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Noninformative prior in the quantum statistical model of pure states
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In the present paper, we consider a suitable definition of a noninformative prior on the quantum statistical model
of pure states. While the full pure-states model is invariant under unitary rotation and admits the Haar measure,
restricted models, which we often see in quantum channel estimation and quantum process tomography, have
less symmetry and no compelling rationale for any choice. We adopt a game-theoretic approach that is applicable
to classical Bayesian statistics and yields a noninformative prior for a general class of probability distributions.
We define the quantum detection game and show that there exist noninformative priors for a general class of
a pure-states model. Theoretically, it gives one of the ways that we represent ignorance on the given quantum
system with partial information. Practically, our method proposes a default distribution on the model in order to
use the Bayesian technique in the quantum-state tomography with a small sample.
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I. INTRODUCTION

Several decades ago, Wootters [1] asserted that “there does
not seem to be any natural measure on the set of all mixed
states.” Since then, possible measures over the set of all mixed
states have been investigated by many authors [2–5]. While
there is no compelling rationale for the choice of a probability
measure for the eigenvalues of a density operator, there exists
a consensus that the invariant measure (Haar measure) is
natural for all pure states in a finite-dimensional Hilbert space.
Some authors also agree with the Bayesian viewpoint that a
natural measure is considered a prior probability over the set
of density operators. Srednicki [5] argued that the nature of
our ignorance about a quantum system can be represented
by a prior probability. However, it seems quite difficult to
represent our ignorance about a given quantum system even
for a pure-states model when we make additional assumptions
for the system.

Let us take an extreme example. Suppose that we have two
quantum systems S1 and S2. Each system is described by a
state vector among a set of possible pure states. For S1, the
set of possible pure states is given by M1 := {|e1〉,|e2〉,|e3〉},
where state vectors are orthogonal, 〈ei |ej 〉 = δij . For S2,
we take M2 := {|ψ1〉,|ψ2〉,|ψ3〉}, where state vectors are
nonorthogonal, |〈ψi |ψj 〉| > 0. How should we represent our
ignorance on the true state for each system? For the first
system, it is natural to assign the same weight to each
state; thus, our ignorance is represented as a uniform prior
π1 = π2 = π3 = 1/3. How about the second one? This is our
starting point of the present paper.

Apart from the philosophical problem originating from
randomness, the choice of natural measure is inevitable in
quantum-state tomography [6,7], which is the task of inferring
the state of the (partially) unknown quantum system by use
of appropriate measurements. In state tomography, with a
smaller sample of data, the performance of the maximum
likelihood estimate [8] tends to become worse. In order to
avoid such difficulties, many researchers use the Bayesian
technique [9,10]. Its optimality is also shown theoretically
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[11]. However, as in classical Bayesian statistics, we must
choose a natural measure on the parametric model of the
unknown quantum state [12], which is called a noninformative
prior distribution (or, for short, noninformative prior). When
the dimension d of the Hilbert space gets higher, the number
of parameters to be determined increases rapidly (e.g., d4

for process tomography). In such cases, it would be better to
assume a restricted model with a smaller number of parameters
(called a submodel). However, once we adopt a submodel, then
the lack of symmetry makes the choice of a noninformative
prior a more serious problem.

In classical Bayesian statistics [13], there is no universal
criterion on how we should determine a noninformative prior
and still there are a considerable number of works on the
choice of a noninformative prior like the famous Jeffreys prior
[14]. In the quantum setting, for the all mixed-states models,
there seems to be a lot of work [2–5]. However, these works
are mainly concerned with the geometry of the whole set of
density matrices. On the other hand, Hayashi [15,16] recently
proposed a noninformative prior based on asymptotic minimax
coding, the quantum analog of the famous result by Clark
and Barron [17]. As far as the author knows, it is the only
prior that has an information-theoretic meaning. However, his
derivation fully uses the group symmetry of the model and
is not directly applied to any submodel, in particular, to one
with no symmetry. For the application to quantum tomography
and other quantum Bayesian estimations, we need at least one
proposal of noninformative prior which is properly defined on
a wide class of submodels.

In the present paper, we focus on the pure-states submodel,
including a finite set of pure states, and consider a suitable
definition of a noninformative prior on the model. It is desirable
that there exists a certain interpretation of the noninformative
prior. We here consider statistical decision theory, a version
of game theory [18], and its application to Bayesian statistics
by Bernardo [19]. Our proposed definition of a noninformative
prior satisfies the following: (i) In classical cases, i.e., when all
distinct pure states are orthogonal, agreeing with the uniform
prior; (ii) defined on any submodel of the quantum states over
any (possibly infinite-dimensional) Hilbert space under some
regularity conditions; and (iii) with no approximation and no
asymptotics. Concerning item (iii), it is more difficult to obtain
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a general result in nonasymptotics than in asymptotics. For
example, in classical statistics, an average of random variables
is approximately distributed to a normal distribution in the
asymptotic setting (i.e., sample size n → ∞), which makes
some problems more tractable. However, it is also known that
there is a gap between finite-sample theory and asymptotic
theory.

Our main criterion is based on a quantum detection game
between Alice and Bob. While the formal classical analog
of the game is trivial, it becomes nontrivial in the quantum
setting. We also show that the concept of no information is
beyond our intuition in some examples. Through the choice of
noninformative prior, we see another new aspect of quantum
theory.

In the next section, we briefly review our setting and
give a nontrivial example where symmetry does not uniquely
determine a noninformative prior on a pure-states submodel.
We then introduce the quantum detection game and a least
favorable prior. In Sec. III, we present our main result. It is
shown that the minimax estimate of the unknown quantum pure
states is given by the Bayes estimate for the least-favorable
prior. In two-dimensional Hilbert spaces, it agrees with the
maximum entropy prior of Bayesian mixture states. We also
show that the least favorable prior is not uniquely determined.
Examples follow in the next section. We give an example
where the uniform prior yields a worse performance than our
prior. Concluding remarks are given in the last section.

II. PRELIMINARY

A. Basic definitions of quantum statistics

We briefly summarize some notations of quantum statistics
(for quantum theory in finite-dimensional Hilbert spaces, see,
e.g., Nielsen and Chuang [20]). Let H be a separable (possibly
infinite dimensional) complex Hilbert space of a quantum
system. A Hermitian operator ρ on H is called a state or
density operator if it satisfies

Trρ = 1, ρ � 0.

We denote the set of all states on H as S(H). If a density
operator is of rank 1, it is called a pure state. A normalized
vector ψ ∈ H corresponds to a pure state one to one using
the outer product up to the phase factor and we often identify
|ψ〉 with |ψ〉〈ψ |. When a density operator is not a pure state,
it is called a mixed state. Note that any density operator is
represented as a convex combination of pure states.

Let � be a space of all possible outcomes of an experiment
(e.g., � = Rn) and suppose that a σ algebra B := B(�) of
subsets of � is given. An affine map μ from S(H) into a
set of probability distributions on �, P = {μ(dx)} is called a
measurement. There is a one-to-one correspondence between
a measurement and a resolution of the identity. A map from B
into the set of positive Hermitian operators

E : B �→ E(B),

where E satisfies

E(φ) = O, E(�) = I,

E(∪iBi) =
∑

i

E(Bi), Bi ∩ Bj = φ, ∀ Bi ∈ B,

is called a positive operator-valued measure (POVM). Any
physical measurement can be represented by a POVM. For a
countable sample space � = {x1,x2, . . . ,}, we set B = 2� and
then we write Ei := E({xi}). An arbitrary POVM corresponds
to a countable set of positive operators {Ei} satisfying

∑
i Ei =

I . Performing a measurement described by a POVM {Ei} for
an arbitrarily fixed ρ yields an outcome i with the probability
pi := TrρEi . It is easily seen that {pi} is a distribution on �.
The above holds for continuous sample spaces (for details, see,
Holevo [21]).

B. Statistical model and prior selection

Our main assumption is that the unknown quantum system
belongs to a finite-dimensional parametric family

M = {ρθ ∈ S(H) : θ ∈ 
 ⊆ Rk} ⊆ S(H),

which we call a quantum statistical model or simly a model.
By definition, a model could be a proper subset of S(H). When
we would like to emphasize this, we call it a submodel. In the
present paper, we deal with a pure-states model and we also
write a model as

M = {ψθ : θ ∈ 
},
where ψθ is a normalized vector. Since pure states are
connected with each other through a unitary transformation,
there is no classical counterpart. In particular, a formal
mathematical analogy does not work in the pure-states model.

We now briefly explain the main idea of quantum estimation
[21,22], whose purpose is to estimate the unknown parameter
of physical interest or the unknown density operator itself
from finite number of measurement data. We usually choose
a suitable measurement {Mx} and perform it for each system
ρθ . Measurement outcome, x, which is a random variable, is
distributed according to pθ (x) = TrρθMx . Thus, the unknown
quantum system or some parameter of physical interest is to
be estimated from data x1, . . . ,xn. In Bayesian statistics, the
estimate of θ is constructed from the posterior distribution,
which is defined by

π (θ |x) := pθ (x)π (θ )∫
dθpθ (x)π (θ )

,

where π (θ ) is a prior distribution over 
,
∫

π (θ )dθ = 1,
and π (θ ) � 0. By the above definition, it is easily seen that∫

π (θ |x)dθ = 1 and π (θ |x) � 0. For notational simplicity, we
assume here that the prior has a density.

If we desire a certain objectivity in the Bayesian scheme
and have no knowledge as to the parameter, then we seek a
prior distribution that represents literally no information on
the parameter, which is called a noninformative prior. It is
also called a vague prior or an objective prior. For finite-
dimensional cases, the full pure-states model admits the so-
called Haar measure, which is the invariant measure on unitary
group and is considered a natural measure [1–3]. However,
as we shall see, there is no universally best definition of a
noninformative prior in a given submodel.

Let us take the famous experiment of the Aharonov-Bohm
effect as an example. For our purposes, it is enough to
remember that the wave function is given by

ψ(x) ∝ ψ1(x) + eiθψ2(x),
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where two wave functions ψ1(x) and ψ2(x) are assumed to be
known in advance. Both are normalized but not orthogonal to
each other, that is, ‖ψi‖2 = 1, i = 1,2, and 0 < |〈ψ1|ψ2〉| < 1.
The relative phase θ is proportional to the strength of the
magnetic flux. We assume that the relative phase θ ∈ [0,2π )
is unknown but fixed. We then obtain a one-dimensional
parametric model of the unknown wave function ψθ (x) ∝
ψ1(x) + eiθψ2(x), θ ∈ [0,2π ). When we have no information
on θ , it seems natural to assume a uniform distribution

πU (dθ ) = dθ

2π
. (1)

On the other hand, it is possible to suggest another candidate
for a noninformative prior. In order to see this, we switch to the
density operator formalism. First, we rewrite a wave function
as a complex vector in C2,

ψ1 ↔ |ψ1〉 :=
(

cos ϕ/4
sin ϕ/4

)
, ψ2 ↔ |ψ2〉 :=

(
cos ϕ/4

− sin ϕ/4

)
,

where ϕ is a constant defined by|〈ψ1|ψ2〉|2 = 1+cos ϕ

2 ,ϕ ∈
(0,π ). A parametric family of density matrices is given by

ρ(θ ) = |ψ(θ )〉〈ψ(θ )|
Tr|ψ(θ )〉〈ψ(θ )| ,

where |ψ(θ )〉 := |ψ1〉 + eiθ |ψ2〉. Since ‖ψ(θ )‖2 = 2 +
2 cos ϕ

2 cos θ ,

ρ(θ ) = 1

2 + 2 cos ϕ

2 cos θ

×
[(

1 + cos ϕ

2

)
(1 + cos θ ) i sin ϕ

2 sin θ

−i sin ϕ

2 sin θ
(
1 − cos ϕ

2

)
(1 − cos θ )

]

= 1

2

[
1 + z(θ ) −iy(θ )
iy(θ ) 1 − z(θ )

]
,

where we set

y(θ ) := −
√

1 − a2 sin θ

1 + a cos θ
, z(θ ) := a + cos θ

1 + a cos θ
,

a := cos
ϕ

2
.

We easily see that y(θ )2 + z(θ )2 = 1. Let us define ξ by

− tan ξ := y(θ )

z(θ )
=

√
1 − a2 sin θ

a + cos θ
.

Then, since 0 < a < 1, ξ corresponds to θ one to one. Thus,
we obtain another parametrization of the model,

ρ(ξ ) = 1

2

(
1 + cos ξ −i sin ξ

i sin ξ 1 − cos ξ

)
, ξ ∈ [0,2π ).

Since we do not know ξ completely, we can claim that the
uniform prior for ξ is given by

π ′
U (ξ ) = dξ

2π
. (2)

Both uniform distributions, (1) and (2), are derived from
symmetry and they do not agree with each other.

From the above example, we see that even symmetry does
not necessarily determine a noninformative prior uniquely.

Since our intuition of no information does not seem to work
well in the quantum setting, we need a careful treatment for
the choice of a noninformative prior even when a model has a
certain symmetry. From practical reasons, it is also important
to analyze how a noninformative prior should be chosen in a
given quantum statistical submodel with little or no symmetry.

In classical Bayesian statistics, many authors investigate
noninformative priors in a specific class of statistical models
[13,23] and a general definition of noninformative priors arises
from a basic criterion. Usually we cannot expect a universally
good definition of a noninformative prior and it depends
on a basic criterion which of several definitions is better.
Thus, in the quantum setting, what we need to do, first, is
to propose a criterion and the definition of a noninformative
prior is derived from them. In the present paper, we adopt a
game-theoretic approach, which gives a good interpretation of
the noninformative prior in classical cases.

C. Minimax coding and prior

Before introducing our method, we mention concisely the
relation between minimax code and the least-favorable prior,
which is very famous in information theory and derived from
game-theoretic approach [24]. Let X = {x1, . . . ,xk} be the set
of words and pθ (x) denote a distribution on X , where θ is
the unknown parameter. If we know the distribution, then the
ideal code length for each word xj is given by −lnpθ (xj ).
When we do not know the distribution, but know the range of
the parameter, say 
, we use the Bayes code. Each code length
is given by

−lnpπ (x) := −ln

{∫
π (dθ )pθ (x)

}
, ∀ x ∈ X ,

where π is a prior distribution on 
, which we have to choose
in a suitable way. We now define the relative entropy,

D(p||q) :=
∑
x∈X

p(x)[lnp(x) − lnq(x)].

Then, under mild regularity conditions, the following minimax
theorem [18] holds

inf
q∈P(X )

sup
π∈P(
)

∫
π (dθ )D(pθ ||q)

= sup
π∈P(
)

inf
q∈P(X )

∫
π (dθ )D(pθ ||q),

where P(X ) and P(
) denote the set of all distributions on X
and 
, respectively. There exists a distribution π∗ that achieves
the supremum and a code distribution q∗ that achieves the
infimum. They are called the least favorable prior and the
minimax code distribution, respectively [24]. One of the most
important consequences is that a minimax code is obtained as
a Bayes code with respect to a least favorable prior π∗.

Historically speaking, in Bernardo [19], the famous refer-
ence prior in classical setting is defined in the above way. Thus,
the extension to the quantum setting is straightforward in the
mixed-states model. The formal analog of the code length is
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given by the operator −lnρθ and a similar result,

inf
σ∈S(H)

sup
π∈P(
)

∫
π (dθ )D(ρθ ||σ )

= sup
π∈P(
)

inf
σ∈S(H)

∫
π (dθ )D(ρθ ||σ ),

holds, where the quantum relative entropy [25] is defined by

D(ρ||σ ) := Tr[ρ(lnρ − lnσ )].

However, we deal with the pure-states model and the formal
analog of the code length −ln|ψ〉〈ψ | has only two eigenvalues,
0 and +∞. The relative entropy between two different pure
states always diverges whether they are orthogonal or not.
Thus, it is not so suitable to make an argument based on the
interpretation of “code length” in the pure-states model.

D. Quantum detection game

Instead of the code length interpretation, we take another
interpretation for the choice of a prior in the pure-states
model. Let us explain the setting of quantum signal detection
as a game between Alice (nature) and Bob (statistician).
For simplicity, we only take a discrete model. Suppose that
Alice is able to prepare k kinds of pure quantum states
M = {ψ1, . . . ,ψk}, where each state is described as a unit
vector in a complex Hilbert space H. Alice first determines
an arbitrary prior distribution {πj }j=1,...,k . She then chooses
one quantum state, say, ψj ∈ M, according to the prior and
sends it to Bob. The receiver Bob has exact knowledge about
candidates. Bob prepares the arbitrary reference state φ ∈ H
and he tries to detect any state. It corresponds to the two-valued
measurement {|φ〉〈φ|,I − |φ〉〈φ|}. It is possible to perform
such kinds of measurements in quantum optics. For each
state ψj , Bob’s detection probability is given by physical
law, pj := |〈ψj |φ〉|2 = F (ψj ,φ), where F (ψ,φ) is called the
fidelity [20] between ψ and φ.

The purpose of Alice is to obtain a smaller detection
probability in an average by choosing a prior on 
 :=
{1, . . . ,k}. She may have interest in the following value:

VU := inf
π∈P(
)

sup
φ, ‖φ‖=1

k∑
j=1

πjF (ψj ,φ).

On the other hand, the purpose of Bob is to obtain a larger
detection probability on average by choosing a reference state
φ ∈ H. He may have interest in the following value:

VL := sup
φ, ‖φ‖=1

inf
π∈P(
)

k∑
j=1

πjF (ψj ,φ).

We call a prior distribution achieving VU a least favorable prior
with respect to the detection game denoted as π∗. A reference
state achieving VL is denoted as φ∗ and called a maximin
detection strategy. Note that we adopt here a kind of success
probability instead of a loss function and we have to exchange
the roles of min and max. If we consider Bob’s task as the
estimation of the unknown state with no experimental data, φ∗
is the minimax estimate when the performance is evaluated by
1 − F . In a similar line to classical minimax theorem [18], we

easily see VU � VL. However, generally it could happen that
VU > VL because Bob’s choice is not randomized.

As is usual in game theory, Bob may take a randomized
strategy. If he is able to prepare any reference state φ ∈ H
according to a probability distribution q(dφ), then its detection
probability is given by∫

F (ψj ,φ)q(dφ).

It can also be rewritten as

F (ψj ,σ ) := 〈ψj |σ |ψj 〉, σ :=
∫

|φ〉〈φ|q(dφ).

Thus, taking a randomized measurement is equivalent to using
the two-valued measurement {σ,I − σ }, σ ∈ S(H). Bob’s
strategy is represented as a density operator. In practice,
his choice may be restricted to the same model M. Then,
σ ∈ coM, where coM is the closure of the convex hull
coM := {∑k

l=1 ql|ψl〉〈ψl | : ψl ∈ M}.
When the randomization strategy is allowed, modified

values are given by

ṼU := inf
π∈P(
)

sup
σ∈S(H)

k∑
j=1

πj 〈ψj |σ |ψj 〉,

ṼL := sup
σ∈S(H)

inf
π∈P(
)

k∑
j=1

πj 〈ψj |σ |ψj 〉,
and

ṼL,B := sup
σ∈coM

inf
π∈P(
)

k∑
j=1

πj 〈ψj |σ |ψj 〉.

This last value represents the maximum detection probability
for the worst case when Bob chooses a reference state from
the same model M. For example, both Alice and Bob have the
same optical device. Clearly, ṼU � ṼL � ṼL,B holds. Other
obvious equalities are

ṼL = sup
σ∈S(H)

inf
j

〈ψj |σ |ψj 〉 � VL

and

ṼL,B = sup
σ∈coM

inf
j

〈ψj |σ |ψj 〉.

Since supσ∈S(H) TrσX = ‖X‖, we obtain

ṼU = inf
π∈P(
)

‖ρπ‖ = VU,

where ρπ := ∑k
j=1 πj |ψj 〉〈ψj |.

If each state is distinguished from the other states com-
pletely, 〈ψi |ψj 〉 = δij , then, due to the symmetry of the model,
we obtain the uniform prior π∗ = 1/k as the least favorable
prior, which is very natural.

We also mention another approach by Hirota and Ike-
hara [26]. They deal with quantum signal identification and
investigate the relation between minimaxity and Bayes’ rule.
Classically, their approach is close to point estimation, while
ours is close to the predictive distribution in statistics.
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III. MAIN RESULT

Theorem 3.1. When the above discrete model (|M| < ∞)
is assumed, then ṼL = ṼU . Thus, the game has a finite value.
There exists a Bob’s maximin strategy σ∗ and a least favorable
prior π∗.

Proof. It is enough to show that ṼU � ṼL and it is easily
shown in the same manner as the usual minimax theorem for
finite cases. See Theorem 1, p. 82 in Ferguson [18]. �

Unfortunately, there exists the case where ṼU > ṼL,B .
Thus, we seek another version for ṼL,B . Let us define

ṼU,B := inf
π∈P(
)

sup
σ∈coM

k∑
j=1

πjF (ψj ,σ ).

Obviously,

ṼU,B = inf
π∈P(
)

sup
j

〈ψj |ρπ |ψj 〉 � inf
π∈P(
)

‖ρπ‖ = ṼU

holds. Using the above value, the following minimax theorem
holds.

Theorem 3.2. When the above discrete model (|M| < ∞)
is assumed, then ṼL,B = ṼU,B . Thus, the game has a finite
value. There exists a Bob’s maximin strategy σ∗,B and a least-
favorable prior π∗,B .

In practice, it is enough for Bob to prepare the physical
device that generates the same sets of reference states as Alice
has. The above theorem is a direct consequence of Ferguson’s
general result. If Bob is not allowed to randomize the detection
measurement, which seems more realistic in some situations,
then the following inequalities hold.

VL � VU = inf
π∈P(
)

‖ρπ‖.

In the case where that the converse holds, there exists a Bob’s
maximin strategy φ∗ and a least favorable prior π∗. Necessary
and sufficient conditions that VL = VU holds are unknown.
The following sufficient conditions are immediate.

Theorem 3.3 When k = 2 or when all vectors ψi ∈ M are
orthogonal to each other, then VU = VL. The least favorable
prior is the uniform one.

Here we make some comments. When d = dimH = 2, the
von Neumann entropy is written as

H (ρπ ) = −‖ρπ‖ln‖ρπ‖ − (1 − ‖ρπ‖)ln(1 − ‖ρπ‖).

Thus, H (ρπ ) is a decreasing function of the norm ‖ρπ‖ for
1
2 � ‖ρπ‖ � 1. Maximizing the von Neumann entropy of ρπ

yields the least favorable prior π∗,

πME : = arg max{H (ρπ ) : π ∈ P(
)}
= arg min{‖ρπ‖ : π ∈ P(
)} =: π∗.

When d � 3, generally πME does not agree with π∗
except for ‖ρπ‖ = 1/d or equivalently ρπ = I/d. Apart from
classical cases, the above least-favorable prior and maximum
entropy prior are generally not unique. For example, two
different orthonormal bases {ej } and {fj }, due to complete-
ness condition, yield the same state I/k = ∑

j |ej 〉〈ej |/k =∑
j |fj 〉〈fj |/k.
Now we also mention the infinite cases (|
| = ∞). Let


 be a compact subset of a Euclidean space and θ ∈ 
 �→

ρθ ∈ S(H) be a one-to-one continuous mapping, where the
continuity of ρθ is defined by the continuity of each function
θ �→ 〈ψ |ρθ |ψ〉, ψ ∈ S(H). Let P(
) denote the set of all
probability measures π (dθ ) defined on the Borel subsets of 
.
It is known thatP(
) is compact in the weak topology when 


is compact. In the sense of weak convergence, we also define

ρπ =
∫

ρθπ (dθ ).

We now extend the definitions and equalities in the last section
to the infinite cases.

ṼL : = sup
σ∈S(H)

inf
π∈P(
)

∫
F (ρθ ,σ )π (dθ )

= sup
σ∈S(H)

inf
θ∈


F (ρθ ,σ ),

ṼU : = inf
π∈P(
)

sup
σ∈S(H)

∫
F (ρθ ,σ )π (dθ )

= inf
θ∈


sup
σ∈S(H)

F (ρθ ,σ ).

Again, by definition, we easily see ṼU � ṼL.
Theorem 3.4. In the above condition, for a parametric model

M := {ρθ : θ ∈ 
} ⊆ S(H),

ṼL = ṼU (3)

holds. There exists a Bob’s maximin strategy σ∗ and a least-
favorable prior π∗.

Proof. First, we show that there exists a prior that achieves
the infimum

inf
π∈P(
)

‖ρπ‖.

Since P(
) is compact, it is enough to show that ‖ρπ‖ is
continuous with respect to π . We use the following lemma,
whose proof is in the appendix.

Lemma 3.5. When πn → π , ‖ρπn
− ρπ‖ → 0.

From the lemma, we see that ‖ρπn
‖ − ‖ρπ‖ → 0 as πn →

π , which implies the continuity of ‖ρπ‖.
Next, we show the equality (3). It is enough to show ṼL �

ṼU . Let ε be a fixed positive number. Since 
 is compact, there
exists a finite set


ε := {θ1, . . . ,θk} ⊆ 


such that

∀ θ ∈ 
, ∃ θj s.t. sup
σ∈S(H)

|F (ρθ ,σ ) − F (ρθj
,σ )| < ε.

Now we set Fε(σ ) := infθ∈
ε
F (ρθ ,σ ) = minj F (ρθj

,σ ).
Then for arbitrary σ ∈ S(H) and θ ∈ 
, we choose θj such
that F (ρθ ,σ ) > F (ρθj

,σ ) − ε. Hence,

F (ρθ ,σ ) > F (ρθj
,σ ) − ε � min

j
F (ρθj

,σ ) − ε = Fε(σ ) − ε

and, taking the infimum with respect to θ ,

inf
θ∈


F (ρθ ,σ ) � Fε(σ ) − ε (4)

holds for arbitrary σ ∈ S(H). By Theorem 3.1,

sup
σ∈S(H)

Fε(σ ) = inf
θ∈
ε

sup
σ∈S(H)

F (ρθ ,σ ) = inf
π∈P(
ε )

sup
σ∈S(H)

F (ρθ ,σ )

� inf
π∈P(
)

sup
σ∈S(H)

F (ρθ ,σ ) = ṼU .
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Finally, from Eq. (4) we have

ṼL = sup
σ∈S(H)

inf
θ∈


F (ρθ ,σ ) > sup
σ∈S(H)

Fε(σ ) − ε � ṼU − ε.

Since ε is arbitrary, we obtain ṼL � ṼU .
Bob’s maximin strategy is given by the first eigenvector φ∗

of the Bayesian mixture

ρ∗ :=
∫

ρθπ∗(dθ ),

where π∗ is the least favorable prior, which achieves ṼU . �
In our setting, the extension of Theorem 3.2 to infinite cases

is also shown. While the above theorem includes noncompact
set S(H), the restricted class coM is shown to be compact,
which makes the proof easier than Theorem 3.4 and is, thus,
omitted.

IV. EXAMPLES

A. Two nonorthogonal states

In order to show how our method is applicable to a
pure-states model, we illustrate a simple example first.
Suppose that we have two known nonorthogonal pure
states M = {ψ1,ψ2}. The Bayesian mixture then is given
by ρa(ψ1,ψ2) := a|ψ1〉〈ψ1| + (1 − a)|ψ2〉〈ψ2|, 0 � a � 1.
Since ‖ρa(ψ2,ψ1)‖ = ‖ρa(ψ1,ψ2)‖, we obtain the following
inequality:∥∥ρ 1

2
(ψ1,ψ2)

∥∥ � 1
2‖ρa(ψ1,ψ2)‖ + 1

2‖ρa(ψ2,ψ1)‖
= ‖ρa(ψ1,ψ2)‖.

Thus, ∥∥ρ 1
2
(ψ1,ψ2)

∥∥ � min
a

‖ρa(φ,ψ)‖.

and a = 1
2 achieves the minimum. A least-favorable prior for

a two-pure-states model is always uniform, π (ψ1) = π (ψ2) =
1
2 , which agrees with our intuition.

If we have more than two pure states, then there are
nontrivial cases. The above setting seems too simple, but still
we often see such models in quantum control [27].

B. Continuous model with one outlier

Let us consider the following model:

M := {|ψ(θ )〉 ∈ C2 : θ ∈ 
 := [−1/6π,1/6π ]} ∪ {|ψO〉},

where |ψ(θ )〉 := ( cos θ/2 sin θ/2 )� and |ψO〉 :=
|ψ(2/3π )〉 = ( 1/2

√
3/2 )

�
is called an outlier. In the

above model, physical intuition no longer works. If the
equally probable criterion is applied, then we assign zero
to the outlier ψO and obtain the uniform distribution πU (θ )
over 
.

Very interestingly, the least-favorable prior assigns the
weight only to two states and is given by

π (2/3π ) = π (−1/6π ) = 1
2 .

The maximin strategy is given by ψ∗ = ψ(1/4π ). We obtain
the infimum of the norm ‖ρπ‖,

ρ∗ = 1

2

(
1 +

√
3−1
4

√
3−1
4√

3−1
4 1 −

√
3−1
4

)
and

‖ρ∗‖ = 1

2
+

√
6 − √

2

8
.

The uniform strategy is worse than the above. Indeed, the
uniform prior over 
 yields

ρπU
= 1

2

(
1 + 3

π
0

0 1 − 3
π

)
and clearly ‖ρπU

‖ = 1
2 + 3

2π
> ‖ρ∗‖.

C. Case where randomization is strictly better

Let us consider the following model:

M : = {|ψ(θ,ξ )〉 ∈ C2},
ψ(θ,ξ ) : = (e−iξ/2 cos θ/2eiξ/2 sin θ/2)�,

θ ∈ [1/4π,3/4π ], ξ ∈ [0,2π ).

In the above model, the maximin strategy is given by either
ψ∗,N = ( 1 0 )� or ψ∗,S = ( 0 1 )�. Then

VL = 1

2
−

√
2

4
< ṼL = 1

2
(= ṼU )

holds.

D. Symmetric pure-states model

Next let us consider the following model, M =
{ρ1, . . . ,ρk}, where ρj = |ψj 〉〈ψj | and we assume that there
exists a unitary U that satisfies

ρl+1 = UρlU
∗, l = 1,2, . . . ,k,

where ρk+1 := ρ1. The least-favorable prior then is given by

π∗ = (1/k, . . . ,1/k).

We set

ρ∗ := 1

k

∑
l

ρl .

The maximin strategy is given by the first eigenvector |ϕρ〉
of ρ∗. Indeed, from [ρ∗,U ] = 0, we obtain [|ϕρ〉〈ϕρ |,U ] = 0.
Thus, |〈ϕρ |ψj 〉|2 = V is a constant and

V � VL � ṼL.

On the other hand,

VU � ‖ρ∗‖ = 〈ϕ∗|ρ∗|ϕ∗〉 =
∑

j

1

k
|〈ϕρ |ψj 〉|2 = V.

Thus, VL = ṼL = ṼU = VU holds.
We often see such examples in Helstrom [22] and Eldar

et al. [28,29], where they mainly discuss quantum signal
identification. They might be solved by using the group
covariant measurement theoretically [21]. Previous works
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focus only on the best measurement and not on the choice of a
noninformative prior. In the above model, we agree with using
the uniform prior. However, even only a slight modification
of the model could spoil the justification on the usage of the
uniform prior. On the other hand, our result applies to models
that have no group symmetry. Even if we remove some states,
ψl1 , . . . ,ψlm such that

ρ∗ ∈ co
{
M \ {

ψl1 , . . . ,ψlm

}}
,

the same equality still holds since [ρ∗,U ] = 0. The maximin
strategy remains the same, but the least-favorable prior changes
and it is not the uniform prior. Although our result is based
on a rule that differs from that of previous authors, it suggests
that the uniform prior should be changed for less-symmetric
models.

E. Rotational model

Straightforward generalization of the above result is as
follows. Let J be a Hermitian operator and set

|ψ(θ )〉 := e−iθJ |ψ0〉.
The periodic condition

|ψ(θ + 2π )〉 = |ψ(θ )〉
is also imposed. It corresponds to rotation around a certain
axis. We then obtain the one-parameter model

M([0,2π )) := {ρθ = |ψ(θ )〉〈ψ(θ )| : θ ∈ [0,2π )}.
Again, VL = ṼL = ṼU = VU holds. Indeed, we introduce the
invariant integral

ρ∗ :=
∫

dθ

2π
e−iθJ |ψ0〉〈ψ0|eiθJ

and the minimax strategy is given by the first eigenvector of
ρ∗. Even if we restrict the parameter θ to a certain region

 ⊂ [0,2π ) such that ρ∗ ∈ co{M(
)}, the above result holds.

For a compact group G, its (projective) unitary represen-
tation Vg and finite invariant measure μ(dg), it is possible to
construct a more general result using the above technique.

V. CONCLUDING REMARKS

In the present paper, we define a quantum detection game
and show that a least favorable prior with respect to the game
is one candidate for a noninformative prior. Unfortunately,
it is not uniquely determined, which is mainly due to the
quantumness. Our result is mainly of theoretical interest
but it suggests that a certain minimax estimation is deeply
related to the choice of noninformative prior even in pure-state
models. In more specific models, we need to investigate the
performance of a quantum pure-state estimation based on our
prior distribution compared with others, which is left for future
study.

From geometrical viewpoints, our result is also stimulating
because noninformative priors are often related to certain
metrics on parametric models. But again we have no classical
counterpart in the pure-states model and, thus, need further
investigation in order to find a relevant metric.
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APPENDIX

We present a complete proof of Lemma 3.5. First, from the
assumption of ρθ , fϕ(θ ) := 〈ϕ|ρθ |ϕ〉 is a bounded continuous
function with respect to θ for an arbitrary ϕ ∈ H. Therefore,
when πn → π ,∫

fϕ(θ )πn(dθ ) −
∫

fϕ(θ )π (dθ )

= 〈ϕ|
{∫

ρθπn(dθ ) −
∫

ρθπ(dθ )

}
|ϕ〉

= Tr
(
ρπn

− ρπ

)|ϕ〉〈ϕ| → 0, ∀ ϕ ∈ H

holds. We may replace |ϕ〉〈ϕ| with a finite-rank density
operator in the above. Now we show that the weak convergence
ρπn

→ ρπ implies the strong convergence ‖ρπn
− ρπ‖ → 0.

Since Trρπ = 1, for an arbitrary positive number ε there
exists a finite-dimensional projection Pε such that

TrρπPε � 1 − ε.

Since Tr(ρπn
− ρπ )Pε → 0, we may take a sufficiently large

N satisfying

n � N ⇒ ∣∣Trρπn
Pε − TrρπPε

∣∣ < ε.

It follows that

0 � TrρπQε � ε, 0 � Trρπn
Qε < 2ε, ∀ n � N,

where we set Qε := I − Pε .
Now we prove that n � N ⇒ ‖ρπn

− ρπ‖ < Cε, where
C > 0 is a positive constant independent of n. First, we
decompose∥∥ρπn

− ρπ

∥∥ = ‖(Pε + Qε)
(
ρπn

− ρπ

)
(Pε + Qε)‖

= ∥∥Pε

(
ρπn

− ρπ

)
Pε

∥∥ + ∥∥Qε

(
ρπn

− ρπ

)
Qε

∥∥
+ ∥∥Qε

(
ρπn

− ρπ

)
Pε

∥∥ + ∥∥Pε

(
ρπn

− ρπ

)
Qε

∥∥
(A1)

The first term in the last equality (A1) goes to zero as n

increases.
Now we omit ε and set Xn := ρπn

− ρπ . In order to evaluate
the third term in the decomposition (A1), we need some
inequalities,

‖X‖ � ‖X‖2 := {TrX∗X} 1
2 , (A2)

σ 2 � σ, σ ∈ S(H), (A3)

2ρ2 + 2σ 2 � (ρ − σ )2, ρ,σ ∈ S(H) (A4)

Now we evaluate the term ‖Q(ρπn
− ρπ )P ‖ = ‖QXnP ‖.
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First, by the inequality (A2),

‖QXnP ‖ �
{
TrQXnP

2XnQ
} 1

2 �
{
TrQX2

nQ
} 1

2

holds. We then use the inequalities (A4) and (A3)

TrQX2
nQ = TrQ

(
ρπn

− ρπ

)2
Q � 2

{
TrQρ2

πn
Q + TrQρ2

πQ
}

� 2
{
TrQρπn

Q + TrQρπQ
}

= 2
{
TrQρπn

+ TrQρπ

}
< 6ε.

The term ‖QXnP ‖ is also evaluated in the same way. Thus,
the third term is evaluated as

‖QXnP ‖ + ‖PXnQ‖ � 2
√

6ε.

Finally, we evaluate the second term in the decomposition
(A1). We use the inequalities with respect to the trace

norm ‖X‖1.

‖X‖ � ‖X‖1 := Tr|X|, (A5)

‖X − Y‖1 � ‖X‖1 + ‖Y‖1, (A6)

By the inequalities (A5) and (A6),

‖QXnQ‖ � ‖QXnQ‖1 �
∥∥Qρπn

Q
∥∥

1 + ‖QρπQ‖1

= TrQρπn
+ TrQρπ < 4ε

holds. Thus, putting together and choosing a sufficiently large
N , we obtain

n � N ⇒ ‖ρπn
− ρπ‖ < Cε.
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