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Scalable engineering of multipartite W states in a spin chain
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We propose a scalable scheme for engineering multipartite entangled W states in a Heisenberg spin chain.
The rather simple scheme is mainly built on the accumulative angular squeezing technique first proposed in the
context of quantum kicked rotor for focusing a rotor to a delta-like angular distribution [I. Sh. Averbukh and
R. Arvieu, Phys. Rev. Lett. 87, 163601 (2001)]. We show how the efficient generation of various W states may
be achieved by engineering the interaction between a spin chain (short or long) and a time-dependent parabolic
magnetic field. Our results may further motivate the use of spin chains as a test bed to investigate complex
properties of multipartite entangled states. We further numerically demonstrate that our scheme can be extended
to engineer arbitrary spin chain quasimomentum states as well as their superposition states.
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I. INTRODUCTION

Entanglement is a unique quantum property featuring
nonlocal correlations between two or more quantum systems
[1]. Over the past few decades there has been an increasing
interest in studies of entanglement [2]. The main motivations
are the potential advantages offered by entanglement in
quantum information tasks such as quantum teleportation
[3], quantum cryptography [4], and quantum computation
[5]. So far early studies focused mainly on entanglement
between two systems termed as bipartite entanglement. The
preparation, characterization, and quantification of bipartite
entanglement are now fairly well understood. By contrast,
the case of multipartite entanglement (i.e., the entanglement
between three or more particles) is still much less understood.
Attempts to extend the ideas of bipartite entanglement to
many-body systems have led to the finding of different classes
of multipartite entangled states [6].

A particularly important multipartite state that has attracted
much attention is the so-called W state. An N -qubit W state
consists of a superposition of N states where exactly one qubit
is in state |1〉 while all the others are in state |0〉 [6]. A W state
can be represented as

|WN 〉= 1√
N

(|100 · · · 0〉 + |010 · · · 0〉+ · · · |000 · · · 1〉). (1)

Entanglement of a W state is robust against the qubit loss
(i.e., if some qubits are lost the remaining qubits are still
entangled [7]). Also, the entanglement is immune against
global dephasing and qubit flip noise [8]. Owing to these
interesting properties, W states play a more important role than
other entangled multipartite states for practical applications
in quantum information processing [9]. Hence, the efficient
generation of W states is of particular interest.

Numerous schemes have been proposed and demonstrated
for engineering W states using photons as qubits [10]. Al-
though photons are advantageous for distant communication,
the resources required to entangle photons grows exponentially
with the increase in photon number. Alternatively, the prepa-
ration of W states in cavity quantum electrodynamics (QED)
systems and ion traps have been discussed [11]. Nevertheless,
the problem of scalability still remains unresolved. Recently,

a robust scheme generating W states in cavity QED systems
with improved scalability was introduced [12]. However, that
linear-optics-based scheme requires post selections. Another
system investigated for the generation of W states is spin
chains. In contrast to the above-mentioned systems, spin chains
may require less resources. For instance, the natural evolution
of XY spin chains was shown to generate three or four qubit
W states at specific times [13]. The need for instantaneous
measurement at specific times and the lack of generalization
to systems with more qubits are the main disadvantages
of such a method based on the natural evolution of spin
chains. Other approaches used branched spin chains [14] or
used engineered defects in an anisotropic spin chain [15]
to generate W states. These approaches require individual
addressing of spins and hence are not straightforward to
implement.

In this paper, we examine a simple and scalable scheme
for efficient controlled generation of N -qubit W states in
a Heisenberg spin chain using instantaneous pulses of an
external parabolic field. The central idea of such a scheme,
based on an intriguing mapping between the dynamics of a
kicked spin chain with that of a quantum kicked rotor [16], is
essentially the angular squeezing technique previously studied
in the context of quantum rotor dynamics [17]. Our scheme has
a few obvious advantages. First, it requires only control over
the global parameters of the spin chain, such as the strength
of the parabolic magnetic field and the timing of applied
control pulses. Second, it does not require any measurement
at any particular times: a W state is guaranteed to emerge at
the end of a controlled evolution process. Third, single spin
chain quasimomentum states and their superposition states can
be engineered in an analogous manner, thus resulting in the
generation of a whole class of generalized W states. But most
important of all, our scheme is scalable in the sense that it
equally applies no matter how long the spin chain becomes.
That is, in principle, the engineering scenario itself is largely
independent of the number of qubits.

This paper is organized as follows. In Sec. II, we introduce
the spin chain model used in our study. This is followed by
introducing a mapping between a kicked spin chain and a
quantum kicked rotor. We then briefly introduce in Sec. II C
the technique proposed earlier for focusing quantum rotors to
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δ-like angular distributions. In Sec. III, we present our scheme
for the generation of W states in spin chains and numerically
investigate its performance and its extensions. Finally, we
conclude the paper in Sec. IV.

II. GENERAL CONSIDERATIONS

A. Heisenberg spin chain

Let us start from a Heisenberg chain of N spins with the
Hamiltonian

Hhc = −J

N−1∑
n=1

σn · σn+1. (2)

Here σ ≡ (σx,σ y,σ z) are the Pauli matrices and J is the
coupling strength between nearest-neighbor spins. Also, we
assume that all system parameters have been appropriately
scaled and take dimensionless values, with J = 1, h̄ = 1
throughout. The dynamics of the above spin chain conserves
the total polarization Sz ≡ ∑N

n=1 σ z
n . To simplify the matter

we focus on the single excitation subspace (that is, states
with N − 1 spins up and one spin down, denoted by |m〉 =
σ+

m |000 · · · 0〉, with m = 1,2, . . . ,N). For periodic boundary
conditions (open-ended chains will be discussed later), the
eigenvectors for the single spin-flip sector of the Hamiltonian
in Eq. (2) (in terms of the basis states |m〉) are

|k〉 = 1√
N

N∑
m=1

eimk|m〉. (3)

These states represent spin waves or magnons with quasi-
momentum k = (−N + 2n)π/N where n = 1,2, . . . ,N . For
this reason we call states |k〉 as quasimomentum states below.
The energy eigenvalues of these states are given by (up to a
constant)

Ek = −J cos(k). (4)

From Eq. (3), it follows that all the eigenstates can be regarded
as generalized W states with certain phases between the
different single spin-flip states. In particular, the |k = 0〉 state
is the symmetric W state given in Eq. (1).

B. Quantum kicked rotor model and the Heisenberg
spin chain model

Applying an external parabolic δ-pulsed magnetic field to
the Heisenberg spin chain, the Hamiltonian reads

H = Hhc + C

2

N∑
n=1

(n − n0)2σ z
n

∑
j

δ(t − jT0). (5)

Here C and n0 are the amplitude and the central position of
the parabolic field and T0 is the kicking period. Note that the
δ pulses still conserve the total polarization and therefore the
dynamics is still restricted to the single excitation subspace.
As the Hamiltonian H is periodic in T0, we have |ψ(t = (j +
1)T0)〉 = U (T0)|ψ(t = jT0)〉, where U (T0) is given by

U (T0) = U kickU free = e(−iC/2)
∑N

n=1(n−n0)2σ z
n e−iT0Hhc . (6)

Here U kick = e(−iC/2)
∑N

n=1(n−n0)2σ z
n and U free = e−iT0Hhc , with

〈m|U kick|n〉 = e(−iC/2)(n−n0)2
δmn. (7)

Further, in the limit of large N , we have

〈m|U free|n〉 ≈ im−nJm−n(JT0), (8)

where Jn represents the Bessel function of order n [16]. It is
interesting to note that the above matrix elements of U (T0) are
very similar to the matrix elements of the evolution operator
of a quantum kicked rotor (QKR) [16], the standard model
used in the quantum chaos literature, whose Hamiltonian is
given by

HQKR = (p̂ − p0)2

2
− K cos(θ̂ )

∑
j

δ(t − jT ), (9)

where K is the strength and T is the period of the kick. Indeed,
the matrix elements of the time evolution operator of QKR (in
terms of its momentum basis states |m〉 = eimθ/

√
2π for an

effective Planck constant h̄) are given by the product of two
terms

〈m|U free
QKR|n〉 = e−ih̄(n−n0)2/2δmn,

(10)

〈m|U kick
QKR|n〉 = im−nJm−n

(
K

h̄

)
,

with period T = 1. The first line in Eq. (10) corresponds
to the free evolution whereas the second line depicts the
effect of the kicking potential. Comparing Eqs. (7) and (8)
with Eq. (10), it is clear that the free evolution part of the
Heisenberg spin chain is parallel to the kicking part of the QKR
evolution operator, whereas the U kick operator associated with
the parabolic magnetic field in the spin chain case is parallel
to U free

QKR. Indeed, this mapping becomes clearer if we rewrite
Eq. (2) in terms of the quasimomentum states |k〉 as

Hhc = −J
∑

k

cos(k)|k〉〈k|. (11)

Thus, the quasimomentum (k) of the spin chain maps onto
the angular position operator (θ̂ ) in the QKR. Similarly, the
site index (n) can be mapped onto the momentum (p̂/h̄) in
the QKR. Further, we can identify the mappings JT0 → K

h̄
,

C → h̄ and |m〉 → |m〉.
With the aid of this mapping, one can now use tools from

the control of QKR dynamics to control the dynamics of spin
chains. For instance, using this mapping the controlled transfer
of quantum information and the controlled amplification of
spin excitation have been proposed by us [18]. For our
study here, because a W state corresponds to a state with
zero quasimomentum (i.e., |k = 0〉), the issue of the efficient
generation of the W state in the spin chain is equivalent to the
alignment or focusing of rotors to the zero angular position
state |θ = 0〉. Fortunately, the authors of Ref. [17] already
proposed how to focus a quantum rotor to the |θ = 0〉 state, as
introduced in the next section.

C. Accumulative angular squeezing for focusing
a quantum rotor

The degree of orientation or squeezing of a quantum rotor at
θ = 0 can be quantified by DQKR = 〈1 − cos(θ̂ )〉. If the rotor
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is entirely in the |θ = 0〉 state, then DQKR has its minimum
value of 0. To efficiently and successively decrease the value
of DQKR, Averbukh and Arvieu proposed a simple solution
by manipulating the time intervals between two neighboring
kicks [17]. The strategy goes as follows. After the first kick
at time t1 = 0, the maximal squeezing occurs after a time
delay �t1. Now let a second kick be applied at time t2 = �t1.
Immediately after the second kick, the probability density
distribution of θ remains the same. However, the degree of
squeezing then evolves in time before a third kick comes
in. During the free evolution, DQKR(t) and its derivative are
continuous and periodic functions of time. Thus, DQKR(t) will
reach a new minimum at a new time t2 + �t2 in the interval
[t2,t2 + 4π ] (Note that the dynamics of a free quantum rotor
is fully periodic with a period of 4π ). The new minimal
value of the degree of squeezing should be less than that
of the previous one. By continuing this (i.e., applying kicks
at time tj+1 = tj + �tj ) with the following time evolution
operator

· · · e−i�t3
(p̂−p0)2

2h̄ e−i K
h̄

cos θ̂ e−i�t2
(p̂−p0)2

2h̄

× e−i K
h̄

cos θ̂ e−i�t1
(p̂−p0)2

2h̄ e−i K
h̄

cos θ̂ , (12)

the squeezing effects accumulate in time. It has been numeri-
cally shown that the logarithm of DQKR decreases successively
without any sign of saturation. Theoretical considerations
[17] further suggested that for a large number of kicks, the
angular variance at the j th kick, denoted 〈θ̂2〉j , is inversely
proportional to the square root of the kick number j and the
required time delay �tj for the application of the j th kick is
inversely proportional to the kick number (i.e., 〈θ̂2〉j ∝ 1/

√
j

and �tj ∝ 1/j ). Thus, unlimited squeezing in the region of
θ = 0 can be obtained for a quantum rotor. This strategy has
been experimentally demonstrated using cold cesium atoms
in a pulsed optical lattice [19]. For a given fixed number of
kicks, further improvement over the accumulative squeezing
can be obtained using optimal squeezing strategies, where the
DQKR value can be minimized in a high-dimensional space of
all possible delay times �tj > 0 [20].

III. EFFICIENT GENERATION OF W STATES
IN A SPIN CHAIN

A. Squeezing of quasimomentum distribution via a single kick

We are now ready to exploit the mapping between QKR
and a kicked spin chain as well as the angular squeezing
technique to investigate how W states can be generated with
high fidelity and with high efficiency. To ensure that the
mapping between QKR and a kicked spin chain is fairly
accurate, we first consider a long chain of 200 spins. As
mentioned previously, the similarity between the propagator of
a QKR and a sufficiently long spin chain implies the following
mapping:

e−it
(p̂−p0)2

2h̄ → e−iC
(n−n0)2

2 ,
(13)

e−i K
h̄

cos(θ̂) → e−itJ cos(k),

where t here is understood as the (yet-to-be-determined)
free evolution time for a quantum rotor or a spin chain (in

(a)

(b)

FIG. 1. (a) Quasimomentum distribution profile of a Heisenberg
chain of 200 spins at time t = 0 and (b) after applying a kick of
strength C = 1/85 at t = 85. The distribution after the kick is peaked
at k = 0, indicating the formation of a W state. As mentioned in
the main text, all plotted quantities here and in other figures take
dimensionless values.

periodically driven cases, the fixed free evolution time is
denoted by T or T0). From Eq. (13) it is clear that a strong
kick in the QKR implies long-time free evolution of a spin
chain if we set J = 1. Also, the free evolution of duration t

in the QKR with h̄ = 1 corresponds to kicking the chain with
a field of appropriate strength C. For example, for quantum
rotor squeezing using one strong kick only, a semiclassical
consideration for QKR suggests that a strong kick with strength
K will yield squeezing at time t = 1/K [17]. Its spin chain
analog then becomes the following (after doing the mapping):
we first evolve the chain for long time t and then kick the
chain with a parabolic field with strength C = 1/t . Figure 1
demonstrates that this understanding is correct at the single
kick level. There, the initial state is a single spin excitation
at the center of the chain (i.e., �in = |100〉). From Eq. (3),
it follows that all the quasimomentum states have equal
probability (i.e., |ck|2 = 1/200 where ck is the probability
amplitude of a state with quasimomentum k) as shown in
the top panel of Fig. 1. The chain is then evolved until time
t = 85, after which a kick of strength C = 1/85 is applied.
The bottom panel of Fig. 1 shows the probability distribution
in the quasimomentum space of the quantum state right after
applying the kick. It is clear that focusing at the |k = 0〉 state
occurs at this field strength. To characterize the squeezing in
the k space, we use D = 〈1 − cos(k)〉 for the spin chain case.
It is interesting to note that we obtained the same value of
D = 0.418 as obtained for QKR as the authors of Ref. [17],
constituting a direct proof that the angular squeezing technique
for QKR can be translated to the spin chain context. This
is the case, even though in our calculations the spin chain
has a finite number of spins. Note also that we have carried
out similar calculations for open-ended spin chains (that is,
without using the periodic boundary condition) and similar
results were obtained.
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B. Accumulative squeezing for the generation of W states

With the remarkable correspondence between the squeez-
ing dynamics of a finite spin chain and that of a quantum rotor
confirmed, it is interesting to investigate the usefulness of the
above-mentioned accumulative angular squeezing strategy in
enhancing the focusing on the k = 0 quasimomentum state of
the spin chain (hence leading to the efficient generation of a W

state). Because the kicking part in the QKR case corresponds
to the free evolution part in the spin chain, in our scheme we
first evolve the chain for a fixed duration t . From the mapping
between the QKR free evolution and the kicking part of the
spin chain, the second step in our scheme is to kick the spin
chain with a particular field Cj that minimizes the function
〈1 − cos(k)〉. These two steps constitute one loop. By iterating
the loops (i.e., by considering the following total time evolution
operator)

· · · e−iC3
(n−n0)2

2 e−itHhce−iC2
(n−n0)2

2

× e−itHhce−iC1
(n−n0)2

2 e−itHhc , (14)

the expectation value 〈1 − cos(k)〉 that characterizes the degree
of squeezing D can be minimized and hence one obtains a
state sharply localized at k = 0, which is just a W state of
the chain. Figure 2 presents one computational example of
the accumulative focusing to the |k = 0〉 state in a chain of
200 spins, with the free evolution time t fixed at t = 3.0 (i.e.,
with period T0 = 3.0). In particular, the top panel of Fig. 2
depicts the degree of squeezing D after each kick and bottom
panel shows the optimized field strength C associated with
each kick. Here we used the same initial state �in = |100〉
used in Fig. 1, whose initial value of D is unity. The chain is

FIG. 2. Accumulative squeezing onto a W state for a Heisenberg
chain of 200 spins. Panel (a) shows the variation of degree of
squeezing D = 〈1 − cos(k)〉 with the number of kicks whereas panel
(b) shows the field strength C used for each kick.

first evolved for a duration of t = 3.0 and we then apply the first
kick of strength C = 1.87. Right after the first kick D becomes
0.42. Upon a second kick of strength C = 0.19, D is further
reduced to 0.33. Note that the particular values of field strength
are those that minimize D for each kick. This process then
continues.

It is also necessary to elaborate on how the minimization of
D is done at each loop of iteration. In particular, the minimal
value of D is searched by scanning the value of C in a certain
range [Cl,Ch], where the choices of Cl and Ch can be made
by making an analogy to the squeezing dynamics of QKR. For
QKR, the expectation value DQKR initially decreases with a
decreasing pulse interval �t1 and then increases. The chosen
value of t2 = �t1 for the second kick in the QKR case is
when DQKR reaches the minimal value before its increase.
After the kicking at time t2, DQKR again decreases with a
decreasing pulse interval �t2 until t3 = �t2 + t2 where t2 < t3.
In Ref. [17], t2 = 1.87. In our spin chain calculations, we
obtained the first optimal value of field strength by scanning C

in the range [0.1,10]. It is found that, similar to the QKR case,
the value D decreases with C and then increases. Indeed the
optimal value of C is also found to be 1.87. We then attempt to
find the second optimized value of C by searching the minimal
values of D for all values of C in the range [Cl,1.87]. This
process then continues. That is, Ch is the optimal value of C

for the previous kick and Cl is a value set to be much less
than Ch. Note that the value of Cl is adjusted for each kick
to ensure that the increase in D with decreasing C can be
encountered.

It is clear from Fig. 2(a) that the value of D = 〈1 − cos(k)〉
successively decreases with more kicks. We even found that the
D values assume almost the same values of DQKR as mentioned
in Ref. [17]. Also, for a large number of kicks, we find that
the D value is inversely proportional to

√
M , where M is

the number of kicks, and the optimized field strength C is
inversely proportional to M , both aspects being parallel to
the case of QKR squeezing. All these observations indicate
that so long as the spin chain is long enough (such that the
spin chain dynamics is close to the QKR dynamics), then the
scheme here to generate N -partite W states is irrespective of
the actual number (N ) of spins in the chain.

It must be noted, however, that the correspondence between
QKR and a kicked Heisenberg spin chain is exact only in
the limit of large N . Indeed, in a quantum rotor system, the
momentum quantum number ranges from −∞ to ∞ whereas
in the spin chain here, the site index n is restricted to a finite
range for a finite spin chain. So it is expected that some
differences between QKR and a kicked spin chain will be
pronounced for short spin chains. It is hence necessary to look
into the feasibility of accumulative squeezing for relatively
short spin chains. Our calculations show that D saturates after
some finite number of kicks in cases of short chains. Once
saturation arises, no further squeezing is possible using any
field strength. For instance, for a chain of 20 spins, D saturates
after 30 kicks. The number of kicks after which the saturation
of D takes place decreases as the chain length decreases.
Fortunately, we found that unlimited squeezing is still possible
for short chains with a slight modification of the accumula-
tive angular squeezing technique. This is the topic of next
section.
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C. W state generation in a short spin chain

Here we present a modified strategy to obtain unlimited
squeezing to the |k = 0〉 state (or the W state) of a short spin
chain. The scheme consists of iterations of the following two
steps:

(1) Evolve the chain freely until time tj ;
(2) At time tj , apply a kick of strength Cj ,

where tj and Cj are the optimized values of free evolution
time and field strength, obtained by minimizing the D value
right after the j th kick. Thus, iterating the control loops

· · · e−iC3
(n−n0)2

2 e−it3Hhce−iC2
(n−n0)2

2

× e−it2Hhce−iC1
(n−n0)2

2 e−it1Hhc , (15)

D can be successively minimized. The difference from what
we did in the previous section is that here a two-dimensional
optimization is performed for each control loop. Let us now
turn to our numerical results based on this scheme. In Fig. 3,
we show one particular example of our numerical findings
for a chain of 20 spins only. We start with an initial state
exclusively localized at the center of the chain (i.e., |10〉).
This state corresponds to a completely delocalized state in
the quasimomentum space of the spin chain. Hence the initial
value of D is unity. For each control loop, we implement
the two-dimensional minimization of D using the combined
stimulated annealing and downhill simplex method of Nelder
and Mead [21]. We further limit the values of Cj and tj in the
reasonable ranges [0.001,10] and [0.001,100], respectively.
For the first kick, the minimal value of D is obtained when a
field of strength C1 = 0.1495 is applied at time t1 = 10.559.
As shown in Fig. 3, for this kick the D value reduces to
0.6351. For minimizing D further, we again numerically
find optimized field strength C2 = 0.1886 applied at time
t2 = 30.5459. The minimal value of D after the second kick is
0.4846. By applying a series of such optimized kicks, it is seen
that D decreases without a sign of saturation, even though the

FIG. 3. Variation of 〈1 − cos(k)〉 with the number of kicks for a
chain of 20 spins. Here the strength of the pulses C is varied between
[0.001,10]. Also, the free evolution time t of the chain between two
neighboring kicks is varied between [0.001,100]. The expectation
value 〈1 − cos(k)〉 decreases successively with the number of control
pulses. Note that for the W state 〈1 − cos(k)〉 = 0.

FIG. 4. Probability distribution in the quasimomentum space of
a chain of 20 spins. Panel (a) represents the initial distribution and
panel (b) represents the distribution after applying 80 pulses. Here
the strength of the pulses C is varied in the range [0.001,10] and the
free evolution time t of the chain between two neighboring kicks is
varied between [0.001,100].

chain only has 20 spins. We also note that by increasing the
range for Cj and tj in the two-dimensional optimization, even
lower values of D can be obtained for a fixed number of kicks,
though the improvement might not be that significant. For
instance, after 50 kicks the D value for the above-mentioned
ranges of Cj and tj is 0.01989. An increase in the range of
Cj and tj to [10−8,10] and [10−8,100] can further slightly
decrease D to 0.00557.

Figure 4 illustrates the high fidelity of our scheme in
generating the W state. There the quasimomentum distribution
profile of the chain with 20 spins is plotted after 80 optimized
kicks. As seen from Fig. 4(b), more than 99% population is
transferred to the |k = 0〉 state. For the shown final state, the
D value that characterizes the fidelity of the W state is as low
as 4.51 × 10−3.

Next, we compare the state generated by our scheme with
the perfect W state. To that end we use the global entanglement
measure Eglobal as introduced by Meyer and Wallach [22] (here
global entanglement is used as one convenient measure, not
meant to be the most strict measure for genuine N -partite
entanglement). Eglobal is related to the averaged one-qubit
purity

Eglobal = 2

(
1 − 1

N

N∑
i=1

Tr
[
ρ̂2

i

])
, (16)

where ρ̂i is the density matrix of the ith spin after tracing over
all other spins in the system. As shown in Ref. [22], Eglobal for
a W state of chain of N spins is 4(N − 1)/N2. Hence for N =
20, Eglobal = 0.19. We find that for the state plotted in Fig. 4,
Eglobal = 0.1899. Note also that the |k = 0〉 state is a stationary
eigenstate of our bare spin chain with Hamiltonian Hhc under
the periodic boundary condition. Hence the generated state
|k = 0〉 does not evolve with time even after the removal of
the pulsed parabolic magnetic field. To further characterize
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FIG. 5. Time evolution of the global entanglement Eglobal under
the Hamiltonian given in Eq. (2) with N = 20 (circles). Initially, the
chain is assumed to be in the engineered state given in Fig. 4(b).
Straight line denotes the theoretical value of Eglobal for the W state.

the fidelity of our generated W state, we have investigated
the dynamics of global entanglement in the chain after we
switch off the parabolic field. Because the final product state
is not exactly the |k = 0〉 state, the value of Eglobal varies
slightly with time. However, this variation is vanishingly small.
In particular, for a chain of 20 sites the value of Eglobal for
our engineered final state in Fig. 4(b) varies between 0.1897
and 0.19. This is illustrated in Fig. 5. The straight line there
corresponds to the theoretical value of global entanglement
for a perfect W state. It is seen that Eglobal remains extremely
close to the theoretical value of 0.19.

In addition to the high fidelity in the generation of W states,
our scheme offers several other advantages as compared to the
existing ones. For instance, W states are generated by the
controlled dynamics of the chain and hence do not require
any instantaneous measurement at specific times to selectively
measure the state. Another advantage is that we require only
optimization over global parameters, such as the strength of
the parabolic field and the timing of the control pulses.

To check the general applicability of our scheme, we have
further investigated open-ended chains. Unlike the case of long
chains, the dynamics of short chains are considerably different
with open and periodic boundary conditions. However, our
results show that our scheme also works with short open-ended
chains, but with reduced fidelity. Compared to periodic chains,
a larger number of kicks is required to obtain a low D value.
For instance, the D value drops below 0.05 after 217 kicks in
an open-ended chain of 20 spins whereas only 27 kicks are
needed in a chain with periodic boundary conditions to reach
similar degree of squeezing.

D. Generation of other states

Is it possible to generate other states by extending our
scheme? We address this question in this section. First, we
consider the engineering of states with nonzero quasimomen-
tum k, with k = ±k1. If the spin chain is in this particular
state, then the expectation value [〈cos(k1) − cos(k)〉]2 is zero.
Hence to generate | ± k1〉 states, we may use the expectation
value [〈cos(k1) − cos(k)〉]2 as a minimizing function (instead

FIG. 6. Probability distribution in the quasimomentum state
space of a Heisenberg chain of 20 spins. Panel (a) is the ini-
tial distribution, panels (b) and (c) represent the distribution ob-
tained after applying 80 pulses with [〈cos(6π/N ) − cos(k)〉]2 and
[〈cos(14π/N ) − cos(k)〉]2 as the minimization functions. Here the
strength of the pulses C is varied in the range of [0.001,10] and the
free evolution time t of the chain between two neighboring kicks is
varied in the range of [0.001,100].

of D defined above) in our control scheme. We examined this
possibility using a chain of 20 spins, with a spin excitation
located at the center of the chain at time zero. The momentum
distribution profile of this initial state is shown in Fig. 6(a).
To generate a state with quasimomentum k = ±6π/20 as an
example, we apply a total of 80 kicks of strength Cj in the
interval [0.001,10]. Also, the free evolution time tj between the
two neighboring kicks is optimized in the range [0.001,100].
The minimization function is chosen to be [〈cos(6π/20) −
cos(k)〉]2. Results obtained under this control scheme are
shown in Fig. 6(b). It is seen that both quasimomentum
states with k = ±6π/20 are equally populated. More than
49% probability in each of the two target states indicates
that our scheme is again highly efficient. Another numerical
example is shown in Fig. 6(c) where the results are obtained
by using the minimization function [〈cos(14π/20) − cos(k)〉]2

for optimizing 80 kicks. About 49% population in both states
of k = ±14π/20 is observed. Note also that the final produced
states here are nonstationary states and hence they will evolve
in time after turning off the parabolic field. However, the
population distribution of these states in the quasimomentum
space remains almost the same.

Encouraged by the success of our scheme in engineering
quasimomentum states other than the |k = 0〉 state, we
further test our scheme for generating the superposition of
quasimomentum states. As a computational example, we let
the state to be engineered be an equal superposition state
[|k1〉 + | − k1〉 + eiφ(|k2〉 + | − k2〉)]/2. We found from our
numerical experiments that this can also be done by using a
more complicated minimization function.
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FIG. 7. Probability distribution of the quasimomentum states of a
Heisenberg chain of 10 spins. Panel (a) corresponds to the initial state.
Panels (b) and (c) correspond to the resulting state obtained after ap-
plying 80 pulses with (2|cn

k1
|2 − 0.5)2 + (2|cn

k2
|2 − 0.5)2 + 2(θ − φ)2

as the minimization function. For panel (b), k1 = 4π/10, k2 = 8π/10,
and φ = 0. For panel (c), k1 = 2π/10, k2 = 8π/10, and φ = π/2.
The field strength parameter C is varied in the interval of [0.001,10],
whereas the free evolution time t between two neighboring kicks is
varied in the interval of [0.001,100].

Specifically, we optimize the parameters Cj and tj for each
kick by minimizing the function (2|cn

k1
|2 − 0.5)2 + (2|cn

k2
|2 −

0.5)2 + 2(θ − φ)2, where cn
k1

and cn
k2

are the probability
amplitudes on the quasimomentum states |k1〉 and |k2〉 right
after the nth kick and θ is the phase difference between
the k1 and k2 components. So if the target state is reached,
then the value of the above minimization function becomes
zero. The results of our calculations with the initial state |5〉
for a chain of 10 spins are shown in Fig. 7. In Fig. 7(b)
an engineered equal superposition state [|k = 4π/10〉 + |k =
−4π/10〉 + |k = 8π/10〉 + |k = −8π/10〉]/2 is shown. The
field strength parameters Cj are limited to the interval
[0.001,10]. The free time evolution parameters tj are varied in
the interval [0.001,100]. Initially, the minimization function

has a value of 0.09. After applying 80 optimized kicks,
the value of the minimization function reduces to 0.00534,
with |c80

±k1
|2 = 0.2364 and |c80

±k2
|2 = 0.2367, quite close to

the probability distribution required for the desired state.
Further, our numerical calculation shows that the phase
difference θ in the end is −2.3352 × 10−4, which is close
to the ideal value of the target state with φ = 0. Another
example is displayed in the bottom panel of Fig. 7, where a
state [|k = 2π/10〉 + |k = −2π/10〉 + eiπ/2(|k = 8π/10〉 +
|k = −8π/10〉)]/2 (an equal superposition of four quasimo-
mentum states with a π/2 phase difference between two pair
of quasimomentum states) is targeted. Before applying the
kick to the initial state |5〉, the minimization function has
a value 2.557. Using our control scheme, the value of the
minimization function reduces to 0.00626 after 80 optimized
kicks, with |c80

±k1
|2 = 0.2341 and |c80

±k2
|2 = 0.2297, and the

phase difference between k1 and k2 components found to
be 1.5708 (a value very close to the target value π/2). It
is hence evident now that our scheme can be generalized to
engineer arbitrary superposition of quasimomentum states of
a Heisenberg spin chain.

IV. CONCLUSION

A robust and scalable scheme for multipartite W state
generation can bring us one step closer to realizing a test
bed in understanding many-body entanglement. In this work,
we have proposed a simple scheme for the generation of
W states in a Heisenberg spin chain by exploiting the
mapping between a kicked spin chain and a quantum kicked
rotor. Based on this mapping, we are able to use the idea
of accumulative angular squeezing from the quantum rotor
context for the engineering of W states or other more general
target states. We have numerically studied our scheme and
showed that W states can be generated with high fidelity. The
most noteworthy feature of our scheme is that it applies to
long spin chains without modifications (thus indicating its
scalability), with the large N -limit equivalent to the known
problem of angular squeezing of a kicked rotor. Since our
theoretical considerations have exploited the single excitation
subspace afforded by the conservation of the total polarization
of the spin chain, in experimental implementations efforts
should be made to suppress possible transitions to other
subspaces.
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