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We introduce a simple photonic probing scheme of remote nondestructive parity measurement (RNPM) on a
pair of matter qubits. The protocol works as a single module for key operations such as entanglement generation,
Bell measurement, and parity check measurement, which are sufficient not only for building up a quantum
repeater but also for equipping it with entanglement distillation. Moreover, the RNPM protocol can also be used
for generating cluster states toward measurement-based quantum computation.
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I. INTRODUCTION

In quantum mechanics, measuring a property of a system
may cause a backaction on its state, but sometimes a back-
action can be useful for quantum information processing.
A simple nontrivial example of such a measurement is
the nondestructive parity (NP) measurement on two qubits
AB, which is the projection measurement to the subspace
with even parity spanned by {|00〉AB,|11〉AB} and to the
odd one spanned by {|01〉AB,|10〉AB}. When the qubits
are in state |ϕ〉AB initially, the un-normalized postmea-
surement state is ideally either P̂ AB

even|ϕ〉AB or P̂ AB
odd |ϕ〉AB ,

where P̂ AB
even (P̂ AB

odd ) is the projection onto the even (odd)
subspace. This measurement provides a powerful tool when
the two qubits are quantum memories located far apart.
For example, if we prepare each qubit in state |+〉 :=
(|0〉 + |1〉)/√2, the NP measurement leaves the pair in maxi-
mally entangled state (Bell state)

√
2P̂ AB

even|++〉AB = |�+〉AB

or
√

2P̂ AB
odd |++〉AB = |�+〉AB , where |�±〉AB := (|00〉AB ±

|11〉AB)/
√

2 and |�±〉AB := (|01〉AB ± |10〉AB)/
√

2. Various
other nontrivial operations are also derived from the NP
measurement [see Figs. 1(d)–1(f) below].

In this paper, we provide a simple protocol to implement
the NP measurement, which we call remote nondestructive
parity measurement (RNPM) protocol. The protocol is based
on an off-resonant coupling of light pulses with the quantum
memories, and it works even if the quantum memories
are distant. The deviation of the RNPM protocol from the
ideal NP measurement mainly comes from the loss in the
optical channel, whose transmission depends on its length
L as ηL := e−L/Latt with an attenuation length Latt. This
makes the RNPM protocol probabilistic and noisy, but these
imperfections behave in a controlled way, even with the use
of threshold detectors that cannot distinguish one from two or
more photons. As a result, the RNPM protocol constitutes a
viable module which can be singly used to build a quantum
repeater, in contrast to the other known repeater protocols
[1–14]. Moreover, the local use of highly efficient RNPM
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protocols will also allow us to generate cluster states even
when they are located sparsely to make single-qubit addressing
easier and to reduce decoherence, which helps implementation
of measurement-based quantum computation.

This paper is organized as follows. In Sec. II, we introduce
the RNPM protocol and prove its working principle. In Sec. III,
we show the possibilities of the various applications of the
RNPM protocol. Section IV concludes this paper.

II. RNPM PROTOCOL

The requirement on the memory qubit for the RNPM
protocol is as follows. The qubit is assumed to allow
us to apply phase flip Ẑ := |0〉〈0| − |1〉〈1|, Hadamard
gate Ĥ := |+〉〈0| + |−〉〈1| with |−〉 := Ẑ|+〉, and Z-basis
measurement. The qubit is also assumed to interact
with an off-resonant laser pulse a in a coherent state
|α〉a := e−|α|2/2 ∑∞

n=0(αn/
√

n!)|n〉a according to a unitary
operation Ûθ |j 〉|α〉a = e−i(−1)j φα/2|j 〉|αei(−1)j θ/2〉a (j = 0,1),
where {|n〉a} are the number states of the mode a, φα =
α2 sin θ , and θ is a fixed parameter for the strength of the
interaction. Since this interaction is an off-resonant coupling
based on a basic Hamiltonian, Jaynes-Cummings Hamiltonian,
it will be feasible with various qubits such as an individual
	-type atom, a trapped ion, a single electron trapped in
quantum dots, a nitrogen-vacancy (NV) center in a diamond
with a nuclear spin degree of freedom, and a neutral donor
impurity in semiconductors [6].

We now describe our RNPM protocol in detail. Suppose
that the qubits A and B are respectively held by Alice
and Bob, who are distance L0 apart [see Fig. 1(a)]. Claire
is located in between, connected to Alice and Bob with
optical channels a → c1 and b → c2 with lengths LA(�L0)
and LB := L0 − LA, respectively. Let TA := τηLA

and TB :=
τηLB

be the overall transmittance of the channels, where τ

stands for the local loss. The RNPM protocol proceeds as
follows. (i) Alice (Bob) prepares pulse a (pulse b) in a coherent
state |α/

√
TA〉a (|α/

√
TB〉b) with α � 0, and lets it interact

with qubit A (qubit B) by Ûθ . (ii) Alice (Bob) sends Claire
the pulse a (the pulse b) through the optical channel a → c1

(b → c2). (iii) On receiving the pulses c1c2, Claire makes
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FIG. 1. (Color online) The RNPM protocol and its applications.
(a) The RNPM protocol. (b) A circuit equivalent to the successful
RNPM protocol, where a phase-flip channel 	ε(ρ̂) := (1 − ε)ρ̂ +
εẐρ̂Ẑ with phase error probability ε is applied as the penalty of
photon losses. ε may depend on the outcome returned by photon
detectors. In the lossless limit, the RNPM protocol works as the
ideal NP measurement. (c) Quantum repeaters based on the RNPM
protocols. (d)–(f) Applications of the RNPM protocol: (d) Bell
measurement (BM), (e) parity check measurement, and (f) a gate
for extending one-dimensional cluster states, where the measurement
instrument means Z-basis measurement and the dashed arrow implies
the transmission of the measurement outcome.

the pulses interfere by a 50:50 beam splitter. (iv) On the
mode receiving the constructive interference, Claire applies
displacement operation D̂[−√

2α cos(θ/2)] by using a local
oscillator (LO). (v) Claire counts photons of the output modes
d1d2 by two photon detectors, and she announces the outcome
(m,n). (vi) If m + n is odd, Bob applies phase flip Ẑ to qubit
B. Events with m > 0 and n = 0 (m = 0 and n > 0) indicate
outcome “odd” (“even”), which are regarded as the success
events of this protocol.

To see the backactions in the success events, we use the fact
that the RNPM protocol works equivalently if we omit step (iv)
and replace step (i) with the following: (i′) After making pulse
a (pulse b) in a coherent state |α/

√
TA〉a (|α/

√
TB〉b) interact

with qubit A (qubit B), Alice (Bob) applies displacement
operation D̂[−(α/

√
TA) cos(θ/2)] (D̂[−(α/

√
TB) cos(θ/2)])

on the pulse. In this protocol, through steps (i′)–(iii), qubits
AB are transformed as

|00〉AB

(i′)→ |00〉AB |iβA〉a|iβB〉b→|00〉AB |0〉d1 |i
√

2β〉d2 ,

|01〉AB

(i′)→ |01〉AB |iβA〉a|−iβB〉b→|01〉AB |−i
√

2β〉d1 |0〉d2 ,

(1)

|10〉AB

(i′)→ |10〉AB |−iβA〉a|iβB〉b→|10〉AB |i
√

2β〉d1 |0〉d2 ,

|11〉AB

(i′)→ |11〉AB |−iβA〉a|−iβB〉b→|11〉AB |0〉d1 |−i
√

2β〉d2 ,

where β := α sin(θ/2) and βX := β/
√

TX (X = A,B). Since
this protocol does not use LO after (i′), we are allowed to

assume that the total number k of photons in modes ab was
measured after step (i′), without affecting the protocol at all.

We start with the ideal case where TA = TB = 1 and the
detectors at modes d1d2 are the ideal photon-number-resolving
detectors. Then, the k photons in modes ab are preserved
throughout steps (ii) and (iii), which leads to m + n = k.
Combined with Eq. (1), this suggests that all the k photons
are captured by one of the detectors. Hence, if photon detector
d1 (d2) announces the arrival of k(>0) photons, from 〈k|0〉 = 0
and 〈k|−i

√
2β〉 = (−1)k〈k|i√2β〉, we see that the backaction

of the RNPM protocol is P̂ AB
odd (P̂ AB

even) after Bob’s phase flip at
step (vi).

We can easily describe the backactions of the RNPM
protocol with practical channels and detectors, as long as the
dark counting are negligible, namely, |0〉d1 always produces
m = 0. This guarantees that the success outcome still gives the
correct parity, but l := m + n is no longer equal to k. Since
the backaction depends only on (−1)k , we see the following.
If l ≡ k (mod 2), the final state is the same as the ideal case.
Otherwise, the final state suffers from a phase flip error ẐB .
This observation means that the RNPM protocol effectively
works as the circuit described in Fig. 1(b), where the success
probability p and the phase error probability ε (conditioned on
the success) are solely determined from the joint probability
Q(k,l) as follows:

p =
∑
l�1

χ+
l , ε = 1

2p

∑
l�1

(χ+
l − χ−

l ), (2)

with χ±
l := ∑

k(±1)k−lQ(k,l).
Let us derive the explicit forms of (p,ε) with various types

of detectors with quantum efficiency η. Here we consider
the case TA = TB(=T ) for simplicity, and the general cases
are treated in Appendix A. Since k is the total number
of photons in two coherent states with amplitude iβ/

√
T ,

it follows the Poissonian distribution Pλ(k) := (e−λλk)/k!
with λ = 2β2/T . When photon-number-resolving detectors
are used, l = m + n is the number of photons that have
passed through a channel with transmittance ηT . Hence,
we have Q(k,l) = Q∞(k,l) := BηT (l|k)P2β2/T (k) with a bi-
nomial distribution Bp(l|k) := [pl(1 − p)k−lk!]/[l!(k − l)!].
Using Eq. (2), we have p(β) = 1 − e−2β2η and ε(β,T ) =
(1 − e−2β2η[2(ηT )−1−2])/2. When we use single-photon de-
tectors, we are informed of the detection of exactly one
photon. Hence, we have Q(k,1) = Q∞(k,1) and Q(k,0) =
Q∞(k,0) + ∑

l�2 Q∞(k,l), leading to p(β) = P2ηβ2 (1) and

ε(β,T ) = (1 − e−2β2η[2(ηT )−1−2])/2. When threshold detectors
are used, from Q(k,1) = ∑

l�1 Q∞(k,l), we obtain p(β) =
1 − e−2β2η and ε(β,T ) = (1 − e−2β2η[2(ηT )−1−1])/2.

As seen in the above examples, the success probability
p and the phase error probability ε of the RNPM protocol
are under a trade-off relation, which is controllable by β,
namely by α. For a fixed L0, the choice of LA = LB = L0/2
gives the best performance of (p,ε). On the other hand, the
choice LA = L0 has a technical merit in stabilizing the relative
phase between pulses c1 and c2 (see Appendix B). The RNPM
protocol can also be used for interacting quantum memories
located in a single site, in which case L0 is nearly zero and
only the local loss τ determines the trade-off relation.
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III. APPLICATIONS OF RNPM PROTOCOL

As we have seen, the performance of the RNPM protocol
is determined by the local and channel losses as well as the
resolution of photon detectors, implying that the effectiveness
of the RNPM protocol increases in accordance with the
progress of available devices. In what follows, we explore
how such a progress enables us to accomplish applications
ranging from quantum repeaters to quantum computation.

A. Long-distance quantum communication over lossy channels

The goal here is to share an entangled pair of qubits
between two end stations separated by distance L. With direct
transmission of single photons, the communication time would
increase exponentially with distance L according to eL/Latt .
Disposition of relaying stations with quantum memories helps
to avoid the exponential increase by using a quantum repeater
protocol [1]. Suppose that the stations are placed at l0 := L/2n

intervals [see Fig. 1(c)]. Each station has at least two qubits.
The first step is entanglement generation between neigh-

boring stations separated by l0. The RNPM protocol is applied
to the two qubits in state |+〉|+〉 and is repeated until it is
successful. Assuming the communication time l0/c required
for each trial, it takes the time (l0/c)p(βg)−1 on average,
and the Bell state is produced with phase error probability
ε0 := ε(βg,τηl0/2). The parameter βg can be freely chosen by
adjusting the intensity of the light pulses. Here we consider
the case with LA = LB = l0/2 for simplicity of the notations
(the cases with LA = l0 are found in Appendix B).

Next, the repeater protocol proceeds to entanglement
connection [15]. Suppose that two stations separated by 2j l0
(j = 0,1, . . . ,n − 1) can share a qubit pair in the Bell state
with phase error probability εj and with average time tj .
After creating two such pairs connecting three stations, the
middle one executes the Bell measurement by locally applying
the RNPM protocol as in Fig. 1(d), which succeeds with
probability p(βs) and produces entangled qubits 2j+1l0 apart.
Adding up the contribution of the phase errors in the two initial
pairs and in the Bell measurement, we have 1 − 2εj+1 = (1 −
2εj )2[1 − 2ε(βs,τ )]. Since it approximately takes time (3/2)tj
per trial [11], we have tj+1 ∼ (3/2)tjp(βs)−1 for the average
time for success. Solving these recursive relations, we see that
the average total time T = tn is approximately written as

T ∼ l0

c

(
3

2

)log2(L/l0)

p(βg)−1p(βs)
− log2(L/l0), (3)

and the final state is ρ̂AB = F |�+〉〈�+|AB + (1 −
F )|�−〉〈�−|AB , with

2F − 1 = [1 − 2ε(βg,τηl0/2)]L/l0 [1 − 2ε(βs,τ )]L/l0−1. (4)

For large L, it should be chosen as β2
g ∼ β2

s ∼ O(l0/L).
Then, noticing that p(β) ∼ O(β2) and ε(β,T ) ∼ O(β2) hold
regardless of the types of the photon detectors, we have F ∼
O(1) and T ∼ O[(3/2)log2(L/l0)(L/l0)log2(L/l0)+1]. Hence, T

increases only subexponentially with L. We also numerically
optimized T over n, βg , and βs for fixed values of final fidelity
F and the distance L, which are shown in Fig. 2. In contrast
to Refs. [1,4,6,8,9,11–13], this figure shows that the protocol
works even only with threshold detectors.
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FIG. 2. (Color online) The minimum time T needed to generate
entanglement with F = 0.9, 0.7 over distance L under the use
of threshold detectors (TDs) and single-photon detectors (SPDs):
(a) τ = 0.95 and η = 0.9; (b) τ = 0.98 and η = 0.95. c = 2 ×
108 m/s and Latt = 22 km. The direct transmission time (f ηTL)−1 of
the photon from 10 GHz (f = 1010) single-photon source (SPS) is
also shown as a reference.

We stress that, since the produced state ρ̂AB includes only
one type of error, for fixed fidelity F , this entanglement has
higher quality than ones generated by the other repeaters.
This feature relieves us of targeting a high fidelity. For
example, F > 1/2 is sufficient for distilling secret key from
the entanglement ρ̂AB [16], and three or four pairs of F = 0.7
with single-type errors have the same ability as one pair of
F = 0.9 with general errors.

B. Entanglement distillation

While the optical losses considered above are the dominant
obstacle in long-distance communication, other types of
small noises will also be inevitable. For example, practical
quantum memories will decohere with time. To overcome such
general noises, quantum repeaters require to be equipped with
entanglement distillation [19]. Entanglement distillation not
only helps to counter such general errors, but also, even under
such a situation, reduces the scaling of the communication
time to be polynomial [1] in distance L. While all the known
repeaters have needed additional complicated operations for
entanglement distillation [1,4,6,8,9,11–14], our repeater can
be easily equipped with it by using the same module, that is,
the RNPM protocol.

In a simple method of distillation called the recurrence
method [20], Alice and Bob first transform each pair of
qubits locally into the so-called Werner state while keeping
the fidelity F to a Bell state. Suppose that they have two
such pairs A1B1 and A2B2 with F > 1/2. Alice applies a
controlled-NOT gate on her qubit A1 as the control and on
A2 as the target, and measures A2 on Z basis (the whole
process is called parity check measurement). Bob also applies
the same measurement on his qubits. Their outcomes will
agree with probability Prec(F ) = (8F 2 − 4F + 5)/9, and then
the remaining pair A1B1 will have improved fidelity F ′ =
[(2F + 1)2 + (4F − 1)2]/[18Prec(F )].

Since the outcome of each party is the parity of the two
qubits, it can also be obtained via the RNPM protocol. In
addition, if the RNPM protocol succeeds, by subsequently
measuring A2 on X basis to produce outcome x and then
by applying Ẑx on A1, the postmeasurement state of A1 is
also simulated except the phase error ε(β,τ ) [see Fig. 1(e)].
The overall success probability is Ps := Prec(F )p2(β), which
is in a trade-off relation with the fidelity F ′ = {(2F + 1)2 +
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FIG. 3. (Color online) For β2 = 0.04,0.08,0.12 with τ = 0.98
and η = 0.95, the efficiencies of the recurrence method based on
the RNPM protocols with single-photon detectors as a function of
fidelity F of the initial Werner states to a Bell state. (a) The success
probability Ps = Prec(F )[P2ηβ2 (1)]2. (b) The fidelity F ′ of the final
pair.

(4F − 1)2[1 − 2ε(β,τ )]2}/[18Prec(F )] of the final state and is
controllable through β. In Fig. 3 we give numerical examples
with single-photon detectors.

C. Generation of cluster states

One promising way for implementing quantum computing
is the so-called measurement-based quantum computation,
where computation proceeds with sequential one-qubit mea-
surements on a system in a highly entangled state, the cluster
state [21]. The addressing of individual qubits is easier when
they are located not so close to each other. Such a sparse
configuration also helps to reduce correlated errors from the
environment. In this case, the RNPM protocol works as an
entangler for qubits that are not in close proximity. In fact,
the gate shown in Fig. 1(f) can be used for extending one-
dimensional cluster states, and the parity check measurement
in Fig. 1(e) can be used for fusing two cluster states [22,23].
The combination of these two types of gates enables us to build
up a large cluster state. Despite the use of a single interaction
per qubit, our scheme has no fundamental limitation on the
success probability, which is in striking contrast to the other
known entanglers [24–26]. Hence, with future development of
good detectors and reduction of internal losses, the RNPM
protocol will also work as a useful tool for implementing
quantum computing.

IV. SUMMARY

We have proposed a versatile protocol, called the RNPM
protocol, for measuring the parity of two separated qubits in a
nondestructive way. The performance of the RNPM protocol
is simply related to the optical loss and the characteristics of
photon detectors. We have shown that, even with threshold
detectors, the protocol can be used as a module to build up
quantum repeaters for long-distance quantum communication.
Efficient single-photon detectors will allow us to equip the
repeaters with entanglement distillation, a countermeasure
against arbitrary types of noises. With further improvement
of the performance, more general quantum computation will
be made possible through the generation of cluster states via
the RNPM protocol. We believe that the existence of such a
versatile tool provides an attractive route toward realization of
quantum communication and computation, in which efforts

can be focused on development and improvement of that
particular tool.
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APPENDIX A: THE PERFORMANCE OF
THE RNPM PROTOCOL

Here, for arbitrary values of TA and TB , we derive the
performance (p,ε) of the RNPM protocol with various types
of detectors. As shown in the main body of this paper, the
performance is determined by calculating the joint probability
Q(k,l) with which modes ab have k photons in total and the
arrival of l photons is announced by photon detectors d1d2

in total. Let ka and kb be the numbers of photons in modes
a and b, respectively. Since mode a is in a coherent state
with amplitude iβ/

√
TA, ka follows the Poissonian distribution

Pβ2/TA
(ka) with Pλ(k) := (e−λλk)/k!. Similarly, kb obeys the

Poissonian distribution Pβ2/TB
(kb).

Suppose that we use photon-number-resolving detectors
with quantum efficiency η for the detectors d1 and d2. Each
of the ka photons will then be detected with probability
ηTA. Hence, the probability of detecting la photons among
ka photons in mode a is given by BηTA

(la|ka)Pβ2/TA
(ka),

where Bp(l|k) := [pl(1 − p)k−lk!]/[l!(k − l)!] is the binomial
distribution. Similarly, the probability of detecting lb photons
among kb photons in mode b is given by BηTB

(lb|kb)Pβ2/TB
(kb).

Since Q(k,l) is given by the sum of all probabilities with
k = ka + kb and l = la + lb, we have

Q(k,l) = Q∞(k,l) :=
l∑

la=0

la+(k−l)∑
ka=la

BηTA
(la|ka)Pβ2/TA

(ka)

×BηTB
(l − la|k − ka)Pβ2/TB

(k − ka)

= e
−β2( 1

TA
+ 1

TB
)(ηβ2)l

l∑
la=0

1

la!(l − la)!

×
la+(k−l)∑

ka=la

( 1−ηTA

TA
β2

)ka−la
( 1−ηTB

TB
β2

)k−l−(ka−la )

(ka − la)![k − l − (ka − la)]!

= e
−β2( 1

TA
+ 1

TB
)(ηβ2)l

1

(k − l)!

×
[(

1 − ηTA

TA

+ 1 − ηTB

TB

)
β2

]k−l l∑
la=0

1

la!(l − la)!

= e
−β2( 1

TA
+ 1

TB
)

l!(k − l)!
(2β2η)l

×
[(

1 − ηTA

TA

+ 1 − ηTB

TB

)
β2

]k−l

, (A1)
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where we used the binomial theorem

(a + b)n =
n∑

m=0

n!

m!(n − m)!
ambn−m (A2)

for any a,b ∈ R and n ∈ N . From the expression of Q(k,l),
χ±

l are calculated to be

χ+
l =

∑
k

Q(k,l) =
∞∑
k=l

Q∞(k,l) = (2β2η)l

l!
e−2β2η, (A3)

χ−
l =

∑
k

(−1)k−lQ(k,l) =
∞∑
k=l

(−1)k−lQ∞(k,l)

= (2β2η)l

l!
e
−2β2η( 1

ηTA
+ 1

ηTB
−1)

, (A4)

by noting ex = ∑∞
m=0 xm/m!. Hence, the success probability

p and the phase error probability ε of the RNPM protocol with
photon-number-resolving detectors are

p(β) =
∑
l�1

χ+
l =

∞∑
l=1

χ+
l = 1 − e−2β2η, (A5)

ε(β,TA,TB) = 1

2p

∑
l�1

(χ+
l − χ−

l ) = 1

2p

∞∑
l=1

(χ+
l − χ−

l )

= 1

2

(
1 − e

−2β2η( 1
ηTA

+ 1
ηTB

−2)
)

. (A6)

Note that the above expressions are reduced to the ones in the
main body of the paper for TA = TB(= T ). By substituting
TA = τηLA

= τe−LA/Latt and TB = τηL0−LA
= τe−(L0−LA)/Latt

into Eqs. (A5) and (A6), one can easily confirm that, for
a fixed L0, the choice of LA = LB = L0/2 gives the best
performance. In other words, the RNPM protocol works best
when Claire is located at the middle point between Alice and
Bob.

1. Use of single-photon detectors

Here we assume the use of single-photon detectors with
quantum efficiency η, which announce the detection of photons
only when receiving exactly one photon. In this case, Q(k,l)
is described by

Q(k,1) = Q∞(k,1), (A7)

Q(k,0) = Q∞(k,0) + ∑
l�2 Q∞(k,l). (A8)

Then, χ±
1 are calculated to be

χ+
1 =

∑
k

Q(k,1) =
∞∑

k=1

Q∞(k,1) = 2β2ηe−2β2η, (A9)

χ−
1 =

∑
k

(−1)k−1Q(k,1) =
∞∑

k=1

(−1)k−1Q∞(k,1)

= 2β2ηe
−2β2η( 1

ηTA
+ 1

ηTB
−1)

, (A10)

from the last equations in Eqs. (A3) and (A4). Hence, we
conclude

p(β) =
∑
l�1

χ+
l = χ+

1 = 2β2ηe−2β2η, (A11)

ε(β,TA,TB) = 1

2p

∑
l�1

(χ+
l − χ−

l ) = 1

2p
(χ+

1 − χ−
1 )

= 1

2

(
1 − e

−2β2η( 1
ηTA

+ 1
ηTB

−2))
. (A12)

2. Use of threshold detectors

Here we consider the case of threshold detectors with
quantum efficiency η. Since this type of detector clicks only
when receiving nonzero photons, we have

Q(k,1) =
∑
l�1

Q∞(k,l), (A13)

Q(k,0) = Q∞(k,0). (A14)

From this, χ±
1 are calculated to be

χ+
1 =

∑
k

Q(k,1) =
∞∑

k=1

k∑
l=1

Q∞(k,l) =
∞∑
l=1

∞∑
k=l

Q∞(k,l)

=
∞∑
l=1

(2β2η)l

l!
e−2β2η = 1 − e−2β2η, (A15)

χ−
1 =

∑
k

(−1)k−1Q(k,1) =
∞∑

k=1

k∑
l=1

(−1)k−1Q∞(k,l)

=
∞∑
l=1

(−1)l−1
∞∑
k=l

(−1)k−lQ∞(k,l)

=
∞∑
l=1

(−1)l−1 (2β2η)l

l!
e
−2β2η( 1

ηTA
+ 1

ηTB
−1)

= (
1 − e−2β2η

)
e
−2β2η( 1

ηTA
+ 1

ηTB
−1)

, (A16)

from the last equations in Eqs. (A3) and (A4). Hence, the
success probability p and the phase error probability ε are

p(β) =
∑
l�1

χ+
l = χ+

1 = 1 − e−2β2η, (A17)

ε(β,TA,TB) = 1

2p

∑
l�1

(χ+
l − χ−

l ) = 1

2p
(χ+

1 − χ−
1 )

= 1

2

(
1 − e

−2β2η( 1
ηTA

+ 1
ηTB

−1))
. (A18)

APPENDIX B: A MODIFIED RNPM PROTOCOL

Although the RNPM protocol has the best performance
when Claire is halfway between Alice and Bob, the choice with
LA = L0 is also worth mentioning since the stabilization of
the relative phase between the relevant pulses can be easier. To
clarify this fact, here we introduce a modified RNPM protocol
where Claire’s task in the original RNPM protocol is executed
by Bob.

Suppose that the qubits A and B are respectively held
by Alice and Bob, who are distance L0 apart and share an
optical channel a → b1 (see Fig. 4). Let TA := τηL0 and
TB := τ be the overall transmittance of the channels, where
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FIG. 4. (Color online) A modified RNPM protocol. This protocol
is executed only by Alice and Bob through an optical channel between
them. The performance of this protocol is equivalent to that of the
original RNPM protocol with LA = L0, but the stabilization of the
relative phase between pulses b1 and b2 is easier.

τ stands for the local loss. The modified RNPM protocol
proceeds as follows. (i.1) Alice prepares pulse a in a coherent
state |α/

√
TA〉a with α � 0, and lets it interact with qubit A

by Ûθ . (i.2) Alice sends Bob the probe pulse a and a LO
through the same optical channel a → b1, with a short time
delay. (ii) On receiving the probe pulse b1 and the LO, Bob
generates an independent probe pulse b2 in a coherent state
|α/

√
TB〉b2 from the LO, and lets it interact with qubit B by Ûθ .

(iii) Bob makes the pulses b1b2 interfere by a 50:50 beam split-
ter. (iv) On the mode receiving the constructive interference,
Bob applies displacement operation D̂[−√

2α cos(θ/2)] by
using the LO. (v) Bob counts photons of the output modes d1d2

by two photon detectors, which produces the outcome (m,n).
(vi) If m + n is odd, Bob applies phase flip Ẑ to qubit B.

In this case, Bob does not need to use his own LO, and all
the pulses are generated from the same LO held by Alice. Any
slow phase fluctuation on the probe pulse during the travel
over distance L0 will be automatically compensated since the
LO goes through the same fluctuation.
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FIG. 5. (Color online) For LA = l0 and LB = 0, the minimum
time T needed to generate entanglement with F = 0.9, 0.7 over
distance L under the use of threshold detectors (TDs) and single-
photon detectors (SPDs): (a) τ = 0.95 and η = 0.9; (b) τ = 0.98 and
η = 0.95. c = 2 × 108 m/s and Latt = 22 km. The direct transmission
time (f ηTL)−1 of the photon from a 10-GHz (f = 1010) single-
photon source (SPS) is also described as a reference.

1. The performance of long-distance quantum
communication over lossy channels

Here we calculate the performance of quantum repeaters
with the modified RNPM protocol. More specifically, we use
the modified RNPM protocols with L0 = l0 = L/2n for the
entanglement generation. In this case, the average total time T

and the fidelity F are described by

T ∼ l0

c

(
3

2

)log2(L/l0)

p(βg)−1p(βs)
− log2(L/l0), (B1)

F = 1 + [1 − 2ε(βg,τηl0 ,τ )]L/l0 [1 − 2ε(βs,τ,τ )]L/l0−1

2
.

(B2)

By substituting Eqs. (A11) and (A12) [or Eqs. (A17) and
(A18)] into these equations, we numerically optimized T over
n, βg , and βs for fixed values of final fidelity F and the distance
L, which are shown in Fig. 5.
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