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Bell inequalities play a central role in the study of quantum nonlocality and entanglement, with many
applications in quantum information. Despite the huge literature on Bell inequalities, it is not easy to find a
clear conceptual answer to what a Bell inequality is, or a clear guiding principle as to how they may be derived.
In this paper, we introduce a notion of logical Bell inequality which can be used to systematically derive testable
inequalities for a very wide variety of situations. There is a single clear conceptual principle, based on purely
logical consistency conditions, which underlies our notion of logical Bell inequalities. We show that in a precise
sense, all Bell inequalities can be taken to be of this form. Our approach is very general. It applies directly
to any family of sets of commuting observables. Thus it covers not only the n-partite scenarios to which Bell
inequalities are standardly applied, but also Kochen-Specker configurations, and many other examples. There is
much current work on experimental tests for contextuality. Our approach directly yields, in a systematic fashion,
testable inequalities for a very general notion of contextuality. There has been much work on obtaining proofs
of Bell’s theorem “without inequalities” or “without probabilities.” These proofs are seen as being in a sense
more definitive and logically robust than the inequality-based proofs. On the hand, they lack the fault-tolerant
aspect of inequalities. Our approach reconciles these aspects, and in fact shows how the logical robustness can
be converted into systematic, general derivations of inequalities with provable violations. Moreover, the kind of
strong non-locality or contextuality exhibited by the GHZ argument or by Kochen-Specker configurations can
be shown to lead to maximal violations of the corresponding logical Bell inequalities. Thus the qualitative and
the quantitative aspects are combined harmoniously.
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I. INTRODUCTION

There is a huge literature on Bell inequalities [1,2],
with many ingenious derivations of families of inequalities.
However, a unifying principle with a clear conceptual basis
has proved elusive. In this paper, we introduce a form
of Bell inequality based on logical consistency conditions,
which we call logical Bell inequalities. This approach is both
conceptually illuminating and technically powerful.

To get some feeling for the results, we shall first discuss
how Bell inequalities are used. Their main application, of
course, is to show the nonlocality of quantum mechanics,
as famously first demonstrated in Bell’s theorem [1]. More
broadly, Bell inequalities are used to delineate those situations
which can be accounted for by classical physical concepts
from those which are inherently nonclassical; the content of
Bell’s theorem is exactly that quantum mechanics produces
empirically accessible phenomena which fall into the latter
category.

An important feature of the inequalities is that they have
a fault-tolerant aspect which makes them very suitable for
experimental verification. Violation of a Bell inequality is
quantitative, and allows nonclassicality to be demonstrated
without relying on idealized perfect measurements or state
preparations.
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There are also many applications of Bell inequalities in
quantum information, for example, in quantum key distri-
bution [4–6], quantum communication complexity [7], and
detection of quantum entanglement [8], so that they also play
a leading role in more applied work.

Although a huge literature on Bell inequalities has appeared
over the past few decades, it is not easy to distill from this
literature a clear conceptual answer to what a Bell inequality
is, or a clear guiding principle as to how they may be derived.

The present paper addresses this point, and introduces
a notion of logical Bell inequality which can be used to
systematically derive testable inequalities for a very wide
variety of situations. The following points in particular are
worth emphasizing:

(1) There is a single clear conceptual principle, based on
purely logical consistency conditions, which underlies our
notion of logical Bell inequalities. We show that in a precise
sense, all Bell inequalities can be taken to be of this form.

(2) Our approach is very general—much more so than the
great majority of the literature on Bell inequalities. It applies
directly to any family of sets of commuting observables.
Thus it covers not only the n-partite scenarios to which Bell
inequalities are standardly applied, but also Kochen-Specker
configurations, and many other examples. This is important
since there is much current work on experimental tests for
contextuality, a broader phenomenon than nonlocality; see
e.g., [9,10]. Our approach directly yields, in a systematic
fashion, testable inequalities for a very general notion of
contextuality.
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(3) There has been much work on obtaining proofs of Bell’s
theorem “without inequalities” or ‘without probabilities”
[11–13]. These proofs are seen as being in a sense more
definitive and logically robust than the inequality-based proofs.
On the hand, they lack the fault-tolerant aspect of inequalities.
Our approach fully reconciles these aspects, and in fact shows
how the logical robustness can be converted into systematic,
general derivations of inequalities with provable violations.
Moreover, the kind of strong nonlocality or contextuality
exhibited by the GHZ argument or by Kochen-Specker con-
figurations can be shown to lead to maximal violations of the
corresponding logical Bell inequalities. Thus the qualitative
and the quantitative aspects are combined harmoniously.

We now turn to a more precise, technical summary of our
results.

We show that a rational inequality is satisfied by all
noncontextual models if and only if it is equivalent to a
logical Bell inequality. Thus quantitative tests for contextuality
or nonlocality always hinge on purely logical consistency
conditions. We obtain explicit descriptions of complete sets
of inequalities for the convex polytope of noncontextual
probability models, and the derived polytope of expectation
values for these models. Moreover, these results are obtained
at a high level of generality; they apply not only to the
familiar cases of Bell-type scenarios, for any number of parties,
but to all Kochen-Specker configurations, and in fact to any
family of sets of compatible measurements. This generality
is achieved by working with measurement covers, following
the sheaf-theoretic approach to nonlocality and contextuality
introduced by the first author and Adam Brandenburger
in Ref. [3].

We also obtain results for a number of special cases. We
show that a model achieves maximal violation of a logical
Bell inequality if and only if it is strongly (or maximally)
contextual. We show that all Kochen-Specker configurations
lead to maximal violations of logical Bell inequalities in a
state-independent fashion. We also derive specific violations
of logical Bell inequalities for models which are possibilis-
tically contextual, meaning that they admit logical proofs
of contextuality. Well-known examples of such models are
those arising from a construction given by one of us 20 years
ago [12,14].

Inspiration for the present work was drawn from [15], which
derives some particular cases of logical Bell inequalities.
Developing these ideas in the general setting provided by [3]
proves to be fruitful, and indicates the potential for a structural
approach to quantum foundations.

A. A simple observation

We begin with a simple and very general scenario.
Suppose we have propositional formulas ϕ1, . . . ,ϕN . We

suppose further that we can assign a probability pi to each ϕi .
In particular, we have in mind the situation where the

Boolean variables appearing in ϕi correspond to empirically
testable quantities; ϕi then expresses a condition on the
outcomes of an experiment involving these quantities. The
probabilities pi are obtained from the statistics of these
experiments.

Now let P be the probability of � := ∧
i ϕi . Using

elementary probability theory, we can calculate as follows:

1 − P = Prob(¬�) = Prob

(∨
i

¬ϕi

)
�

∑
i

Prob(¬ϕi)

=
∑

i

(1 − pi) = N −
∑

i

pi .

Tidying this up yields
∑

i pi � N − 1 + P .
Now suppose that the formulas ϕi are jointly contradictory;

(i.e., � is unsatisfiable). This implies that P = 0. Hence we
obtain the inequality, ∑

i

pi � N − 1.

This inequality was obtained in Ref. [15], where it was used
to derive chained Bell inequalities (as originally obtained in
Ref. [16]). It is an example of a logical Bell inequality. In
Sec. V we shall give a general form for logical Bell inequalities.

B. A curious observation

Quantum mechanics tells us that we can find propositions
ϕi describing outcomes of certain measurements, which not
only can but have been performed. From the observed
statistics of these experiments, we have very highly confirmed
probabilities pi . These propositions are easily seen to be jointly
contradictory. Nevertheless, the inequality,∑

i

pi � N − 1,

is observed to be strongly violated. In fact, the maximum
violation of 1 can be achieved [17].

How can this be?
The best resolution to this puzzle on offer is that each

formula ϕi involves a proper subset Xi of the total set X

of Boolean variables which appear in the family, and hence
in the conjunction �. There is no global assignment of
probabilities to all the variables X simultaneously which yields
the empirically observed probabilities. Hence the ascription of
a probability to � is the invalid step. This is given general
mathematical meaning in terms of an obstruction to the
existence of a global section in Refs. [3,18], extending [19].

This does seem an uncomfortably slender basis on which
to defend logical consistency, since it seems hard to avoid
the conclusion that the null event should be assigned
probability 0.

This argument can be seen as a theory-independent deriva-
tion of the impossibility of measuring all the variables in
X simultaneously, even in principle, on pain of a direct
clash between logical consistency and empirical evidence.
We simply cannot regard the variables as each representing
a global, context-independent quantity.

C. Logical Bell and CHSH inequalities

We shall call the inequality,∑
i

pi � N − 1,
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a logical Bell inequality. We can also derive an associated
inequality for expectations.

We shall associate truth of a formula with the value +1,
and falsity with −1. We then have the expected value Ei of the
formula ϕi given by

Ei = (+1)pi + (−1)(1 − pi) = 2pi − 1.

From the Bell inequality, we obtain∑
i

Ei =
∑

i

(2pi − 1)

= 2
∑

i

pi − N � 2(N − 1) − N = N − 2.

Moreover, if K is an upper bound as the expectations range
over probability assignments, −K must be a lower bound, as
we can substitute 1 − pi for pi to get the expected value −Ei .
Thus this is a bound on the absolute value of the expectations,
so we obtain the logical CHSH inequality:∣∣∣∣∣

∑
i

Ei

∣∣∣∣∣ � N − 2. (1)

Note that these inequalities are very general, and indepen-
dent of any particular setting. We shall now show how they
apply to familiar scenarios arising from quantum mechanics
and the study of nonlocality.

II. PROBABILISTIC MODELS OF EXPERIMENTS

Our general setting will be the probability models com-
monly studied in quantum information and quantum foun-
dations [20]. In these models, a number of agents each has
the choice of one of several measurement settings; and each
measurement has a number of distinct outcomes. For most
of this paper, we shall focus on measurements with two
possible outcomes; however, we will show how our results
can be extended to measurements with multiple outcomes in
Sec. VIII. For each choice of a measurement setting by each
of the agents, we have a probability distribution on the joint
outcomes of the measurements.

For example, consider the following tabulation of such a
model.

(0,0) (1,0) (0,1) (1,1)
(a,b) 1/2 0 0 1/2
(a,b′) 3/8 1/8 1/8 3/8
(a′,b) 3/8 1/8 1/8 3/8
(a′,b′) 1/8 3/8 3/8 1/8

Here we have two agents, Alice and Bob. Alice can choose
from the settings a or a′, and Bob can choose from b or
b′. These choices correspond to the rows of the table. The
columns correspond to the joint outcomes for a given choice
of settings by Alice and Bob, the two possible outcomes for
each individual measurement being represented by 0 and 1.
The numbers along each row specify a probability distribution
on these joint outcomes.

A. The Bell model

A standard version of Bell’s theorem uses the probability
table given above. This table can be realized in quantum

mechanics (e.g., by a Bell state), written in the Z basis as

|↑↑〉 + |↓↓〉√
2

,

subjected to spin measurements in the XY plane of the Bloch
sphere, at a relative angle of π/3.

Logical analysis of the Bell table

We now pick out a subset of the elements of each row of
the table, as indicated in the following table.

(0, 0) (1, 0) (0, 1) (1, 1)
(a,b) 1/2 0 0 1/2

(a,b′) 3/8 1/8 1/8 3/8

(a′,b) 3/8 1/8 1/8 3/8

(a′,b′) 1/8 3/8 3/8 1/8

If we read 0 as true and 1 as false, the boxed positions in
the table are represented by the following propositions:

ϕ1 = (a ∧ b) ∨ (¬a ∧ ¬b) = a ↔ b,

ϕ2 = (a ∧ b′) ∨ (¬a ∧ ¬b′) = a ↔ b′,
ϕ3 = (a′ ∧ b) ∨ (¬a′ ∧ ¬b) = a′ ↔ b,

ϕ4 = (¬a′ ∧ b′) ∨ (a′ ∧ ¬b′) = a′ ⊕ b′.

The first three rows are the correlated outcomes; the fourth
is anticorrelated. These propositions are easily seen to be
contradictory. Indeed, starting with ϕ4, we can replace a′ with
b using ϕ3, b with a using ϕ1, and a with b′ using ϕ2, to obtain
b′ ⊕ b′, which is obviously unsatisfiable.

We see from the table that p1 = 1, pi = 6/8 for i = 2,3,4.
Hence the violation of the Bell inequality is 1/4, and of the
CHSH inequality 1/2.

We may note that the logical pattern shown by this jointly
contradictory family of propositions underlies the familiar
CHSH correlation function.

B. Some notation

Later we will develop some notation for the general case.
To prepare the way we will indicate how this notation will
work in the Bell model. First, in this case, we put

X = {a,b,a′,b′},
as this is the set of Boolean variables we are interested
in. Next, we consider subsets U ⊆ X, corresponding to the
different combinations of measurements we might perform—
the measurement contexts. One such subset is U = {a,b}. We
denote the set of all such subsets by U . Thus, in this case, we
have

U = {{a,b},{a,b′},{a′,b},{a′,b′}}.
A basic measurement such as a has possible outcomes 0 or 1.
We shall write 2 := {0,1} for the set of possible outcomes. A
joint outcome for a set of measurements U can be specified
by a function s : U → 2. For example, if we perform the
measurements in U = {a,b}, and a has outcome 0 and b has
outcome 1, this is described by the function,

{a 
→ 0, b 
→ 1},
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which maps a to 0 and b to 1. This function corresponds to the
cell in the first row and third column of the Bell table. The set
of all such functions is denoted by 2U . Thus for U = {a,b},

2U = {fij | i,j = 0,1},

where fij = {a 
→ i,b 
→ j}. This corresponds to the set of
cells in the first row of the table.

A probability model such as the Bell table shown above
is given by specifying a probability distribution dU on 2U for
each U ∈ U . Thus dU is a function dU : 2U → [0,1] such that∑

s∈2U dU (s) = 1. These distributions correspond to the rows
of the Bell table.

The proposition ϕ1 pertains to the context U = {a,b}; note
that it only uses the variables in U . We can think of 2U as the
set of truth-value assignments to the Boolean variables in U ,
where we interpret 0 as true and 1 as false. The set of satisfying
assignments for the formula ϕ1—the subset of 2U for which
this proposition is true—is

S(U ) = {{a 
→ 0, b 
→ 0}, {a 
→ 1, b 
→ 1}}.
We have given such a proposition ϕi for each element of U .
The highlighted items in the ith row of the table form the
set S(Ui) of satisfying assignments for ϕi , where Ui is the
corresponding measurement context.

C. A bipartite logical model

We know turn to the model introduced by one of us in
1992 [12,14]. The original purpose of this construction was to
show a “logical” proof of Bell’s theorem in the bipartite case,
following the GHZ tripartite construction. Reflecting this, we
shall only need to consider the support table of the model to
demonstrate a violation of the inequalities.

Consider, for example, the following table, which has a
quantum realization as described in Ref. [14].

(0,0) (1,0) (0,1) (1,1)
(a,b) 1 1 1 1
(a′,b) 0 1 1 1
(a,b′) 0 1 1 1
(a′,b′) 1 1 1 0

This table has a 1 for every entry in the model with a positive
probability.

If we interpret outcome 0 as true and 1 as false, then the
following formulas all have positive probability:

a ∧ b, ¬(a ∧ b′), ¬(a′ ∧ b), a′ ∨ b′.

However, these formulas are not simultaneously satisfiable.
Note that the formulas ϕi for i = 2,3,4 describe the full

support of this model for the corresponding rows; hence p2 =
p3 = p4 = 1. It follows that the model achieves a violation
of p1 = Prob(a ∧ b) for the Bell inequality, and a violation of
2p1 for the CHSH inequality.

Note that this calculation can be made purely on the basis
of the support table.

III. THE GENERAL CASE: STRUCTURE OF SUPPORTS

We now turn to a general analysis. The setting will be that
of [3], but we shall develop what we need in a self-contained
fashion.

We shall begin by looking just at the supports of probability
models, which suffice to describe many forms of contextual
and nonlocal behavior, as we have already illustrated with the
model described in Sec. II C. We shall then go on to look at
generalized probability models themselves.

A. Notation

We shall use the notation introduced in the previous section:
We define 2 := {0,1}, and write 2U for the set of all functions
from a set U into 2. We shall also use the following notation for
function restriction. If s : X → 2 is a function, and U ⊆ X,
then we write s|U : U → 2 for the restriction of s to U . For
example, if X = {a,b,a′,b′}, U = {a,b}, and s : X → 2 is the
function,

{a 
→ 0, b 
→ 1, a′ 
→ 1, b′ 
→ 0},
then s|U is the function,

{a 
→ 0, b 
→ 1}.

B. Structure of support tables

We fix a set of Boolean variables X, and a cover U (i.e., a
family of subsets of X such that

⋃
U = X).

A probability model on a cover (X,U) is a family {dU }U∈U ,
where dU is a probability distribution on 2U .

We think of the sets U ∈ U as the compatible sets of
measurements, which index the “rows” of the probability table.
Given such a row U , 2U is the set of possible joint outcomes of
these measurements. The distribution dU gives the probability
for each such joint outcome.

The support of the model at U ∈ U is the set S(U ) ⊆ 2U of
those s ∈ 2U such that dU (s) > 0.

A global section for the support of the model is an
assignment,

s : X → 2,

such that, for all U ∈ U , s|U ∈ S(U ) [21].
We can think of global sections in geometric terms, as

coherently gluing together a family of local sections sU ∈
S(U ), indexed by U ∈ U . This geometrical idea of a global
section can be related to logical notions. A formula ϕU over
a set of variables U ∈ U has a set of satisfying assignments
which is a subset of 2U . Note that, if U is finite, any subset
of 2U can be defined in this way by a propositional formula.
For each U ∈ U , let ϕU be a formula whose set of satisfying
assignments is S(U ). Global sections correspond precisely to
satisfying assignments for the formula,

ϕ =
∧
U∈U

ϕU .

As shown in detail in Ref. [3], the existence of global
sections provides a canonical form for noncontextual hidden-
variable theories.
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We can define a probabilistic model to be possibilistically
noncontextual [3] if for every element s ∈ S(U ) of its support,
there is a global section s ′ such that s ′|U = s. If this does not
hold, the model is contextual, or in particular nonlocal. In fact,
as shown in Ref. [3], this form of contextuality or nonlocality
is strictly stronger than the usual probabilistic notions. For
example, the Bell model studied in the previous section is
nonlocal, but is in fact possibilistically noncontextual. The
possibilistically contextual models are those which admit
logical proofs of Bell’s theorem: “Bell’s theorem without
inequalities” [11].

We can now give a completely general argument that for
any model which is contextual in this strong possibilistic sense,
we can obtain a violation of instances of the generalized Bell
and CHSH inequalities.

Proposition 1. Any possibilistically contextual model vio-
lates a logical Bell or CHSH inequality.

Proof. Suppose that a model is possibilistically contextual,
with s ∈ S(U ) such that there is no global section for S

restricting to s. We define a formula ϕs , describing s. This
formula can be written explicitly as

ϕs :=
∧

s(x)=0

x ∧
∧

s(x)=1

¬x. (2)

The only satisfying assignment for ϕs in 2U is s.
For all U ′ ∈ U with U ′ �= U , we define ϕU ′ to be a formula

which defines the support of the model on the “row” U ′.
Explicitly, we can define

ϕU ′ :=
∨

s ′∈S(U ′)

ϕs ′ .

The fact that there is no global section on the support which
restricts to s says exactly that the formula ϕs ∧ ∧

U ′ �=U ϕU ′

is not satisfiable. Since pU ′ = 1 for U �= U ′ ∈ U , the Bell
inequality with respect to these formulas is violated by
pϕs

= p(s) > 0, while violation of the CHSH inequality is
by 2p(s). �

C. Strong contextuality

A still stronger form of contextuality is identified in Ref. [3].
A model is defined to be strongly contextual if its support
has no global section; equivalently, the propositional formulas
defining its support are not simultaneously satisfiable.

It is shown in Ref. [3] that all n-partite states GHZ(n), for
n � 3, are strongly contextual in this sense. It is also shown
that strong contextuality is equivalent to the model being
maximally contextual, in the sense of having no nontrivial
convex decomposition into a noncontextual model and a
no-signaling model.

We now have the following result.
Proposition 2. A model achieves maximal violation of a

logical Bell inequality if and only if it is strongly contextual.
Proof. Suppose that the model is strongly contextual. For

each row U , we can define the formula ϕU corresponding to
the support of the model on that row, as in the proof of the
previous proposition. Since the probability of each ϕU is 1, we
obtain the maximum violation of 1.

For the converse, if maximal violation is achieved, there
are a family of rows U1, . . . ,UN , and propositions ϕi defining

subsets S(Ui) ⊆ 2Ui , such that
∧

i ϕi is unsatisfiable, and∑
i pi = N . This implies that pi = 1 for all i, and hence

that S(Ui) contains the support of the model on Ui . The
unsatisfiability of

∧
i ϕi means that there is no global section

which restricts to each S(Ui), which means a fortiori that the
model is strongly contextual. �

1. Example: the GHZ state

We consider the tripartite GHZ state [11,22], which we
write in the Z basis as

|↑↑↑〉 + |↓↓↓〉√
2

,

with X and Y measurements in each component. The relevant
part of the support table for the resulting probability model
can be specified as follows:

000 001 010 011 100 101 110 111
abc 1 0 0 1 0 1 1 0
ab′c′ 0 1 1 0 1 0 0 1
a′bc′ 0 1 1 0 1 0 0 1
a′b′c 0 1 1 0 1 0 0 1

Given Boolean variables x, y, z, we define

�xyz := ¬x ⊕ ¬y ⊕ ¬z. (3)

The support for each row can be specified by the following
formulas:

ϕ1 := ¬�abc, ϕ2 := �ab′c′ , ϕ3 := �a′bc′ , ϕ4 := �a′b′c.

It can be verified that these formulas are not simultaneously
satisfiable; in fact, such a verification is what the well-known
argument by Mermin in terms of “instruction sets” [23]
amounts to.

Thus the tripartite GHZ state maximally violates a logical
Bell inequality. Similar arguments apply to n-partite GHZ
states for all n > 3; see Ref. [3].

2. Example: the PR box

We consider the Popescu-Rohrlich box [24], which achieves
superquantum correlations while respecting no-signaling.

(0,0) (0,1) (1,0) (1,1)
(a,b) 1 0 0 1
(a,b′) 1 0 0 1
(a′,b) 1 0 0 1
(a′,b′) 0 1 1 0

The supports of the rows of this table are specified by the
following formulas:

a ↔ b, a ↔ b′, a′ ↔ b, a′ ⊕ b′,

which are not simultaneously satisfiable. Thus this model
maximally violates a logical Bell inequality.

Note that these formulas are the same as those we used
for the Bell model in Sec. II A. In this case, however, they
cover the whole support of the model, corresponding to the
fact that the PR box attains the algebraic maximum of the
CHSH correlation function.
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D. Kochen-Specker configurations

The notion of model we are considering, following [3],
is much more general than the usual “Bell scenarios.” For
example, any set X of quantum observables gives rise to a
cover in our sense, where the sets in the cover correspond to
the maximal compatible subsets of X . Since we are currently
restricting our attention to two-outcome measurements, we
shall only consider dichotomic observables. If we fix a state,
then for each maximal set of compatible observables, (i.e.,
each row of the table), we get a probability distribution on
joint outcomes of the observables in the family, following the
usual quantum mechanical recipe. The details are spelled out
in Ref. [3].

The usual Bell case arises when the observables are
partitioned according to the sites or parties; the sets in the
cover correspond to a choice of one observable from each site,
represented on a tensor product in the standard fashion.

Equally, however, any Kochen-Specker configuration gives
rise to a cover in our sense [25]. Given a family of unit vectors
representing distinct rays inRd , we consider the corresponding
dichotomic observables, whose spectral resolutions project
onto the ray and its orthogonal. We shall label the outcome
corresponding to the ray as 0, and the orthogonal outcome
as 1.

These observables are compatible if and only if the corre-
sponding rays are orthogonal. Thus the maximal compatible
families correspond to the families of vectors which determine
orthonormal bases of Rd . It follows that, for any quantum
state, the only possible outcomes for one of these maximal
compatible families are those where exactly one of the
outcomes is labeled 0. Thus for any state, the support of the
probability model it gives rise to satisfies the following formula
for each set U in the cover:

�(U ) :=
∨
x∈U

(x ∧
∧

x ′∈U\{x}
¬x ′).

The essential property of Kochen-Specker configurations is
exactly that there is no global section for this family of
supports, or equivalently, that the formula,∧

U∈U
�(U ),

is unsatisfiable. It follows immediately that, given a Kochen-
Specker configuration, the probability model generated by any
quantum state with respect to the corresponding family of
observables is strongly contextual. This fully explicates the
state-independent nature of the Kochen-Specker theorem.

Hence we obtain the following corollary to
Proposition 2.

Proposition 3. For any Kochen-Specker configuration, and
for any quantum state, the corresponding probability model
maximally violates a logical Bell inequality.

Thus we have a perfectly general way of obtaining
experimentally testable inequalities, with maximal violations,
from any Kochen-Specker configuration.

1. Example: the 18-vector configuration in R4

We look at the 18-vector construction in R4 from [26].
This uses the following measurement cover U = {U1, . . . ,U9},

where the columns Ui are the sets in the cover.

U1 U2 U3 U4 U5 U6 U7 U8 U9

A A H H B I P P Q

B E I K E K Q R R

C F C G M N D F M

D G J L N O J L O

The standard argument that this is a Kochen-Specker
configuration [3,26] amounts to verifying that the formula,

9∧
i=1

�(Ui),

is unsatisfiable. Thus for any quantum state, the resulting
probability model will maximally violate a logical Bell
inequality.

2. Example: the Peres-Mermin square

We look at an important example, the Peres-Mermin square
[27,28], which can be realized in quantum mechanics using
two-qubit observables.

The structure of the square is as follows:

A B C

D E F

G H I

The compatible families of measurements are the rows and
columns of this table. The key property differs from the usual
Kochen-Specker situation in that we don’t ask for exactly one
1 at each maximal context. Instead, we ask that each “row
context” has an odd number of 1’s whereas each “column
context” has an even number of 1’s. Hence the support table
is the following.

000 001 010 011 100 101 110 111
ABC 0 1 1 0 1 0 0 1
DEF 0 1 1 0 1 0 0 1
GHI 0 1 1 0 1 0 0 1
ADG 1 0 0 1 0 1 1 0
BEH 1 0 0 1 0 1 1 0
CFI 1 0 0 1 0 1 1 0

Note that the first three lines correspond to the row contexts and
the remaining three to the column contexts from the square.

The following formulas characterize the supports for each
line of the table:

ϕ1 := �ABC, ϕ2 := �DEF , ϕ3 := �GHI ,

ϕ4 := ¬�ADG, ϕ5 := ¬�BEH , ϕ6 := ¬�CFI .

Here we use �xyz as defined in Eq. (3).
It can be verified that these formulas are not simultaneously

satisfiable. Thus the Peres-Mermin square maximally violates
a logical Bell inequality.

IV. GENERAL PROBABILISTIC MODELS

Suppose we are given a cover U on a set X. A general
probability model over U assigns a probability distribution dU

on the set 2U for each U ∈ U [29].
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Each global assignment t ∈ 2X induces a deterministic
probability model δt :

δt
U (s) =

{
1, t |U = s

0 otherwise.

We have the following result from [3, Theorem 8.1].
Theorem 1. A probability model {dU } is noncontextual

if and only if it can be written as a convex combination∑
j∈J μj δ

tj where tj ∈ 2X for each j ∈ J . This means that
for each U ∈ U ,

dU =
∑

j

μj δ
tj
U .

In fact, this gives a canonical form for such models,
subsuming the usual notions of local or noncontextual hidden-
variable models.

V. THE GENERAL FORM OF LOGICAL
BELL INEQUALITIES

It will be useful to establish some notation for expressing
logical Bell inequalities. Suppose we are given a cover U on
a set X. As illustrated in the examples we have looked at
previously, we will regard X as a set of Boolean variables. We
shall consider expressions of the form,

N∑
i=1

kiϕi,

where for each i, ki is a non-negative integer, and ϕi is a
formula whose variables are drawn from Ui ∈ U .

We think of such expressions as multisets of formulas,
where ϕi appears with multiplicity ki . A sub-multiset of∑

i∈I kiϕi is an expression of the form
∑

i∈I k′
iϕi , where for

each i, 0 � k′
i � ki . The cardinality of

∑
i∈I kiϕi is

∑
i∈I ki .

We say that
∑

i∈I kiϕi is K-consistent if for every sub-multiset
of cardinality >K , the underlying set of formulas with positive
support has no satisfying assignment.

Given a positive integer K , we consider the expression,

N∑
i=1

kip(ϕi) � K. (4)

If we are given a probability model {dU }U∈U , we can evaluate
the formal expression p(ϕi) as pi := dUi

(Si), where Si is the set
of satisfying assignments in 2Ui for ϕi (i.e., the event defined
by ϕi).

The model satisfies the expression (4) if

N∑
i=1

kipi � K.

Proposition 4. The inequality (4) is satisfied by all non-
contextual models if and only if the multiset

∑
i∈I kiϕi is

K-consistent.
Proof. By Theorem 1, any noncontextual model can be

written as a convex combination
∑

j μj δ
tj , where tj ∈ 2X.

It suffices to verify (4) for the deterministic models δt , since
if for each j we have

∑
i kipi,j � K , where pi,j = δ

tj
Ui

(Si),

then,

∑
i

ki

⎛
⎝∑

j

μjpi,j

⎞
⎠ =

∑
j

μj

(∑
i

kipi,j

)
�

∑
j

μjK = K.

Now if the multiset
∑

i∈I kiϕi is K-consistent, any t ∈ 2X,
viewed as a Boolean assignment on X, can satisfy a sub-
multiset of cardinality at most K , and hence δt will satisfy the
inequality (4).

Conversely, if t satisfies K + 1 formulas in the multiset,
each corresponding term in Eq. (4) will be assigned probability
1 in δt , and hence we will have

∑
i kipi � K + 1. �

Note that the form of logical inequality which we have
considered previously is a special case, where we have a set of
N formulas which is (N−1) consistent. Allowing for the more
general notion of K-consistency leads to sharper inequalities,
which are needed to obtain completeness.

It is important to note that there is no requirement for the
sets Ui to be distinct. Thus different formulas occurring in the
multiset may define overlapping subsets of the same row.

We define the general notion of logical Bell inequality over
a cover U to be given by expressions of the form (4), where the
multiset of formulas is K-consistent. Note that this class of
inequalities is defined solely in terms of the cover U , and
a purely logical condition on the formulas. Thus we may
indeed regard this as a logical class; the interesting point is
that we can obtain quantitative information about contextu-
ality from conditions which are derived in a purely logical
fashion.

VI. COMPLETENESS OF LOGICAL BELL INEQUALITIES

We shall now show that logical Bell inequalities completely
characterize contextuality.

We begin by recalling the definition of the incidence matrix
from [3]. Given a cover U on a set X, we define a matrix
M whose rows are indexed by pairs (U,s), where U ∈ U , and
s ∈ 2U , and whose columns are indexed by global assignments
t ∈ 2X. The matrix entries are defined by

M[(U,s),t] =
{

1, t |U = s

0 otherwise.

Note that the column M[ ,t] of the matrix corresponds to the
deterministic model δt . We can regard a probabilistic model
{dU }U∈U as a real vector v in the row space of M, where
v[U,s] = dU (s).

Proposition 5. The noncontextuality of the probabilistic
model represented by the vector v is equivalent to the existence
of a non-negative solution x � 0 for the linear system

Mx = v.

Proof. For each U ∈ U , the subvector vU of v forms a
probability distribution on 2U , and hence sums to 1. Since the
restriction map 2X → 2U is surjective, and Mx = v implies
(Mx)U = vU , it follows that the entries of x sum to 1. Thus
x defines a probability distribution μ on 2X. Moreover, the
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equation (Mx)U = vU is equivalent to

dU =
∑
t∈2X

μ(t)δt
U .

Thus a solution x exists if and only if the model can be written
as a convex combination as in Theorem 1. �

Thus the set N of noncontextual probability models is the
convex hull of the set of deterministic models δt , t ∈ 2X. By
the fundamental properties of convex polytopes [30–32], N is
equivalently specified by a finite set of linear inequalities.

To state this more explicitly, we first recall the well-known
Fourier-Motzkin elimination procedure [30–32].

Proposition 6. (Fourier-Motzkin elimination). If we are
given a finite system I (x,y) of linear inequalities in the
variables x, y, we can effectively obtain a finite system J (y) of
inequalities in the variables y, such that v satisfies J if and only
if for some w, (w,v) satisfies I . Moreover, J is constructed
from I using only the field operations, so if I is rational,
so is J .

The size of J is, in the worst case, doubly exponential in
the size of I . Nevertheless, Fourier-Motzkin elimination is
widely used in computer-assisted verification and polyhedral
computation [33,34].

In our case, we begin with the “symbolic” system,

Mx = y, x � 0, 1 · x = 1,

in variables x, y. This can be written as

a1,j x1 + · · · + aN,j xN − yj � 0, j = 1, . . . ,D,

−a1,j x1 + · · · + −aN,j xN + yj � 0, j = 1, . . . ,D,

xi � 0, i = 1, . . . ,N,

x1 + · · · + xN � 1
−x1 + · · · + −xN � −1,

where the coefficients ai,j come from the incidence matrix M,
and

N := 2|X|, D :=
∑
U∈U

2|U |

are the dimensions of M. Note that, since the system is
symbolic, we have to add the constraint that x sums to 1
explicitly.

Writing this system as I (x,y), by Proposition 5, we have

N = {v | ∃ w, I (w,v)}.
By Proposition 6, we can eliminate the variables x from this
system, producing a system J of inequalities in the variables y,
such that v satisfies J if and only if for some w, (w,v) satisfies
I . Thus v is in N if and only if v satisfies J .

Thus we obtain the following result.
Proposition 7. There is a finite set of rational vectors

r1, . . . ,rp, and rational numbers r1, . . . ,rp, such that, for all
probability models v,

v ∈ N ⇐⇒ ∀ i = 1, . . . ,p, ri · v � ri .

A. Completeness of logical Bell inequalities

Suppose we are given a cover U . A rational inequality over
U is given by a rational vector r and a rational number r . A
probability model v satisfies this inequality if r · v � r . Two

inequalities are equivalent if they are satisfied by the same
probability models.

Theorem 2. A rational inequality is satisfied by all noncon-
textual models over U if and only if it is equivalent to a logical
Bell inequality.

Proof. A rational inequality determines an equivalent
integer inequality given by an integer vector k and an integer
M , obtained by clearing denominators.

Suppose that we are given an integer vector k indexed by
(U,s), where U ∈ U and s ∈ 2U . For each (U,s), we define
non-negative integers kU

s , and formulas θU
s in the variables U :

kU
s = |k[U,s]|,

θU
s =

{
ϕs, k[U,s] � 0
¬ϕs, k[U,s] < 0.

Here we use ϕs as defined in Eq. (2).
Now suppose we are given a probability model v. For each

(U,s), we define pU
s to be the probability assigned by v to the

subset of 2U defined by θU
s .

We claim that

k · v =
∑
U,s

kU
s pU

s −
∑

k[U,s]<0

kU
s . (5)

To see this, for each (U,s) we compare k[U,s] · v[U,s] with
kU
s pU

s :
If k[U,s] � 0, then k[U,s] · v[U,s] = kU

s pU
s .

If k[U,s] < 0, we have the following:

k[U,s] · v[U,s] = kU
s {[1 − p(ϕs)] − 1} = kU

s

(
pU

s − 1
)
.

Collecting terms, we obtain (5).
We now consider the expression,∑

U,s

kU
s p

(
θU
s

)
� K, (6)

where K = M + ∑
k[U,s]<0 kU

s .
By (5), a probability model v will satisfy this inequality if

and only if k · v � M . Thus this inequality is equivalent to the
rational inequality we began with.

Now suppose that this inequality is satisfied by all non-
contextual models. Since the coefficients kU

s in Eq. (6) are
non-negative, K must be non-negative. By Proposition 4, the
multiset of formulas

∑
U,s kU

s θU
s is K-consistent, and thus (6)

is a logical Bell inequality.
Thus every rational inequality satisfied by all noncontextual

models is equivalent to a logical Bell inequality. From
Proposition 4, we also have the converse: Every logical Bell
inequality is satisfied by all noncontextual models.

Combining Proposition 7 and Theorem 2, we obtain the
following completeness result.

Theorem 3. The polytope of noncontextual probability
models over any cover U is determined by a finite set of logical
Bell inequalities. Moreover, these inequalities can be obtained
effectively from U . Thus a probabilistic model over any cover
is contextual if and only if it violates one of finitely many
logical Bell inequalities.

Proof. By Proposition 7, given U we can effectively obtain
a finite set of rational inequalities defining the noncontextual
polytope. Using the construction given in the proof of
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Theorem 2, we can effectively transform these rational
inequalities into equivalent logical Bell inequalities. �

VII. LOGICAL DESCRIPTION OF
CORRELATION INEQUALITIES

We shall now show that correlation inequalities can also
be analyzed logically; in fact, they form a special case of the
logical inequalities we have already described.

A probability model v determines a vector ηv = (EU )U∈U
of expectation values. Here,

EU := (+1)p(ψU ) + (−1)p(¬ψU ),

where ψU is a formula whose satisfying assignments are those
with an even number of 1 outcomes. Thus we can define

ψU := ¬
⊕
x∈U

¬x. (7)

The set of expectation vectors of noncontextual models
is the image under a linear map of the convex polytope of
noncontextual probability models, and hence forms a convex
polytope E , with vertices given by the vectors ηt , t ∈ 2X.

Clearly, any probability model v whose expectation vector
ηv is not in E must be contextual. However, the converse
is not the case. We shall return to this point in Sec. VII B.
Nevertheless, the correlation inequalities have received a great
deal of attention in the literature on nonlocality, and it is clearly
of considerable interest to give a complete characterization.

We shall now give a logical characterization of a complete
set of inequalities for the polytope E on an arbitrary cover U .

Theorem 4. For any probability model v such that ηv �∈ E ,
there is a logical Bell inequality,∑

U∈U
kUp(θU ) � K, (8)

which is violated by v, where for each U , θU is either ψU or
¬ψU .

Proof. By similar reasoning to that used in the proof of
Theorem 3, there is an integer vector k and an integer M

such that k · ηw � M for all noncontextual models w, and
k · ηv > M .

For each U , and any probability model w, we consider two
cases:

If k[U ] = kU is positive, then we can write k[U ] · ηw[U ] =
kU [2p(ψU ) − 1].

If k[U ] = −kU is negative, we can write

k[U ] · ηw[U ] = −kU [2p(ψU ) − 1] = kU [1 − 2p(ψU )]

= kU {2[1−p(ψU )]−1}=kU [2p(¬ψU ) − 1].

Rearranging terms, we have

k · ηw =
∑
U∈U

2kUp(θU ) − P,

where each θU is either ψU or ¬ψU , and P is a positive integer.
Hence the inequality k · ηw � M is equivalent to w satisfying
the inequality, ∑

U∈U
2kUp(θU ) � K, (9)

where K = M + P . By Proposition 5, the fact that all
noncontextual models w satisfy k · ηw � M implies that (9)
is a logical Bell inequality. Since k · ηv > M , v violates this
inequality.

Note that, for any vector η ∈ E , η = ηw for some noncon-
textual model w, and w satisfies all the logical Bell inequalities.

It is also possible to reverse the procedure described in
Theorem 4, to obtain a complete set of inequalities directly
applicable to expectation vectors.

Given a logical Bell inequality of the form,∑
U∈U

2kUp(θU ) � K,

where for each U , θU is either ψU or ¬ψU , we can form the
inequality, ∑

U∈U
lUEU � M,

where M = K − ∑
U∈U kU , and

lU =
{

kU , θU = ψU

−kU , θU = ¬ψU.

We call this class of inequalities on expectation vectors the
logical correlation inequalities.

As an immediate consequence of Theorem 4, we have the
following.

Theorem 5. An expectation vector η is in E if and only if it
satisfies all the logical correlation inequalities.

A. Example

We consider the following correlation inequality for the
(3,2,2) case given by Werner and Wolf in Ref. [35]:

1

4

8∑
i=1

Ei − E8 � 1. (A2)

Here Ei , for i = 1, . . . ,8, is the expectation value for the
combination of measurements whose value, written as a binary
string, is i − 1.

If we write this more explicitly, and clear the denominator
of the scaling factor 1/4, we obtain

7∑
i=1

Ei − 3E8 � 4.

If we now convert this to the form (4), following the procedure
given in the proof of Theorem 5, we obtain the following
inequality:

7∑
i=1

p(ψi) + 3p(¬ψ8) � 7.

We can see that the multiset,

7∑
i=1

1ψi + 3(¬ψ8),

is 7-consistent. In fact, ¬ψ8, together with any five of the
formulas ψ1, . . . ,ψ7, is inconsistent.
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B. Example

There are a number of extremal vertices of the no-signaling
polytope in the (3,2,2) case, as listed in Ref. [36], which satisfy
all the correlation inequalities from [35,37].

We shall examine one of these in detail. This is the vertex
numbered 4 in the listing in Ref. [36].

We shall label the measurements as a, a′ for site 1; b, b′
for site 2; and c, c′ for site 3. The support of the model for
each measurement combination m can be represented by a
formula ϕm; since the distribution on each row is uniform on
the support, this completely specifies the model.

We recall the definition of ψU from (7). The formulas for
the support of the model are defined as follows:

ϕabc = ϕabc′ = ψab; ϕab′c′ = ϕa′b′c′ = ψb′c′ ,

ϕa′bc = ϕa′b′c = ψa′c; ϕab′c = ψab′c; ϕa′bc′ = ¬ψa′bc′ .

Combining these, we obtain the following multiset of
formulas:

2ψab + 2ψb′c′ + 2ψa′c + ψab′c + ¬ψa′bc′ .

Since ψab is equivalent to a ↔ b, in the presence of the first
three formulas ψab′c is equivalent to ψbc′c, and ¬ψa′bc′ is
equivalent to ¬ψcbc′ . Since ψU is independent of the order in
which the elements of U are listed, we obtain a contradiction.
In fact, this multiset of formulas is 7-consistent, so the model
achieves a maximal violation of the logical Bell inequality,

2p(ψab) + 2p(ψb′c′) + 2p(ψa′c) + p(ψab′c) +p(¬ψa′bc′ ) � 7.

This yields a concrete example of a no-signaling model which
satisfies all the correlation inequalities, while maximally
violating the canonical logical Bell inequality arising from its
support.

VIII. MULTIPLE OUTCOMES

Thus far we have focused exclusively on dichotomic mea-
surements, which are particularly convenient for connecting
to logic. However, the general format of measurement covers
easily allows the results to be extended to measurements with
multiple outcomes.

For example, we consider the case of (n,k,2p) Bell
scenarios: n sites, k measurements per site, and 2p outcomes
per measurement. This corresponds to the following situation
in our setting. We have a set X with nkp elements {mi

j,l}, where
i = 1, . . . ,n, j = 1, . . . ,k, and l = 1, . . . ,p. We write

Xi
j := {

mi
j,l

∣∣l = 1, . . . ,p
}
, Xi :=

k⋃
j=1

Xi
j .

The cover U comprises all those subsets U of X such that, for
all i = 1, . . . ,n, for some j , U ∩ Xi = Xi

j . The idea is that Xi

is the set of measurements which can be performed at site i.
There are k choices available at each site between sets Xi

j of p

dichotomic measurements each. Because these measurements
are compatible, they can be performed together, resulting in
a measurement with 2p possible outcomes. An overall choice
of measurements consists of selecting one such compatible
family for each site.

All our results apply directly to this situation, which is
itself a very special case of the general notion of cover. Thus
from Theorem 5, we have an explicit description of a complete
set of correlation inequalities characterizing the (n,k,2p) Bell
scenarios.

IX. FINAL REMARKS

For further directions, it would be of particular interest to
see how much of the present approach could be lifted to the
quantum set, and the Tsirelson inequality [38].

As regards related work, the form of expressions we
have used for the logical inequalities correspond to basic
weight formulas in the logic for reasoning about probabilities
studied in Ref. [39], following [40], which was motivated by
applications in artificial intelligence.

The correlation polytopes of Pitowsky [41], which have
a lineage going back to Boole’s “conditions of possible
experience” [42], should also be mentioned. Although this
line of thought is certainly in a kindred spirit, Boole’s
conditions are arithmetical in nature; while the central theme
of the present paper is that complete sets of Bell inequal-
ities can be defined in terms of purely logical consistency
conditions.

The notion of K-consistency is closely related to the
well-known maximum satisfiability problem in computational
complexity [43]. This asks for the maximum number of clauses
in a given set which are satisfiable.
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