can be decomposed into parallel
lossy channels with input modes corresponding to the rows
of U , output modes corresponding to the columns of V , and
loss factors corresponding to the singular values ηk .

The singular value input modes can now be quantized
using annihilation and creation operators aj ,a

†
j : [aj ,a

†
j ′ ] =

δj,j ′ . Similarly, the output modes can be quantized using
annihilation and creation operators bj ,b

†
j : [bj ,b

†
j ′ ] = δj,j ′ .

To preserve the canonical quantization relationships, each
input-output pair is coupled to an environment mode with
annihilation and creation operators ξj ,ξ

†
j :

bj = √
ηj aj + √

1 − ηj ξj . (4)

We see that the singular value decomposition of the multi-
mode lossy quantum channel renders the channel completely
equivalent to a set of parallel lossy quantum channels with loss
factors ηj . The communication capacity of the channel when
n̄j photons are transmitted down the ith singular value mode
is simply

∑
j g(ηj n̄j ).

If the j th singular value mode has average energy per
photon h̄ω̄j , then the capacity of the channel with total energy
E per use is obtained by solving the constrained maximization
problem with Lagrangian

∑
j

g(ηj n̄j ) − μ

⎛
⎝∑

j

n̄jh̄ω̄j − E

⎞
⎠ , (5)

yielding the solution

n̄j = [ηj (2μh̄ω̄j /ηj − 1)]−1. (6)

Here, the Lagrange multiplier μ is chosen to give the
proper total energy E. In the following, when dealing with
monochromatic light, we express the energy in terms of
number of photons, n̄ = E/(h̄ω).

Thus, the singular value decomposition allows us to trans-
form any linear, lossy, multimode channel with transmittivity
matrix Tji into a set of parallel lossy channels. Quantization
then yields the capacity of this set of parallel channels. We now
apply this result to various simple optical settings. In particular,
we show that the resulting capacity can be significantly larger
than the capacity which is achieved by using “naive” coding
and decoding techniques.

III. THE OPTICAL SYSTEM

We consider the propagation of light along an optical axis
z. The input and output signals are identified by the transverse
light fields at two planes orthogonal to the optical axis,
respectively identified as the object plane and image plane [see
Fig. 1(a)]. In classical scalar optics, the monochromatic optical
fields at the object and image plane are described by scalar
functions Uo(ro), Ui(ri), where ro and ri are the Cartesian
coordinates at the object and image plane. For linear systems,
including the free-space propagation of light, the input/output
relations at the object and image planes, respectively, are
described by a transfer function T (ri ,ro), such that

Ui(ri) =
∫∫

d2ro T (ri ,ro)Uo(ro). (7)

The quantum version of the relations (7) can be derived by
applying the canonical quantization procedure and introducing
a proper set of normal modes for the input and output fields
(as is done in Ref. [13] for the free-space propagation).

As mentioned in the Introduction, we model the optical
refocusing system as a converging lens of focal length f ,
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FIG. 1. (Color online) (a) Optical communication through an
optical refocusing apparatus, modeled as a thin lens of radius R

and focal length f . (b) The free-space propagation scenario. (c) An
alternative scenario in which the lens is replaced by a hole of the
same size in the absorbing screen. ro and ri denote the Cartesian
coordinates on the object and image planes, respectively.

located at distance Do from the object plane. Working in the
thin lens, paraxial approximation, and neglecting aberrations,
light is collected at the image plane located at distance Di from
the optical system, where 1/Do + 1/Di = 1/f . Eventually
the image is magnified by a factor M = Di/Do. Diffraction
of light is responsible for image blurring and causes loss of
information. It can be described by introducing an effective
entrance pupil characterizing the optical system. Denoting
P (r) the characteristic function of the pupil that encircles
the lens, the transfer function for the monochromatic field
of wavelength λ is obtained by Fourier transforming [32]:

T (ri ,ro) = eiϑ(ri ,ro)

λ2DoDi

∫∫
d2r P (r) e

−i2π
(ri−Mro )

λDi
·r (8)

(throughout the paper i denotes the imaginary unit). In writing
the above expression we are implicitly assuming that the
light rays which do not hit the pupil will not reach the
image plane (either because they are scattered out, or because
they are absorbed by some medium). Such hypothesis is not
fundamental and could be dropped by adding an extra term
to Eq. (8), which accounts for the diffraction of the light rays
that miss the pupil. Eventually, we notice that, in the paraxial
approximation, the acquired phase results

ϑ(ri ,ro) = π

λDo

(|ro|2 + |ri |2/M) + 2πDo

λ
(1 + M). (9)

For instance, in the case of a circular lens of radius R, the pupil
function is

P (r) =
{

1 for |r| < R,

0 for |r| > R,
(10)

and the transfer function reads

T (ri ,ro) = eiϑ(ri ,ro)R2

λ2DoDi

J1(2πRρ)

Rρ
, (11)

where J1 indicates the Bessel function of first kind and order
one, and ρ := |ri − Mro|/(λDi).

A. Light diffraction as a memory channel

We shall see that the effects of diffraction on light propaga-
tion can be described as memory effects in the communication

channel. Let us recall that a memoryless channel is such
that its action on different channel inputs are identical and
independent. Conversely, the actions of a memory channel,
also called a channel with correlated noise, at different uses
are not independent and/or not identical.

Let us assume that information is encoded at the object
plane by an array of pixels located at positions ro(k), with
the integer k labeling the pixels. Different signals are emitted
from different pixel positions, which play the role of an array
of independent channel inputs. It follows from Eq. (7) that the
input from the kth pixel is mapped to an output field at the
image plane with spatial amplitudes

U
(k)
i (ri) = T (ri ,ro(k)) U (k)

o . (12)

Let us notice that, even though the action of the channel
is identical for all the input pixels, the output fields are
not mutually independent. In fact, a pair of output fields,
corresponding to the kth and k′th inputs have a nonvanishing
spatial overlap,

Ck,k′ :=
∫∫

d2ri U
(k)
i (ri)U

(k′)∗
i (ri)

U
(k)
o U

(k′)∗
o

; (13)

that is,

Ck,k′ =
∫∫

d2ri T (ri ,ro(k))T ∗(ri ,ro(k′)). (14)

The overlap between output signals may cause interference,
which in turn produces distortion and loss of information
in the communication via the optical channel. In particular,
the overlap with the output field generated by the kth input
signal induces noise in the detection of the k′th output. If the
overlap between the two output fields is not negligible—that
is, diffraction produces sensible effects—the noise affecting
the k′th output field turns out to be highly correlated with the
input signal at the kth pixel.

Introducing the dimensionless variable r̃ := r/R (here R

is the linear extension of the entrance pupil) and using the
expression in Eq. (8) for the transfer function, we get the
following expression for the output signal overlap,

Ck,k′ = eiδϑ

x2
R

∫∫
d2r̃ P (Rr̃)e−i2π

[ro (k)−ro (k′ )]
xR

·r̃
, (15)

from which it is evident that the spatial overlap between the
two output fields is determined by the Rayleigh length of the
apparatus:

xR = λDo

R
. (16)

For instance, in the case of a circular pupil of radius R, we
obtain

Ck,k′ = eiδϑ

xR

J1(2π |ro(k) − ro(k′)|/xR)
|ro(k) − ro(k′)| . (17)

In conclusion, the Rayleigh length, which quantifies the
amount of diffraction in the optical system, also quantifies
the degree of correlations in the optical communication chan-
nel. The corresponding quantum memory channel manifests
intersymbol interference effects and is qualitatively analogous
to those studied in Refs. [29,33].
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IV. THE QUANTUM CHANNEL

The light field at the object and image planes can be
quantized according to standard canonical quantization. In
order to derive the quantum version of the input/output
relations in Eq. (7) we first identify a proper set of normal
modes at the input and output field and proceed along the lines
detailed in Sec. II.

We assume that information is encoded in the object plane
on a square of length L, creating an image on the image plane
which (in the geometric optics approximation) is contained in
a square of size ML. We hence introduce the field variables

Uo(no) := 1

L

∫∫
d2ro e−i2π( no ·ro

L
− |ro |2

2λDo
− Do

λ
)Uo(ro),

(18)

Ui(ni) := 1

ML

∫∫
d2ri e

−i2π( ni ·ri
ML

+ |ri |2
2λDi

+ Di
λ

)
Ui(ri),

where the integral over ro is restricted to the surface of
area L × L which encircles the object, while the integral
over ri is restricted to the surface of area ML × ML which
defines the receiving screen, and where no and ni are vectors
having two integer components. The functions Uo(no) and
Ui(ni) express the field components of transverse momentum
2πno/L and 2πni/(ML), respectively at the object and image
plane. Substituting Eqs. (18) into (7), and using (8), we write
the input/output relations in the form

Ui(ni) =
∑

no

Tni ,no
Uo(no), (19)

where the transfer matrix Tni ,no
reads

Tni ,no
= 1

λ2DoDi

∫∫
d2r P (r)�ni ,no

(r), (20)

with

�ni ,no
(r) = 1

ML2

∫∫
d2ro e

i2π( no
L

+ Mr
λDi

)·ro

×
∫∫

d2ri e
−i2π( ni

ML
+ r

λDi
)·ri . (21)

Finally, we consider the singular value decomposition of the
transfer matrix,

Tni ,no
=

∑
n

Vni ,n
√

ηn Un,no
, (22)

where, as in Eq. (2),Un,no
,Vni ,n are unitary matrices and {√ηn}

are the singular values of the matrix Tni ,no
, taking values in

the interval [0,1]. A set of input and output field variables are
hence defined as follows:

Ũo(n) :=
∑

no

Un,no
U (no), (23)

Ũi(n) :=
∑

ni

V∗
ni ,n Ui(ni). (24)

It follows from Eq. (22) that they satisfy the identities

Ũi(n) = √
ηn Ũo(n). (25)

In other words, the field variables Ũo(n) are independently, but
non-necessarily identically, transmitted to the output variables

Ũi(n). The effect of the channel is to attenuate the nth variable
by a factor ηn.

We can now promote the output and input field variables to
the rank of quantum operators by substituting

Ũo(n) → √
h̄ω/2 an, Ũ ∗

o (n) → √
h̄ω/2 a

†
n, (26)

Ũi(n) → √
h̄ω/2 bn, Ũ ∗

i (n) → √
h̄ω/2 b

†
n, (27)

where ω = 2πc/λ is the frequency, and imposing the canoni-
cal commutation relations:

[an,a
†
n′] = δn,n′ , (28)

[bn,b
†
n′] = δn,n′ . (29)

The preservation of canonical commutation relations requires
to invoke a set of canonical noise variables {ξn,ξ

†
n} and to write

the quantum version of Eq. (25) as

bn = √
ηn an +

√
1 − ηn ξn. (30)

This set of input/output relations, together with their Hermitian
conjugates, characterizes, upon evaluation of the transmissiv-
ities ηn, the quantum description of the optical channel.

V. CAPACITY OF THE OPTICAL QUANTUM
COMMUNICATION CHANNEL

The input/output relations for the quantum description of
the channel which have been derived in Eq. (30) formally
qualify the optical system as a broadband lossy channel: a
multimode channel in which a collection of bosonic modes
is transmitted with corresponding efficiencies. This model has
been characterized from the information-theoretical viewpoint
in Refs. [22,23], where the capacities of the channel for
transmitting classical and quantum information have been
established.

The number of modes which are transmitted through the
channel is virtually infinite. Actually, due to the finiteness of
the entrance pupil, only a finite number of modes has nonzero
transmissivity. The values of the transmissivities ηn can be
numerically estimated by first computing the elements of the
transfer matrix Tni ,no

, and then its singular values. Indeed,
the matrix in Eq. (21) can be rewritten in terms of the ratio
L/xR, and an analytical solution for the values of the effective
transmissivities can be deduced in the following limits, namely,

L � xR, FAR FIELD, (31)

L � xR, NEAR FIELD. (32)

First of all, we notice that in the far-field case Eq. (21) reads

�ni ,no
� ML2 δni ,0 δno,0, (33)

where δ denotes the Kronecker symbol. This expression in
turn leads to

Tni ,no
� π

(
L

xR

)2

δni ,0 δno,0; (34)

that is, in the far-field regime only one mode is transmitted
through the optical channel, and it is attenuated by a factor
�π2(L/xR)4. At least for optical frequencies it is reasonable
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to assume that the noise modes in Eq. (30) are not populated.
Under this assumption, using the result of Ref. [22], we are
led to the following expression for the classical capacity of the
optical channel:

Cff = g

(
π2L4

x4
R

n̄

)
, (35)

where n̄ denotes the mean number photons at the object
plane. The above calculations refer to the case of scalar field.
Polarization can be included by doubling the total number of
modes. In this case Eq. (35) will then be replaced by

C
pol.
ff = 2 g

(
π2L4

2x4
R

n̄

)
, (36)

where the factor 2 which multiplies the g function comes
from the fact that now there are two modes which can
efficiently propagate, while the extra factor 1/2 in the argument
of g comes from the fact that the available energy must
be equipartitioned between them. Analogously, the quantum
capacity can be computed according to Ref. [23].

Let us now consider the near-field limit, L � xR. In this
regime we can approximate

�ni ,no
(r) � λ2DoDi δni ,no

δ(2)

(
r + λDono

L

)
, (37)

where δ(2) indicates the two-dimensional Dirac function. It
follows that

Tni ,no
� δni ,no

P

(
λDo

L
no

)
. (38)

Within this approximation the transfer matrix is diagonal;
hence, the singular values coincide with its diagonal entries.
For a circular pupil of radius R, we obtain the following values
for the transmittivities:

ηn �
{

1 for |n| < L/xR,

0 for |n| > L/xR.
(39)

We deduce that, in the near-field regime, the number of
transmitted modes per surface unit is approximatively equal
to π/x2

R, each being transmitted with approximatively unit
efficiency. Equivalently we can say that the total number of
modes which are transferred with unit efficiency is equal to

ν � π (L/xR)2. (40)

We are now in the condition of computing the capacity.
Denoting by n̄ the average number of photons impinging on
the surface, the capacity has the form Ref. [34]

Cnf = ν g(n̄/ν) = πL2

x2
R

g

(
x2

R

πL2
n̄

)
, (41)

where we used the fact that the maximum transfer is obtained
when n̄ is equipartitioned among all transmitted modes. It
is worth stressing that, since the modes employed in the
transmission are perfectly transmitted, the classical capacity
(expressed in bits) coincides with the quantum capacity
(expressed in qubits). As before, our result can be generalized
to include also the polarization degree of freedom obtaining

C
pol.
nf = 2πL2

x2
R

g

(
x2

R

2πL2
n̄

)
. (42)

0

0.2

0.4

0.6

0.8

1

η
n

FIG. 2. (Color online) The effective transmissivities ηn, for
different value of the ratio L/xR. Dots, L/xR = 0.1 (far field); crosses,
L/xR = 1; circles, L/xR = 10 (near field). The figure refers to a
one-dimensional setting, in which information is encoded at the object
plane along an infinite strip of size L, and diffraction is caused by an
infinitely long slit of size 2R.

To evaluate the capacity for a generic value of the ratio
L/xR, it is necessary to numerically diagonalize the transfer
matrix T . For the sake of simplicity, here we present an
example of lower dimensionality, in which information is
encoded at the object plane along an infinite strip of size
L, and diffraction is caused by an infinitely long slit of size
2R. The analysis of such 1D system is analogous to the 2D

one, yielding the following expressions for the far-field and
near-field capacities. In the far-field limit we have

C
(1D)
ff = g

(
2L

xR
n̄

)
, (43)

and in the near-field limit

C
(1D)
nf = 2L

xR
g

(
xR

2L
n̄

)
. (44)

Figure 2 shows the transmissivities for several values of the
ratio L/xR for the one-dimensional problem. Figure 3 shows
the capacity as function of the ratio L/xR, compared with the
limiting expressions of Eqs. (43) and (44).

VI. ENHANCED QUANTUM COMMUNICATION VIA
OPTICAL REFOCUSING

For a fair comparison between the optical communication
through the optical system and the free-space one, we consider
the case of free-space communication under the hypotheses
that light is emitted by an object of surface L2, propagates
by a distance D = Do + Di = Do(1 + M), and is finally
detected on a surface of size (ML)2. This setting is depicted
in Fig. 1(b). The light propagation, in both the classical and
the quantum regimes, is characterized by the Fresnel number
associated to this setting, that is, F = M2L4/(λD)2 (see [13]
and references therein). In the far-field limit, F � 1, only one
mode is transmitted, with a corresponding transmissivity equal
to the Fresnel number. On the other hand, in the near-field
limit, F � 1, F equals the number of modes which are
transmitted with unit transmissivity. For these two regimes we
can hence compute the free-space classical capacity according
to Ref. [22]. By comparison with Eqs. (35) and (41), it
follows that the presence of the radius-R lens enhances the
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FIG. 3. (Color online) The plot shows the capacity (in the
monochromatic case) as function of the ratio L/xR, for n̄ = 4. The
figure refers to a one-dimensional setting, in which information is
encoded at the object plane along a straight line of length L, and
diffraction is caused by an infinitely long slit of size 2R. The solid line
is the exact value of the capacity computed by numerical evaluation
of the set of effective transmissivities. The dashed line indicates the
approximation for near-field limit (L/xR � 1). The dotted line is
the approximation for the far-field limit (L/xR � 1). The inset is a
magnification of the far-field region.

classical capacity over the free-space propagation only for
not-too-large M , that is, for not-too-large imaging plane
[specifically when πR/xR > M/(1 + M) in the far field and
when π1/2R/L > M/(1 + M) in the near-field limit]. This
rather counterintuitive effect originates from the simplifying
assumption we made in writing Eq. (8) which implicitly states
that the only light rays reaching the imagine plane are those
which pass through the pupil, while the other are lost. Clearly
the presence of such loss mechanism (which is not accounted
for in the free-space calculation) is uninfluential as long as
the image plane is small, while it becomes relevant for a large
imaging screen: This is exactly where the free-space starts to
outperform the propagation through the lens.

Below we present a comparison between the performances
of the refocusing apparatus, scenario (a), and those of the free-
space propagation case, scenario (b). The goal is to produce
results which are not affected by the approximation we made
in writing Eq. (8) (i.e., the fact that we have implicitly assumed
that all photons which do not hit the lens will not be transferred
on the imaging plane). In order to do that, we also consider a
third scenario, denoted by (c), which is depicted in Fig. 1(c).

A. Far-field regime for scenario (a)

Let us first consider the case in which the scenario (a)
is operated in the far-field regime (31), which, according to
Eq. (16), corresponds to have

λ � LR

Do

. (45)

As already seen in the previous section, under this condition
scenario (a) is characterized by having a single mode transmit-
ted from the object plane to the image plane with an effective

transmissivity,

η(a) = π2(L/xR)4 = π2

(
LR

λDo

)4

� 1. (46)

In scenario (b), the field propagates freely from the object
plane to the image plane. In this case the far-field regime is
equivalent to impose

λ � LML

D
= L2

Do

M

M + 1
, (47)

which, in principle, is independent from the far-field condition
(45) for (a). Under condition (47) also (b) will admit the
propagation of a single mode which is now attenuated
by

η(b) = π

(
LoLi

λD

)2

= π

(
M

M + 1

)2 (
L2

λDo

)2

� 1, (48)

where Lo = L is the dimension of the object plane, Li = ML

the dimension of the image plane, and D = Do + Di is the
distance between them. Then, assuming that both (45) and
(47) hold, the ratio between the transmissivities is

r1 = η(a)

η(b)
= π

(
R2

λDo

)2 (
M + 1

M

)2

, (49)

As already noticed this is not always larger than one: Indeed
there is a condition which M,R,Do,λ have to satisfy for this
to happen. We now show that such condition is equivalent to
impose that the loss induced by the pupil should be negligible.
To do so, consider the alternative scenario (c), in which the
field propagates from the object plane to the image plane while
instead of the lens we have just a hole in the absorbing screen
of the pupil. This configuration can be treated by analyzing
separately the free-space propagation from the object plane to
the absorbing screen (o → s) and the free-space propagation
from the absorbing screen to the imaging plane (s → i). We
notice that the condition Eq. (45) imposes that both these
propagations take place in the far-field regime [35]. Therefore,
we can conclude that, under the condition (45), in scenario
(c) there will be a single propagating mode (o → s → i). It is
attenuated by a factor

η
(o→s)
(c) = π

(
LR

λDo

)2

(50)

in the section (o → s) and by

η
(s→i)
(c) = π

(
RML

λDi

)2

= π

(
LR

λDo

)2

(51)

in the section (s → i). The overall attenuation cannot be bigger
than the product of the two factors; that is,

η(c) � η
(o→s)
(c) η

(s→i)
(c) = π2

(
LR

λDo

)4

= η(a). (52)

Now, if the presence of the absorbing screen around the pupil
has to be negligible, then we must have that the loss that it
induces is equal to the one of free-space propagation. Since
η(c) � η(a), this implies that the regime in which we can neglect
the effect of absorbing screen is exactly the one in which r1 is
greater than 1. In other words, the detrimental effects we see
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for r1 < 1 simply correspond to the screen’s absorption. As a
final remark we also observe that the condition r1 > 1 plus the
far-field regime (45) for (a) enforce the far-field regime (47)
for the free-space propagation; indeed,

λDo

L2

M + 1

M
=

(
λ2D2

o

R2L2

)(
R2

λDo

)
M + 1

M

=
(

λ2D2
o

R2L2

) √
r1

π
>

(
λ2D2

o

R2L2

)
� 1. (53)

We now compare the performances of scenarios (a) and (b)
in terms of capacities by computing the ratio,

G1 = C(a)

C(b)
= g(η(a)n̄)

g(η(b)n̄)
= g(r1η(b)n̄)

g(η(b)n̄)
. (54)

This is a monotonic function of n̄, with G1 � r1 for n̄ � 1
(faint signal limit) and G1 � 1 for n̄ � 1 (semiclassical
limit). The enhancement in the transmission rate provided
by the optical refocusing system persists in the presence
of background thermal noise. In such a case, by encoding
classical information into coherent states, the expression
g(ηn̄) has to be replaced by g(ηn̄ + n̄th) − g(n̄th), where n̄th

denotes the mean number of thermal background photons per
transmitted mode [16], yielding G1 � r1 even in the very noisy
limit n̄th � n̄.

B. Near-field regime for scenario (a)

The near-field regime for scenario (a) is defined by the
inequality (32) which rewrites also as

λ � LR

Do

. (55)

From the discussion of Sec. V we know that in this regime
the scenario (a) is characterized by having a collection of ν(a)

modes which are perfectly transmitted from the object plane
to the image plane,

ν(a) = π (L/xR)2 = π

(
LR

λDo

)2

� 1. (56)

In a similar way the near-field regime for the scenario (b) takes
place when

λ � LoLi

D
= L2

Do

M

M + 1
, (57)

which is independent from the near-field condition for (a)
(55). Under this condition also (b) admits ν(b) modes which
are perfectly transferred, with

ν(b) = π

(
LoLi

λD

)2

= π

(
M

M + 1

)2 (
L2

λDo

)2

� 1. (58)

Assume then that both (55) and (57) hold and define the quality
factor

r2 := ν(a)

ν(b)
=

(
M + 1

M

)2 (
R

L

)2

. (59)

As in the case of Sec. VI A, if there are no losses introduced
by the absorption of the rays propagating outside the lens, we
must have r2 � 1. To see this let us consider what happens in
scenario (c). We first notice that the condition (55) guarantees

that both the propagations (o → s) and (s → i) are in the
near-field regime. The number of modes that they allow for
perfect propagation is given by

ν
(o→s)
(c) = ν

(s→i)
(c) = π

(
LR

λDo

)2

= ν(a). (60)

Notice that they are identical, due to the fact that Li/Di =
L/Do. This implies that ν(c) � ν(a). Then, it is clear that
the presence of the pupil is negligible only when ν(c)

is larger than ν(b), that is, r2 � 1, therefore proving the
thesis.

We remark that the condition r2 � 1, together with the near-
field condition for the scenario (a) [Eq. (55)] is not sufficient
to guarantee the near-field condition for scenario (b). Indeed,
we notice that

L2

λDo

M

M + 1
= LR

λDo

(
M

M + 1

L

R

)
, (61)

which by itself does not imply the near-field condition for (b),
that is, Eq. (57). That yields the possibility to have (a) in near
field and (b) in either near field or far field.

Let us examine the two cases.
(i) First assume that both (a) and (b) are in the near-field

regime (of course, under the constraint that r2 > 1 to exclude
the absorption by the pupil). The ratio between the capacities
becomes

G2 = C(a)

C(b)
= ν(a) g(n̄/ν(a))

ν(b) g(n̄/ν(b))

= r2
g(n̄/ν(a))

g(r2n̄/ν(a))
, (62)

which is a monotonic function of n̄, with G2 � 1 for n̄ �
1 (faint signal limit) and G2 � r2 for n̄ � 1 (semiclassical
limit).

(ii) Then assume that (a) is near field and (b) is far field,
that is,

L2

Do

M

M + 1
� λ � LR

Do

. (63)

Under these conditions one can immediately verify that the
presence of the absorbing screen does not affect the perfor-
mances of scenario (b), and we can make a fair comparison.
In this case the gain becomes

G3 = C(a)

C(b)
= ν(a) g(n̄/ν(a))

g(η(b)n̄)
, (64)

giving G3 � 1/η(b) � 1 for n̄ � 1 (faint signal limit) and
G3 � ν(a) � 1 for n̄ � 1 (semiclassical limit). In the presence
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of noisy thermal environment [16], the expressions g(ηn̄)
and g(n̄/ν) have to be replaced by g(ηn̄ + n̄th) − g(n̄th) and
g(n̄/ν + n̄th) − g(n̄th), respectively. The advantages of optical
refocusing hence persist even in the very noisy limit n̄th � n̄,
yielding G3 � 1/η(b).

VII. COMMUNICATION WITH
NONMONOCHROMATIC LIGHT

Until now we have considered the case of monochromatic
light, we now want to compute the communication capacity of
the optical system by assuming nonmonochromatic light. An
input signal over a time interval T can be expanded in terms
of monochromatic components at frequencies ωj = 2πj/T ,
with j = 0,1, . . . ,∞. If the optical system is characterized by
a certain bandwidth extending from  to  + δ, only a finite
number of components are transmitted, corresponding to the
frequencies ωn such that  � ωj �  + δ. Each monochro-
matic component contributes with a term as in Eq. (41), with
xR = λjDo/R = 2πcDo/(ωjR). In the following we work
under the assumption that the frequency modes are either all
in the far-field regime or all in the near-field one.

A. Far field

If all the transmitted frequency modes fulfill the far-field
condition (31), we must have

L � xR = 2πcDo/(ωjR), (65)

for all ωj . Consequently, the results of Eq. (35) can be applied
to the whole spectrum. This allows us to derive the following
expression for the capacity

Cff =
∑

�ωj �+δ

g
(
αω4

j n̄j

)
, (66)

where

α := π2

(
LR

2πcD0

)4

, (67)

and the parameter n̄j counts the average number of photons at
frequency ωj . If a mean power P is employed, the parameters
n̄j ought to obey the constraint

1

T

∑
�ωj �+δ

h̄ωj n̄j = P. (68)

The maximization over photon number distributions satisfying
the input energy constraint can be worked out by the Lagrange
method, yielding the optimal photon number distribution

n̄j = [
αω4

j

(
2

μh̄

αω3
j
T − 1

)]−1
, (69)

with μ being the Lagrange multiplier. For sufficiently large T

we can approximate the summations with integrals, and the
channel capacity reads

Cff = T

2π

∫ +δ



dω g

(
1

2
μh̄

αT ω3 − 1

)
, (70)

where the value of the Lagrange multiplier is determined by
the implicit equation

P = h̄

2απ

∫ +δ



dω

ω3

(
2

μh̄

αω3T − 1
)−1

. (71)

A closed form for the classical capacity can be found in
the narrowband limit, δ � , in which we obtain the
approximate expression

Cnb
ff � T δ

2π
g

(
2πPα3

h̄δ

)
. (72)

B. Near field

Let us now assume that all the frequency modes fulfill the
near-field condition (32), that is,

L � xR = 2πcDo/(ωjR). (73)

We can hence apply Eq. (41) to the whole spectrum, which
allows us to write the channel classical capacity as follows:

Cnf =
∑

�ωj �+δ

νj g

(
n̄j

νj

)
(74)

=
∑

�ωj �+δ

βω2
j g

(
n̄j

βω2
j

)
, (75)

where νj counts the number of transmitted modes of the
frequency ωj [Eq. (40)], n̄j counts the average number of
photon of that frequency, and where we have introduced

β := π

(
LR

2πcDo

)2

. (76)

The optimization over the photon-number distribution under
the constraint of total power P yields the optimal photon-
number distribution

n̄j = βω2
j

2μh̄ωj /T − 1
, (77)

with μ being the Lagrange multiplier. For sufficiently large T

we can approximate the summations with integrals, and the
channel capacity reads

Cnf = βT

2π

∫ +δ



dω ω2 g

(
1

2μh̄ω/T − 1

)

= βT

2πq3

∫ q(+δ)

q

dx x2 g

(
1

ex − 1

)
, (78)

where we rescaled the Lagrange multiplier introducing the
quantity q = ln (2)μh̄/T , which is determined by the implicit
equation

P = βh̄

2πq4

∫ q(+δ)

q

dx
x3

ex − 1
. (79)

We can single out two limiting situations, the narrowband and
the broadband limits, for which analytical expressions can be
obtained.
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1. Narrowband limit

In the narrowband limit, δ � , we obtain

Cnb
nf � β

2π
T 2δg

(
2πP

βh̄3δ

)
. (80)

This can be cast in a more familiar form by noticing that in
this limit the power P can be expressed as

P � 1

T

(
δT

2π

)
h̄ n̄(), (81)

where δT /(2π ) is the total number of frequencies and n̄() is
the density of mean photon number at frequency . Replacing
this into Eq. (80) and using β2 = π (L/xR)2, where xR is the
Rayleigh length of the frequency , we get

Cnb
nf �

(
δT

2π

)
π

L2

x2
R

g

(
x2

R

πL2
n̄()

)
. (82)

This expression shows that Cnb
nf coincides with the single

frequency capacity (41), multiplied by the total number of
frequencies δT/(2π ).

2. Broadband limit

In the broadband limit, we set  + δ → +∞, and we
have

P � βh̄

2πq4
F(q), (83)

Cbb
nf � βT

2πq3
G(q), (84)

with F(z) and G(z) being the following decreasing
functions:

F(z) :=
∫ ∞

z

dx
x3

ex − 1
, (85)

G(z) :=
∫ ∞

z

dx x2 g

(
1

ex − 1

)
. (86)

An analytical solution can be obtained by approximating
q to zero. Notice that this is not formally correct if we
want to preserve the condition (73) for all frequencies of
the spectrum: However, since F(z) and G(z) are smooth in
the proximity of z = 0 the error becomes negligibly small.
By close inspection of the Eqs. (85) and (86), however, it
follows that the approximations F(z) � F(0), G(z) � G(0)
are justified if z � 1, that is, for q � 1, which in turn
implies

2π

βh̄

P

4
� F(0). (87)

Under this assumptions it follows that the condition (73) is
satisfied in the semiclassical regime P/(h̄2) � 1. Conse-
quently, we can write

P � βπ3h̄

30q4
, (88)

Cbb
nf � βπ3T

45q3
log2 e, (89)

which yields

Cbb
nf � βπ2T

3 4
√

15

[
2πP

βh̄

]3/4

log2 e. (90)

These expressions are obtained by noticing that the integrals
in Eqs. (85) and (86) can be written in terms of the Bernoulli
numbers Bk by means of the identity (see, e.g., [36])∫ ∞

0
dx

x2n−1

epx − 1
= (−1)n−1

(
2π

p

)2n
B2n

4n
. (91)

By comparing (90) with the capacity of a multimode Gaussian

bosonic channel [11,22,37] we notice that the scaling in P is
now changed (there it scales as P 1/2). This is due to the fact
that in our case each frequency has multiple degeneracies.

VIII. CONCLUSION

We have computed the capacity of quantum optical com-
munication through an optical system characterized by a
finite entrance pupil. Our calculations provide general bounds
on the efficiency of quantum optical communication taking
into account the effects of light diffraction. This models
a rather general situation in long-distance communication,
where repeaters play the role of the optical system used to
refocus the signal. More generally, any transfer of information
which employ quantum degrees of freedom of light—from
quantum key distribution [8–10] to quantum imaging [38],
as well as quantum discrimination problems [39–42] and
quantum reading [43–45]—requires the propagation through
an optical system, and it is hence limited by diffraction.

We have argued that, when the optical system is used for
information transmission, the effects of diffraction can be
formally described as a quantum channel with correlated noise.
It follows that correlated noise may affect all the quantum
information protocols requiring propagation and detection of
quantum light.

Finally, this formal equivalence has allowed us to apply
tools that were developed in the framework of quantum
memory channel characterization to the diffraction problem.
In particular, this has allowed us to show that, under certain
conditions, a converging optical apparatus can be used to
achieve higher transmission rates than the free-space field
propagation. The tradeoff between loss and diffraction de-
termines the conditions under which the intuitive benefits of
optical refocusing can be rigorously proven.
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