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Collapse of the state vector
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Modifications of quantum mechanics are considered, in which the state vector of any system, large or small,
undergoes a stochastic evolution. The general class of theories is described, in which the probability distribution
of the state vector collapses to a sum of δ functions, one for each possible final state, with coefficients given by
the Born rule.
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I. INTRODUCTION

There is now in my opinion no entirely satisfactory
interpretation of quantum mechanics [1]. The Copenhagen
interpretation [2] assumes a mysterious division between the
microscopic world governed by quantum mechanics and a
macroscopic world of apparatus and observers that obeys
classical physics. During measurement the state vector of the
microscopic system collapses in a probabilistic way to one
of a number of classical states, in a way that is unexplained,
and cannot be described by the time-dependent Schrödinger
equation. The many-worlds interpretation [3] assumes that
the state vector of the whole of any isolated system does
not collapse, but evolves deterministically according to the
time-dependent Schrödinger equation. In such a deterministic
theory it is hard to see how probabilities can arise. Also,
the branching of the world into vast numbers of histories is
disturbing, to say the least. The decoherent histories approach
[4] like the Copenhagen interpretation gives up on the idea that
it is possible to completely characterize the state of an isolated
system at any time by a vector in Hilbert space, or by anything
else, and instead provides only a set of rules for calculating
the probabilities of certain kinds of history. This avoids
inconsistencies, but without any objective characterization of
the state of a system, one wonders where the rules come from.

Faced with these perplexities, one is led to consider the
possibility that quantum mechanics needs correction. There
may be a Hilbert space vector that completely characterizes
the state of a system, but that suffers an inherently probabilistic
physical collapse, not limited as in the Copenhagen interpreta-
tion to measurement by a macroscopic apparatus, but occurring
at all scales, though presumably much faster for large systems.
From time to time specific models for this sort of collapse
have been proposed [5]. In the present article we will consider
the properties of theories of the stochastic evolution of the
state vector in a more general formalism. We assume that this
evolution depends only on the state vector, with no hidden
variables. In contrast to earlier work, we concentrate on the
linear first-order differential equation that in general describes
the evolution of the probability distribution of the state vector
in Hilbert space. We find conditions on this evolution so that it
leads to final states with probabilities given by the Born rule of
ordinary quantum mechanics. This general formalism is also
applied to the special case of a state vector that evolves through
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quantum jumps. Theories of the evolution of the density matrix
are examined as an important special case of the more general
formalism.

II. EVOLUTION OF THE STATE VECTOR’S
PROBABILITY DENSITY

We consider a general isolated system, which may or
may not include a macroscopic measuring apparatus and/or
an observer. We assume as in ordinary quantum mechan-
ics that the state of the system is entirely described by
a vector in Hilbert space. The state vector here is taken
in a sort of Heisenberg picture, in which operators A(t)
have a time dependence dictated by the Hamiltonian H as
exp(iH t)A(0) exp(−iH t). But the state vector in this sort
of theory is not time independent; it undergoes a stochastic
evolution, slow for microscopic systems but rapid for larger
systems, so that at any time t there is a probability P (ψ,t)dψ

for the wave function to be in a small volume dψ around any
value ψ . Here we are adopting a basis that is so far arbitrary,
labeled by a discrete index i, so that ψ is an abbreviation for
the whole set of components ψi and ψ∗

i , constrained by the
normalization condition

∑
i |ψi |2 = 1, and dψ is defined as

dψ ≡ δ

(
1 −

∑
i

|ψi |2
) ∏

i

d|ψi |2 d arg ψi

2π
, (1)

a measure invariant under unitary transformations of the ψi .
The continuum case will be considered later, in Sec. IV.

We assume time-translation invariance, so that if the wave
function at time t has a definite value ψ , then at a later
time t ′ the probability density at ψ ′ will be some function
�(ψ ′,ψ,t ′ − t) of ψ ′, of ψ , and of the elapsed time t ′ − t ,
but not separately of t or t ′. It follows then from the rules of
probability that if at time t the wave function has a probability
density P (ψ,t), then at time t ′ the probability density will be

P (ψ ′,t ′) =
∫

dψ �(ψ ′,ψ,t ′ − t) P (ψ,t). (2)

Differentiating with respect to t ′ and then setting t ′ = t gives
our fundamental differential equation for the evolution of the
probability density:

d

dt
P (ψ ′,t) =

∫
dψ Kψ ′,ψ P (ψ,t), (3)
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where K is the kernel

Kψ ′,ψ ≡
[

d

dτ
�(ψ ′,ψ,τ )

]
τ=0

, (4)

which depends on the details of the system under study,
including any measuring apparatus that the system may con-
tain. Equation (3) resembles the time-dependent Schrödinger
equation with K in place of −iH , because both follow from
time-translation invariance, but Eq. (3) describes the evolution
of the probability density in Hilbert space rather than of the
state vector, and so K is real rather than anti-Hermitian.
Like the time-dependent Schrödinger equation, Eq. (3) neither
violates nor guarantees Lorentz invariance. Presumably, in
a Lorentz invariant theory, K would be accompanied with
other kernels that describe how probabilities change with the
position of the observer.

The solution of Eq. (3) is of course

P (ψ ′,t) =
∫

dψ(eKt )ψ ′,ψP (ψ,0), (5)

with the exponential of Kt defined as usual by its power series
expansion. To evaluate this exponential, we let fN (ψ) be the
linearly independent right eigenfunctions of K:∫

dψ Kψ ′,ψfN (ψ) = −λNfN (ψ ′), (6)

with eigenvalues −λN . Because there is no need for K to be
Hermitian, some of the eigenfunctions and eigenvalues may be
complex, but because K is real, any complex eigenfunctions
and eigenvalues must come in complex conjugate pairs.

We will assume that the fN (ψ) form a complete set. This
is the generic case; other cases can be handled by letting some
eigenvalues and eigenfunctions of K merge with each other.
Where the fN form a complete set we may write the kernel as

Kψ ′,ψ = −
∑
N

λNfN (ψ ′) gN (ψ), (7)

where gN (ψ) are some coefficient functions, not related in any
simple way to fN (ψ). The eigenvalue condition (6) requires
that ∫

dψ gM (ψ)fN (ψ) = δNM. (8)

Then gN will be a left eigenfunction of K , also with eigenvalue
−λN : ∫

dψ ′ gN (ψ ′)Kψ ′,ψ = −λNgN (ψ). (9)

[Equation (7) does not define gN in the case λN = 0; in this
case the definition is provided by Eqs. (8) and (9).] The
completeness relation for the fN can then be expressed as

1ψ ′,ψ =
∑
N

fN (ψ ′)gN (ψ), (10)

where 1ψ ′,ψ is defined so that, for any smooth function F (ψ),∫
dψ 1ψ ′,ψF (ψ) = F (ψ ′). (11)

It is elementary then to use the power series expansion for the
exponential to calculate that

[eKt ]ψ ′,ψ =
∑
N

e−λN tfN (ψ ′)gN (ψ). (12)

The probability distribution for the wave function is therefore

P (ψ,t) =
∑
N

e−λN tfN (ψ)
∫

dψ ′ gN (ψ ′)P (ψ ′,0). (13)

(Where the fN miss being a complete set by a finite number
of terms, the exponentials are in general accompanied with
polynomial functions of time.)

III. LIMIT OF EVOLUTION

It is clear that in order for the probability distribution to
approach any sort of limit for t → ∞, all the eigenvalues must
have negative real parts; that is, Re λN � 0. If we assume that
there is a minimum value to the smallest nonzero value of
Re λN , then the probability distribution becomes dominated
by the zero modes: for t → ∞,

P (ψ,t) →
∑

n

fn(ψ)
∫

dψ ′ gn(ψ ′)P (ψ ′,0), (14)

where n runs over the values of N for which λN = 0. (The
contribution of eigenmodes with Re λN = 0 but Im λN �= 0
presumably oscillates so rapidly as t → ∞ as to be un-
observable.) The fn(ψ) can be regarded as fixed points of
the differential equation (3). The magnitude of the nonzero
eigenvalues depends on the nature of the system in question.
Presumably where a system is large, as in measurement by a
macroscopic apparatus, the values of the nonzero eigenvalues
are large, in which case the approach to the limit (14) is
exponentially fast.

Although the limit of the probability distribution for t → ∞
depends only on the zero modes fn and gn, in general to
calculate the evolution of the probability distribution for finite
times we need to know all the eigenfunctions fN and gN . But
the whole time dependence of the probability distribution can
be calculated in terms of the zero modes in the special case in
which all nonzero λN are equal, say to λ.

Then Eq. (12) gives

[eKt ]ψ ′,ψ =
∑

n

fn(ψ ′)gn(ψ) + e−λt
∑

ν

fν(ψ ′)gν(ψ),

where ν runs over the values of N for which λN �= 0. The
completeness relation (10) gives∑

ν

fν(ψ ′)gν(ψ) = 1ψ ′,ψ −
∑

n

fn(ψ ′)gn(ψ)

so

[eKt ]ψ ′,ψ = [1 − e−λt ]
∑

n

fn(ψ ′)gn(ψ) + e−λt [1]ψ ′,ψ ,

and the probability distribution is

P (ψ,t) = P (ψ,0)e−λt + [1 − e−λt ]
∑

n

fn(ψ)

×
∫

dψ ′gn(ψ ′)P (ψ ′,0), (15)
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in which we can see explicitly how the probability distribution
approaches the limit (14) for t → ∞.

The kernel K (including the zero modes fn and gn along
with the nonzero eigenvalues −λν) depends on the details
of the system in question, as well as depending on the as
yet mysterious dynamics of the collapse process. Consider
a system containing a subsystem with a complete set of
commuting observables whose eigenvalues are labeled by an
index n, and a measuring apparatus that through a unitary
evolution of the whole system becomes entangled with the
subsystem in such a way that, when the subsystem is in the nth
eigenstate of the observables, the apparatus is in a unique state.
It is convenient to perform a unitary transformation to a new
basis, in which ϕn is the component of the state vector along
such a joint state of the whole system. In order to reproduce
the results of the Copenhagen interpretation the probability
distribution at late times must relax to a sum over n of terms
proportional to

∏
m�=n δ(|ϕm|2), so that only ϕn is allowed to

be nonzero in the nth term. To reproduce the Born rule, the
coefficient of the nth term must be proportional to the initial
value of |ϕn|2. Comparing with Eq. (14), we see that the zero
modes here can be labeled with the same index n, with

fn(ϕ) = Fn(arg ϕn)
∏
m�=n

δ(|ϕm|2), gn(ϕ) = |ϕn|2, (16)

where Fn(θ ) is an unknown function satisfying∫ 2π

0 Fn(θ )dθ = 2π . The normalization of these zero
modes has been chosen to be consistent with Eq. (8), which
requires that

∫
dϕ fn(ϕ)gm(ϕ) = δnm. Also, since it is only

fngn that enter in this requirement, we have made an arbitrary
choice of a convenient normalization for fn, thus fixing the
normalization of gn. According to Eq. (14), the probability
density at late times becomes

P (ϕ,t) →
∑

n

Fn(argϕn)

( ∏
m�=n

δ(|ϕm|2)

)∫
dϕ′|ϕ′

n|2P (ϕ′,0).

(17)

Note that here Eqs. (9) and (16) give, for each n and ϕ,∫
dϕ′|ϕ′

n|2Kϕ′,ϕ = 0. (18)

This implies the time independence of the quantity

Pn ≡
∫

dϕ|ϕn|2P (ϕ,t). (19)

This makes sense, because Pn according to the Born rule is
the probability that, when the collapse is finished, the state
of the system will be found in the basis state n, and this of
course must be independent of t . Since

∑
n |ϕ′

n|2 = 1, the sum
of Eq. (18) over n yields∫

dϕ′ Kϕ′,ϕ = 0, (20)

which is the condition that Eq. (3) respects the conservation
of the total probability

∫
dϕ P (ϕ,t).

In usual measurements, the measuring apparatus does not
evolve into a unique state when the subsystem is in the nth
eigenstate of a set of observables, but into any one of a
number of apparatus states, labeled with another index r . It

is convenient again to choose a corresponding basis, so that
the components of the wave function are labeled ϕnr , with∑

nr |ϕnr |2 = 1. In this case, assuming all apparatus states r

for a given subsystem state n are equally probable, consistency
with the results of the Copenhagen interpretation and the
condition

∫
dϕ fngm = δnm requires that

fn(ϕ) = Fn

∏
r,m�=n

δ(|ϕmr |2), gn(ϕ) =
∑

r

|ϕnr |2, (21)

where Fn is an unknown function of the phases of all
ϕnr , whose average over phases is unity, and the individual
normalization of fn and gn has again been chosen for
convenience. The individual probabilities

∫
gn(ϕ)P (ϕ)dϕ and

the total probability
∫

P (ϕ)dϕ are conserved here for the same
reason as before.

From the point of view adopted here, there is nothing
special about measurement. Measurement is just a process
in which the state vector of a system (typically microscopic)
becomes entangled with the state vector of a relatively large
system, which then undergoes a collapse to an eigenstate
of some operators determined by the characteristics of that
system. So we expect that the state vector of any system
undergoes a similar collapse, but one that is much faster for
large systems. But collapse to what? Without attempting a
precise general prescription, we have in mind that these are
the sorts of states familiar in classical physics. For instance,
in a Stern-Gerlach experiment, they would be states in which
a macroscopic detector registers that an atom has a definite
trajectory, not a superposition of trajectories. In Schrödinger’s
macabre thought experiment [6], they are states in which the
cat is alive, or dead, but not a superposition of alive and dead.
These states are like the “pointer states” of Zurek [7], but here
these basis states are determined by the physics of the assumed
collapse of the state vector, rather than by the decoherence
produced by interaction with small external perturbations.

IV. CONTINUUM STATES

It is straightforward to adapt this formalism to the contin-
uum case, where the wave functions depend on a continuous
variable x rather than a discrete label i. In the continuum
case, we take ψ as an abbreviation for the functions ψ(x) and
ψ∗(x), normalized so that

∫
dx|ψ(x)|2 = 1; the probability

distribution P [ψ,t] and the kernel Kψ,ψ ′ are functionals of
these functions; and

∫
dψ is a functional integral, with a

normalization that can be chosen as convenience dictates.
There is no reason here to expect a gap between the zero
and nonzero eigenvalues of K , and in the example discussed
in Sec. VII there is no such gap, so we will not here bother to
separate the zero modes from the eigenfunctionals of K with
nonzero eigenvalue. The kernel can be expressed as

Kψ ′,ψ = −
∫

dN λNfN [ψ ′]gN [ψ], (22)

where ∫
dψ Kψ ′,ψfN [ψ] = −λNfN (ψ ′),

(23)∫
dψ gN ′[ψ]fN [ψ] = δ(N ′ − N ).
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Using the completeness relation

1ψ ′,ψ =
∫

dN fN [ψ ′]gN [ψ], (24)

we have

[eKt ]ψ ′,ψ =
∫

dN fN [ψ ′]gN [ψ]e−λN t , (25)

and the probability distribution at time t is

P [ψ,t] =
∫

dN fN [ψ]e−λN t

∫
dψ ′ gN [ψ ′]P [ψ ′,0]. (26)

As before, to avoid runaway solutions we need to assume that
Re λN � 0 for all eigenvalues, in which case with increasing
time Eq. (26) is increasingly dominated by the eigenmodes
with smallest λN . But without a gap between zero and nonzero
eigenvalues, the probability distribution may not approach any
specific limit exponentially as t → ∞.

V. QUANTUM JUMPS

Our discussion so far has been very general, not dependent
on any specific picture of the evolution of the state vector.
We can be a little more concrete, by assuming that the
wave function undergoes a series of quantum jumps, from
ψ to Jψ , where J is a nonlinear operator depending on
one or more random parameters. If the rate of jumps is
�, and the wave function at some time t is ψ ′, then at a
slightly later time t + dt the probability distribution at ψ

is (1 − � dt)1ψ,ψ ′ + � dt〈1ψ,Jψ ′ 〉, where brackets indicate an
average over the random parameters on which the operator J

depends. Hence the evolution of the probability distribution is
given by Eq. (3), with kernel

Kψ,ψ ′ = −�(1ψ,ψ ′ − 〈1ψ,Jψ ′ 〉). (27)

We note in particular that, for any function (or functional) g(ψ)
of the wave function, we have∫

dψ g(ψ)Kψ,ψ ′ = −�[g(ψ ′) − 〈g(Jψ ′)〉], (28)

so the condition for g(ψ) to be a left eigenfunction of the
kernel is that

〈g(Jψ)〉 = �g(ψ), (29)

in which case the corresponding eigenvalue is

λ = −� (1 − �). (30)

The left eigenfunctions of the kernel with zero eigenvalue
are those functions g(ψ) that on average are unaffected by
quantum jumps.

VI. DENSITY MATRIX

The class of theories presented here are more general than in
any based on an assumed differential equation for the density
matrix, as there is much more information contained in the
probability distribution P (ψ) than in the density matrix. (For
instance, for a system with two discrete states, the density
matrix is specified by only three real parameters, while the
probability distribution is an unknown real function of one

modulus and two phases.) The density matrix is defined in a
general discrete basis by

ρij (t) ≡
∫

dψ P (ψ,t)ψiψ
∗
j . (31)

In particular, Eq. (3) gives the rate of change of the density
matrix

d

dt
ρij (t) ≡

∫
dψ

∫
dψ ′ Kψ,ψ ′P (ψ ′,t) ψiψ

∗
j . (32)

In order for the right-hand side to be expressible in terms of
ρ, we would need the space of bilinear functions of ψ to be
invariant under the left action of the kernel K:∫

dψ Kψ,ψ ′ ψiψ
∗
j =

∑
i ′j ′

κij,i ′j ′ ψ ′
i ′ψ

′∗
j ′ . (33)

This condition is preserved if we make a change of basis by
a unitary transformation of the wave function, of course with
a transformed κ matrix. Not all conceivable kernels satisfy a
condition like Eq. (33). Where this condition holds, the density
matrix obeys the differential equation

d

dt
ρij (t) =

∑
i ′j ′

κij,i ′j ′ ρi ′j ′ (t). (34)

There are reasons to suppose that this must be the case.
It is a familiar feature of quantum mechanics that different
statistical ensembles of individual states can yield the same
density matrix. Gisin [8] has shown that for any two such
ensembles of states of a given physical system that have
the same density matrix ρ, it is always possible to invent a
second isolated physical system that can be entangled with
the first, in such a way that measurements in the second
system can drive the first system to one or the other of
the two ensembles with density matrix ρ. This does not
lead to any possibility of communication between the two
systems, provided the density matrix contains all information
concerning any possible observation of the first system, and
provided that the subsequent evolution of the density matrix
depends only on the density matrix, not on the particular
statistical ensemble it represents. But if Eq. (33) were not
satisfied, then the evolution of the density matrix would depend
on the specific statistical ensemble of state vectors, not just on
the density matrix, and instantaneous communication between
isolated systems would be possible.

Where the probability distribution approaches the limit (17)
at late time, in the basis ϕn described in Sec. III, the density
matrix becomes diagonal,

ρnm ≡
∫

dϕ P (ϕ)ϕnϕ
∗
m → Pnδnm, (35)

where the Pn are constants given by Eq. (19). Of course, by
a unitary transformation the density matrix can be put in a
diagonal form at any time, but with diagonal elements and
in a basis that changes with time. Equation (35) tells us that
the density matrix approaches a diagonal form within a fixed
basis and with fixed diagonal elements, equal to the expectation
values (19) of the density matrix at any time.
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VII. THE GRW CASE

Finally, it is interesting to examine how the theory proposed
in the well-known paper of Ghirardi, Rimini, and Weber [5]
(henceforth GRW) appears in the more general formalism
presented here. GRW suggested a stochastic evolution of the
state vector, leading to its localization, and expressed their
model in a differential equation for the density matrix for
a single particle (written here using the Heisenberg picture
described above, and in a notation slightly different from that
of GRW),

d

dt
ρx ′,x(t) = −ω

(
1 − e−α(x ′−x)2/2

)
ρx ′,x(t), (36)

with ω > 0 and α > 0. [Here x is the eigenvalue of the
one-dimensional Heisenberg-picture position operator x̂(t) =
x̂(0) + p̂t/m.] Thus the condition (33) here reads∫

dψ Kψ,ψ ′ ψ(x ′)ψ∗(x)

= −ω
(
1 − e−α(x ′−x)2/2

)
ψ ′(x ′)ψ ′∗(x), (37)

so the kernel has eigenvalues

−λxx ′ = −ω
(
1 − e−α(x ′−x)2/2

)
� 0, (38)

with left eigenfunctionals

gxx ′ [ψ] = ψ(x ′)ψ∗(x). (39)

But this does not determine the kernel, since without changing
Eq. (37) we can change K by adding any kernel K (0) for
which ∫

dψ K
(0)
ψ,ψ ′ ψ(x)ψ∗(x ′) = 0. (40)

The zero modes (among others that would depend on K (0))
are the gxx ′ [ψ] given by Eq. (39), with x = x ′. This is a case
where there is no gap between the negative eigenvalues and
zero, and the probability distribution does not approach any
definite limit, though the density matrix becomes increasingly
diagonal as t → ∞.

Bell [5] subsequently gave formulas for a jump operator J

and for the probability distribution for the random parameter
in J that would yield the GRW equation (36) for the evolution
of the density matrix. (Bell’s formulas do not follow uniquely
from the GRW equation (36) for the evolution of the density
matrix, but they do follow from other assumptions in the GRW
paper.) In the one-particle one-dimensional case Bell’s results
(in a somewhat different notation) gives

[Jξψ](x) = j (x − ξ )ψ(x)/R(ψ,ξ ), (41)

where j (x) = (2α/π )1/4 exp(−αx2); ξ is a random parameter
with probability density R2(ψ,ξ ), and R(ψ,ξ ) is determined
by the normalization condition on Jψ :

R2(ψ,ξ ) =
∫

d3x|j (x − ξ )ψ(x)|2. (42)

Using Eq. (27), and setting the jump frequency � equal
to ω, we can use Eq. (41) to find the kernel K . Because
of the ψ dependence of R(ψ,ξ ), it is not so easy here
to find general solutions of the eigenvalue condition (29).
But it is easy to see that Eq. (29) is satisfied for the
functionals gx,x ′ [ψ] ≡ ψ(x ′)ψ∗(x) for arbitrary x and x ′. In
these cases the factors 1/R in [Jξψ](x ′) and [Jξψ]∗(x) are
canceled by the probability distribution R2 for ξ , and we
find � = exp[−α(x − x ′)2/2]. Using Eq. (30) then shows that
ψ(x ′)ψ∗(x) are left eigenfunctionals of K with eigenvalues
(38), so Eq. (37) is satisfied, and this yields the GRW
equation (36).
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