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Weak value of dwell time for quantum dissipative spin-1/2 systems
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The dwell time is calculated within the framework of time-dependent weak measurement considering
dissipative interaction between a spin- 1

2 system and the environment. Caldirola and Montaldi’s method of
retarded Schrödinger equation is used to study the dissipative system. The result shows that inclusion of dissipative
interaction prevents zero time tunneling.
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I. INTRODUCTION

The recent experimental results [1] on superluminal tun-
neling speed have raised a lot of controversy among the
community. The problem of defining tunneling times has a
long history [2], simultaneously with the fundamental problem
of introducing time as a quantum-mechanical observable
and, in particular, of a definition (in quantum mechanics) of
the collision durations. In fact, experiments on transmitting
information containing features of an optical pulse across the
“fast light” medium, in which the group velocity exceeds
the vacuum speed of light c, have renewed interest in
the so-called “superluminal” propagation phenomenon. This
superluminality has been predicted in connection with various
quantum systems propagating in a forbidden zone. Aharonov
et al. [3], along with other authors [4], dealt with the problem
of tunneling time from the context of weak measurement. The
notion of the weak value of a quantum-mechanical observable
was originally introduced by Aharonov et al. [5–7]. This
quantity is the statistical result of a standard measurement
procedure performed upon a preselected and postselected
(PPS) ensemble of quantum systems when the interaction
between the measurement apparatus and each system is
sufficiently weak. Unlike the standard strong measurement of
a quantum-mechanical observable which sufficiently disturbs
the measurement system, a weak measurement of an observ-
able for a PPS system does not appreciably disturb the quantum
system and yields the weak value as the measured value of
the observable. Aharonov et al. [3] have shown that in their
approach, tunneling time corresponds to superluminal velocity.
On the other hand, experiments with photonic band-gap struc-
tures [8,9] also showed apparent superluminal barrier traversal.
These observations as well as the theoretical predictions lead
towards the phenomena of superluminal barrier traversal. In
the case of superluminality, Winful suggested [10–14] an
explanation of faster-than-light phenomena by the concept of
energy storage and release in the barrier region. He argued
that the group delay, which is directly related to the dwell time
with an additive self-interaction delay [15], is actually the
lifetime of stored energy (or stored particles) leaking through
both ends of the barrier. Our aim is to incorporate dissipation
in the framework of time-dependent weak value and calculate
the dwell time in that context. Here dissipation means loss
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of energy of the tunneling entity to the atomic modes of the
medium in the barrier region. So in this particular case some of
the energy of the tunneling entity is absorbed by the interacting
medium of the barrier region. We consider the time-dependent
quantum weak value of a certain operator as described by
Davies [16]. Then we will include dissipative interaction via
the decay constant using the method of retarded Schrödinger
equation developed by Caldirola and Montaldi [17] and arrive
at an expression of finite nonzero dwell time. To start with,
the concept of dwell time is discussed within the context of
weak measurement theory in Sec. II. In Sec. III we discuss
the time-dependent weak values for two-level systems. Based
on this framework we calculate the dwell time for dissipative
environment in Sec. IV, and finally some concluding remarks
are made in Sec. V.

II. DWELL TIME AND WEAK MEASUREMENT

One of the commonly cited problems of measuring how
much time it takes a quantum particle to cross a potential
barrier is the nonexistence of a quantum-mechanical time
operator. However, it is possible to construct an operator

�(0,L) = �(x) − �(x − L), (2.1)

where �(x) and �(x − L) represent Heaviside functions. This
operator measures whether the particle is in the barrier region
or not. Such a projection operator is Hermitian and corresponds
to a physical observable. It has eigenvalues 1 for the region 0 �
x � L and 0 otherwise. Its expectation value simply measures
the integrated probability density over the region of interest.
It is the expectation value divided by the incident flux, which
is referred to as the dwell time [2,18]. Ideally, transmission
and reflection times τT and τR would, when weighted by the
transmission and reflection probabilities |T |2 and |R|2, yield
the dwell time

τD = |T |2τT + |R|2τR. (2.2)

In the past two decades a new approach to measurement
theory in quantum mechanics has been developed by Aharonov
and coworkers [5,6]. This approach of “weak measurement”
differs from the standard “von Neumann measurement” [19]
in that the interaction between the measuring apparatus and
the measured system is too weak to trigger a collapse of the
wave function. Although the individual weak measurement
of an observable has no meaning, one can of course obtain
the expectation value to any desired accuracy by averaging
a sufficiently large number of such individual results. In
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the standard approach of quantum mechanics, measurement
comprises a collapse of the wave function which occurs
instantaneously [20]. Avoiding wave function collapse allows
the simultaneous measurement of noncommuting observables,
though no violation of the uncertainty principle occurs because
the individual measurements of each observable are very
imprecise. Moreover, since it allows the system to evolve
after the measurement as if unperturbed, it is possible to
define the average of a quantity conditioned to a given final
state of the system. So if we are interested in the duration
of some process, we can correspond this to a typical weak
measurement extended in time, i.e., the interaction between
the measuring probe and the system is not impulsive, but has
a finite duration. Steinberg has shown [21] that these features
make weak measurement theory a very promising background
for the study of tunneling time in quantum mechanics.

Let us now first turn our attention to the theory of weak
measurement. Weak value theory is a special consequence
of the time symmetric reformulation of quantum mechanics.
Whereas standard quantum mechanics describes a quantum
system at time t using a state evolving forward in time from the
past to t , weak value theory also uses a second state evolving
backward in time from the future to t using the notion of pre-
and postselection [5–7]. Consider the system prepared in an
initial state |i〉 at a given initial time. At a given final time,
the system is found to be in a final state |f 〉. This means that
a measurement performed at a particular initial time selects
only the systems in the preselected state |i〉, performs the weak
measurement, and at the final time, again the measurement is
performed to test whether the system is in the postselected
state |f 〉. Measurement is nothing but interaction with a
measuring device having a particular initial state. (Usually the
position representation of the device wave function is taken
as a Gaussian.) The system is made to interact with a pointer
degree of freedom Q, via the interaction Hamiltonian

Hint = g(t)PA, (2.3)

where P is the conjugate momentum variable to the pointer
position Q. It is convenient to take the function g(t) impulsive
and g0 = ∫

g(t)dt = 1; it is nonzero only in a small interval.
The initial state of the pointer variable is described by the
Gaussian wave function

�i(Q) = (�2π )−
1
4 e

− Q2

2�2 (2.4)

and the initial state of the system is given by

|ψi〉 =
∑

k

ak|ak〉. (2.5)

The initial state of the system is the eigenvector of the observ-
able A. After the measurement interaction, the composite state
of the system and the measuring device is given by

(�2π )−
1
4

∑
k

ak|ak〉e− (Q−ak )2

2�2 . (2.6)

In an ideal measurement, the relative shifts corresponding to
different eigenvalues of the observable A are large compared
with the initial uncertainty in the pointer’s position (given
by the width �), and the resulting lack of overlap between
the final states leads to the irreversible collapse between

different eigenstates of A. It is then found very close to the
position corresponding to a particular eigenvalue of A. In
weak measurement, the initial position of the pointer has a
large uncertainty (i.e., large �) so that the overlap between
the pointer states remains close to unity, and hence the
measurement does not constitute a collapse. The fact that the
uncertainty in position measurement is large means that
the momentum is more or less well defined, so it does not
impart an uncertain kick to the particle. The measurement is
weak in the sense that it disturbs the state of the particle as little
as possible between the state preparation and postselection.
Since the spread is large, the inaccuracy in measurement has
to be compensated by large statistics (by averaging over a
subensemble). For postselection of state |f 〉 of the system, the
pointer wave function at the final time is given by

�f (Q) = (�2π )−
1
4

∑
k

ak〈f |ak〉e− (Q−ak )2

2�2 . (2.7)

After some mathematical analysis [3] we find that

�f (Q) ≈ (�2π )−
1
4 e

− (Q−Aw )2

2�2 , (2.8)

where

Aw = 〈ψf |A|ψi〉
〈ψf |ψi〉 (2.9)

is denoted as the weak value of the observable A. We must
note that the expression of this weak value may generally be
complex. However, the physical significance of the real and
imaginary parts is quite clear. The real part of the weak value
corresponds to the mean shift of the pointer position, and the
imaginary part constitutes a shift in the pointer momentum.
So even though the imaginary part carries important physical
significance, it does not play any part in the measurement
outcome since it does not correspond to spatial translation of
the pointer. It is also worthwhile to mention that besides being
generally complex, the magnitude of the weak value can lie
outside the range of the eigenvalues [5].

Now let us discuss the calculation of dwell time on the basis
of weak measurement. The time taken by a particle to traverse
a certain potential barrier is measured by a clock consisting of
an auxiliary system which interacts weakly with the particle as
long as it stays in a given region. Aharonov et al. [3] considered
the interaction Hamiltonian as

Hint = Pm�(0,L), (2.10)

where m is the degree of freedom:

�(0,L) =
{

1 if 0 < x < L

0 otherwise. (2.11)

This is the projection operator as we discussed earlier. It is the
effective form of the potential, seen by a particle in the Sz state,
in the Stern-Gerlach experiment where (0, L) is the region of
magnetic field. We obtain the dwell time by calculating the
weak value of the projection operator �(0,L). Now the weak
value of any operator A is expressed by Eq. (2.9). If we divide
the measurement into many short ones, (�t) A � ∑∞

j=−∞ Aj ,
we get [3]

〈Aj 〉w = C�t
〈ψf (j�t)|A|ψi(j�t)〉
〈ψf (j�t)|ψi(j�t)〉 ,
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where C is an arbitrary constant and can be set as 1
�t

. In the
limit �t → 0,

Aw =
∫ ∞
−∞〈ψf (t)|A|ψi(t)〉dt

〈ψf (0)|ψi(0)〉 . (2.12)

For A = �0,L, this formula leads to

〈τ 〉w =
∫ ∞
−∞ dt

∫ L

0 ψ∗
f (x,t)ψi(x,t)dx∫ ∞

−∞ ψ∗
f (x,0)ψi(x,0)dx

. (2.13)

Aharonov et al. [3] argued that direct calculation of the dwell
time can be made using Eq. (2.13). It shows that it tends to
zero in the low-energy limit. So irrespective of the length of
the barrier, the particle traverses it in no time.

III. TIME-DEPENDENT WEAK VALUES OF A
TWO-STATE SYSTEM

Now let us concentrate on time-dependent pre- and postse-
lected states with the emphasis on decay of excited states. Let
us consider the time evolution of a quantum-mechanical state
as

|ψ(t)〉 = U (t − t0)|ψ(t0)〉, (3.1)

where U (t − t0) = e−iH (t−t0) is the time evolution operator.
In the light of the time evolution, the weak value of an

operator A at a time t , ti < t < tf , preselected at ti and
postselected at tf , can be defined as [16]

Aw = 〈ψf |U †(t − tf )AU (t − ti)|ψi〉
〈ψf |U †(t − tf )U (t − ti)|ψi〉 . (3.2)

Let us consider an electron of charge e at rest in a magnetic
field B. The interaction Hamiltonian is

H = −μ · B, (3.3)

where

μ = −eh̄S
m

(3.4)

and

S = 1
2 (σx,σy,σz) (3.5)

σi are the Pauli spin matrices. For simplicity, let us suppose
the magnetic field lies in the z direction. Then the Hamiltonian
looks like

H = h̄ωσz. (3.6)

The time evolution operator in this case looks like

U (t) =
(

eiωt/2 0
0 e−iωt/2

)
. (3.7)

From this we can get

UU † = U †U = I (3.8)

and

U (t1 − t2)U (t2 − t3) = U (t1 − t3), (3.9)

so the unitary and evolution properties hold.

Consider that at an initial time ti the state is polarized in the
positive x direction. Then

|ψi〉 = 1√
2

(
1
1

)
. (3.10)

The projection operator onto the eigenstate (3.10) is

P+ = 1√
2

(
1 1
1 1

)
. (3.11)

Now we come to the case of the decay of an excited state
by considering an initial excited two-level atom coupled to a
bath of 2N number of other two-level atoms initially in their
ground states. Due to the interaction with the bath atoms, the
concerning system loses energy to the bath modes. Choosing
the ground-state energies of all atoms to coincide and be set to
zero, and setting the excited states En to satisfy the relation

En − E0 = n�E, −N � n � N, (3.12)

the excited states are shown to be equispaced and distributed
symmetrically about the excited state of the reference atom,
labeled by n = 0. For the simplicity of the problem, it is
assumed that the reference atom is equally coupled to each
of the atoms of the bath; the interaction is described by the
real constant Hamiltonian H .

The Schrödinger equation is equivalent to the coupled
differential equations

ȧ0 = −i
∑

n

Hane
−in�Et , (3.13)

ȧn = −iHa0e
in�Et , (3.14)

where an is the amplitude of the excited state and we set
h̄ = 1. According to Davies [16], Eqs. (3.13) and (3.14) can
be solved exactly by the method of Laplace transformation.
Without going into the details of the calculations, which can
be found in Ref. [16], we find that

a0(t) = e−γ (t−ti ), (3.15)

where γ is the decay constant. We discuss this decay constant
much more elaborately in the next section. The evolution
operators U (t) can also be found. If we consider that one atom
at the time of the bath is excited, the evolution operator of the
relevant subspace of the full Hilbert space of states will be a
(2N + 1) × (2N + 1) dimensional matrix, the components of
which may be calculated from Eqs. (3.13) and (3.14). From
Eq. (3.15) it can be found that

U00 = e−γ t (3.16)

in the limit �E → 0. Using this limiting solution, from
Eqs. (3.13) and (3.14) it is found that

Un0 = iH

[
e−γ t+in�Et − 1

γ − in�E

]
, (3.17)

which is also in the limit �E → 0. Using the relation U †(t) =
U (−t), we get the time-dependent weak value of an operator
A as

Aw = 〈ψf |U (tf − t)AU (t − ti |ψi〉
〈ψf |U (tf − ti)|ψi〉 . (3.18)

Consider the operator A to be chosen as the projection operator
P+ onto the excited state at time t , given that it is preselected
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in the excited state at time ti and postselected to have decayed
at time tf . Let the possible choice of the final state be

|ψf 〉 = |ψk〉. (3.19)

This corresponds to the scenario that the atom is in the ground
state and a photon of energy Ek = k�E has been emitted.
This emitted photon may be absorbed by the bath modes due
to the presence of the coupling. It can be shown that after some
simple calculations the weak value gives

Pw = Uk0(tf − t)U00(t − ti)

Uk0(tf − ti)
. (3.20)

Using (3.16) and (3.17) it can be shown that

Pw = e−γ (t−ti )

[
1 − e−γ (tf −t)+ik�E(tf −t)

1 − e−γ (tf −ti )+ik�E(tf −ti )

]
. (3.21)

In the case of Ek = E0, Eq. (3.21) reduces to the simple
expression

Pw = e−γ (t−ti )

[
1 − e−γ (tf −t)

1 − e−γ (tf −ti )

]
. (3.22)

This is for the state that the system approaches asymptotically
as t → ∞. For the postselection of the state at a finite time tf ,
according to Ref. [16], Eq. (3.22) changes as

Pw = e−γ (t−ti )

[
1 − e−2γ (tf −t)

1 − e−2γ (tf −ti )

]
. (3.23)

If we divide the measurement into many short ones, as we
have discussed in the previous section, in comparison with
Eq. (2.12) the weak value gives

Pw =
∫ tf

ti

e−γ (t−ti )

[
1 − e−2γ (tf −t)

1 − e−2γ (tf −ti )

]
dt. (3.24)

Since the pre- and postselection are done at ti and tf ,
respectively, correspondingly the limits of the integration
are taken in the same manner. Consequently this projection
operator P+ can be understood as the projection operator �0,L

as described in the previous section. Then Eq. (3.24) gives the
weak value of the operator �0,L, which in turn gives us the
weak value of dwell time of the particle in the region of the
magnetic field. Understanding the integral of the weak survival
probability as dwell time also conforms with the understanding
of Winful [10]. As we mentioned in the Introduction, group
delay (τG) is understood as the lifetime of the energy storage
in the barrier region, and it is directly related to the dwell time
(τD) with an additive self-interference term (τ I ),

τG = τD + τ I . (3.25)

When the reflectivity is high, the incident pulse spends much
of its time dwelling in front of the barrier as it interferes with
itself during the tunneling process. This excess dwelling is
interpreted as the self-interference delay. Winful successfully
disentangled this term from the dwell time [15]. If the
surroundings of the barrier are dispersionless, then the self-
interference term vanishes, resulting in the equality of the
group delay and dwell time [13]. In that case, the dwell time
will give a lifetime of energy storage in the barrier region. In
our case the barrier region is dissipative (absorptive), so the
integrated weak survival probability will give us a lifetime of

the remaining unabsorbed energy leaking through the barrier.
Moreover, this version of dwell time includes the history of the
interaction with the environment through the coupling term γ ,
as stated previously, as the decay constant [16]. Therefore,

τw = Pw =
∫ tf

ti

e−γ (t−ti )

[
1 − e−2γ (tf −t)

1 − e−2γ (tf −ti )

]
dt. (3.26)

Before calculating the dwell time explicitly, we want to
investigate the decay constant γ much more elaborately. Since
this γ represents the coupling between the bath modes and the
concerning system, this is the signature of dissipation.

IV. DERIVATION OF DWELL TIME IN A
DISSIPATIVE ENVIRONMENT

The approach we discuss here, to incorporate dissipation in
the dynamics of quantum system, was developed by Caldirola
and Montaldi [17] and Caldirola [22], introducing a discrete
time parameter (δ) that could, in principle, be calculated from
the properties of environment such as its temperature and
composition. It is used to construct a retarded Schrödinger
equation describing the dynamics of the states in the presence
of environmentally induced dissipation, which is given by

H |ψ〉 = i
[|ψ(t)〉 − |ψ(t − δ)〉]

δ
. (4.1)

Expanding |ψ(t − δ)〉 in Taylor series, Eq. (4.1) can be written
as

H |ψ〉 = i

[
1 − e−δ ∂

∂t

]|ψ(t)〉
δ

. (4.2)

Setting the trial solution as

|ψ(t)〉 = e−αt |ψ(0)〉, (4.3)

we solve for α to get

α = 1

τ
ln(1 + iHδ). (4.4)

Substituting α in Eq. (4.2) we find that even the ground-state
decays. To stabilize the ground state, Caldirola and Montaldi
[17] rewrite Eq. (4.1) as

(H − H0)|ψ〉 = i
[|ψ(t)〉 − |ψ(t − δ)〉]

δ
, (4.5)

where H0 represents the ground state. In this case we get

α = 1

τ
ln [1 + i(H − H0)δ] . (4.6)

For a spin- 1
2 system in a magnetic field (B), the Hamiltonian

is

H = e

m
SzB. (4.7)

For the eigenvalues of (4.7) we have

E+ = eB

2m
, |ψ〉 =

(
1
0

)
, (4.8)

E− = − eB

2m
, |ψ〉 =

(
0
1

)
. (4.9)
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Now let us take the state to be initially polarized in the x

direction as shown by Eq. (3.10). Following Wolf [23], to
generate the states at time t we use

|ψ(t)〉 = exp

[
− t

δ
ln[1 + i(H − H0)δ]

]
|ψ(0)〉, (4.10)

where

H0 = − eB

2m

(
1 0
0 1

)
(4.11)

and

H = eB

2m

(
1 0
0 −1

)
. (4.12)

Therefore

H − H0 = eB

m

(
1 0
0 0

)
, (4.13)

so we find the state at time t as

|ψ(t)〉 = 1√
2

(
exp

[ − t
δ

ln
(
1 + ieBδ

m

)]
1

)
. (4.14)

Expanding the logarithmic term up to third order,

ln

(
1 + ieBδ

m

)
= ieBδ

m
+ e2B2δ2

2m2
− ie3B3δ3

3m3
, (4.15)

the time evolution takes the form

exp

[
−i

(
eB

m
− e3B3δ2

3m3

)
t − e2B2δ

2m2
t

]
. (4.16)

From (4.16) we find the modified precession frequency

ω′ = 2ω

(
1 − e2B2δ2

3m2

)
, (4.17)

where ω = eB
2m

is the unmodified precession frequency. We
also find the decay rate as

γ = e2B2δ

2m2
. (4.18)

Again, from Eq. (4.17) we find the time scale δ as

δ = 1

2ω

√
3

(
1 − ω′

2ω

)
, (4.19)

so the decay constant takes the form

γ = ω

√
3

(
1 − ω′

2ω

)
. (4.20)

Putting this into Eq. (3.26) and integrating, we find the dwell
time to be

τw = 1

ω

√
3
(
1 − ω′

2ω

) coth

[
ωT

2

√
3

(
1 − ω′

2ω

)]
, (4.21)

where T = tf − ti . Here we arrive at the expression of dwell
time for a spin- 1

2 particle traversing through a magnetic
potential barrier in the presence of dissipation, which was
preselected in a state with energy ω at an initial time ti and
postselected in a state with energy ω′ at a final time tf . Let us
consider a particular case where the particle is preselected in
the spin-up state with ω = ω+ = eB

2m
and postselected in the

spin-down state with ω′ = ω− = − eB
2m

. Then the dwell time
takes the form

τw =
√

2

3ω
coth

(
3ωT

2
√

2

)
. (4.22)

Similarly, we can find the dwell time for a spin- 1
2 particle

traversing through a similar kind of barrier, preselected and
also postselected in the spin-up state. If we consider the
interpretation of dwell time as stated by Winful, these finite
nonzero dwell times will give us the lifetime of the decaying
states in the magnetic barrier region, depending on the pre-
and postselection of the states.

V. CONCLUSION

From the result of our calculation, it is evident that
the presence of dissipative interaction with the bath modes
precludes zero time tunneling, i.e., the instantaneous release
of energy. This can be explained in terms of an efficient energy
transfer from the particle motion to the environmental modes
and loss of memory of the original tunneling direction. Here
the barrier is acting as a lumped capacitor with coupling to
the environment providing an effective dissipation. The delay
is caused by the energy storage in the barrier region. It is
also worth mentioning that a connection between dwell time
and realistic examples of lifetimes of decaying states was
established in some works of Kelkar et al. [24,25], where they
have dealt with the phenomenon of α decay by investigating
the quantum time scales of tunneling. They have formulated
the half-life of the decaying state in terms of the transmission
dwell time. They found that the major bulk of the half-life of a
medium or super heavy radioactive nucleus is spent in front of
the barrier before tunneling. The time spent inside the barrier
is much smaller, though it is not negligible. If the barrier is
considered to be dissipative, we can heuristically argue that
the energy transfer to the nuclear modes will result in the loss
of memory of the original tunneling direction and hence cause
an extra delay, enhancing the dwell time inside the barrier. The
α particles or clusters formed inside the nucleus can undergo
some restructuring within the nucleus. Work has been done
on the derivation of necessary formulas accounting for the
final-state interaction between the knocked-out cluster and the
residual nucleus [26]. This kind of interaction may account for
the dissipation. Admitting this to be a heuristic argument on
the subject of α decay, we can consider it an important subject
for future work.
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