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Critical frequency control for arbitrarily slow decoherence of a qubit
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The decoherence of a qubit is studied for a general class of spectral densities with an arbitrary band gap. The
exact dynamics reveals the existence of critical values of the qubit transition frequency, such that relaxations
of coherence show discontinuities, jumping from decays with powers arbitrarily larger than unity to powers
arbitrarily larger than 0. The critical frequency is the sum of the band-gap frequency and the first negative
moment of the spectral density. In the superohmic case, coherence is not entirely lost and the ratio of the trapped
population approaches unity as the second negative moment of the spectral density becomes negligible with
respect to the scale frequency. Arbitrarily slow decoherence processes are obtained in the critical configuration
by approaching the boundary between subohmic and superohmic regimes. The setup of critical configurations
constitutes a different way to control qubit decoherence.
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I. INTRODUCTION

In open quantum systems, the external environment is
usually described by a discrete or continuous distribution
of bosonic or fermionic modes [1,2]. The Jaynes-Cummings
model (JCM) mimics the simplest quantum interaction be-
tween radiation and matter: a two-level system linearly coupled
to a single frequency mode [3]. An excitation of the system
corresponds to a loss of a photon from the radiation field,
and, viceversa, the transition to the ground level provokes an
emission of a photon [4].

The extension of the JCM to a discrete distribution of
bosonic modes has been widely used in quantum optics,
magnetic resonance, circuit QED, and quantum computing,
to name few [5]. As matter of fact, oscillatory behaviors
and dressed states emerge in the spontaneous emission of
a two-level atom coupled to the radiation field in a three-
dimensional periodic dielectric [6]. The further extension to a
continuous distribution of field modes (reservoir) provides an
efficient theoretical model for a two-level atom placed inside a
cavity [7]. The internal atomic dynamics can be described
through the theoretical construct of pseudomodes, finding
exponential-like relaxation and trapping [8]. The spontaneous
and induced decay of a two-level atom weakly coupled to a
continuous distribution of frequency modes with a band-gap
structure has been analyzed in detail [9].

Another standard model for a two-level system interacting
with a bath of frequency modes is the spin-boson model, whose
dynamics is usually described via the spectral density [1,10].
Usually, continuous spectral densities are shaped with power
laws at low frequencies, subohmic, for positive powers less
than unity, and superohmic for powers larger than unity.
Commonly, the cutoff at high frequencies is chosen as an
exponential or an abrupt vanishing decay. In the latter case,
the adoption of the nonperturbative numerical renormalization
group shows interesting properties of the dynamics, like a con-
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tinuous quantum phase transition emerging in the subohmic
condition with the absence of a single energy scale [11].

The search for feasible and efficient ways to control qubit
decoherence induced by the interaction with the external
environment remains a leading argument of research in
quantum information processing [12]. Various methods have
been proposed: quantum error-correction and error-prevention
codes, ancillary qubits, and decoherence-free subspaces [13].
An alternative approach consists in the dynamical control
of the qubit-environment interaction via external fields [14].
Recently, a theory for the optimal dynamical control of
decoherence reduction, induced by an arbitrary thermal bath,
has been proposed [15].

Open systems dynamics can also be controlled by manipu-
lating the dissipative environment. Inhibition or enhancement
of the decay of a two-level atom is obtained in the rotating wave
approximation by the fast chirping of the reservoir frequency
modes, keeping the gross reservoir structure unchanged.
Similarly, moderate chirping can create partial trapping of the
level population [16].

The aim of the present paper is to introduce a further
scenario for the control of qubit decoherence, providing
arbitrarily slow relaxations by setting the system in critical
configurations. Such conditions are obtained by properly
shaping the spectral density near an arbitrary band gap
and considering qubit transition frequencies equal to the
corresponding critical value.

II. THE MODEL

We consider a qubit (two-state system) interacting with
a reservoir of bosons, at zero temperature, in the rotating
wave approximation [2,7,16,17]. By choosing h̄ = 1, the
Hamiltonian of the whole system is HS + HE + HSE, where

HS = ω0 σ+σ−, HE =
∞∑

k=1

ωk a
†
kak,

HSE =
∞∑

k=1

(gk σ+ ⊗ ak + g∗
k σ− ⊗ a

†
k).
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The rising and lowering operators, σ+ and σ−, respectively, act
on the Hilbert space of the qubit and are defined through the
equalities σ+ = σ

†
− = |1〉〈0|, while a

†
k and ak are the creation

and annihilation operators, acting on the Hilbert space of the
kth boson.

The coupling between the transition |0〉 ↔ |1〉 and the kth
bosonic mode is represented by the parameters gk , while
ω0 is the qubit transition frequency. Initially, the qubit is
unentangled from the vacuum state |0〉E of the reservoir,

|�(0)〉 = [c0|0〉 + c1(0)|1〉] ⊗ |0〉E. (1)

In this way, the exact time evolution reads

|�(t)〉 = c0|0〉 ⊗ |0〉E + c1(t)|1〉 ⊗ |0〉E

+
∞∑

k=1

bk(t)|0〉 ⊗ |k〉E,

|k〉E = a
†
k|0〉E, k = 0,1,2, . . . ,

due to the conservation of the number of excitations [16]. The
dynamics is easily studied in the interaction picture,

|�(t)〉I = ei(HS+HE )t |�(t)〉 = c0|0〉 ⊗ |0〉E

+C1(t)|1〉 ⊗ |0〉E +
∞∑

k=1

Bk(t)|0〉 ⊗ |k〉E,

where i is the imaginary unity, C1(t) = eiω0t c1(t), and Bk(t) =
eiωkt bk(t) for every k = 1,2, . . ..

The Schrödinger equation for the total system leads to the
system of equations

Ċ1(t) = −i

∞∑
k=1

gk Bk(t) e−i(ωk−ω0)t ,

Ḃk(t) = −i g∗
k C1(t) ei(ωk−ω0)t ,

and the amplitude 〈1| ⊗ E〈0||�(t)〉I , labeled as C1(t), fulfills
the convolution equation

Ċ1(t) = −(f ∗ C1) (t), (2)

f (τ ) =
∞∑

k=1

|gk|2e−i(ωk−ω0)τ , (3)

where the symbol (∗) denotes the convolution product,
while f is the correlation function of the reservoir [2,
17]. A continuous distribution of modes, described by the
density η (ω), gives J (ω) = η (ω) |g (ω)|2 as the spectral
density, while the corresponding correlation function results
in

f (τ ) =
∫ ∞

0
J (ω) e−i(ω−ω0)τ dω, (4)

where g (ω) is the frequency dependent coupling.
The exact dynamics of the qubit is described by the time

evolution of the reduced density matrix obtained by tracing
over the Hilbert space of the bosons,

ρ1,1(t) = 1 − ρ0,0(t) = ρ1,1(0) |G(t)|2 , (5)

ρ1,0(t) = ρ∗
0,1(t) = ρ1,0(0) e−iω0tG(t). (6)

The function G(t), fulfilling the convolution equation

Ġ(t) = −(f ∗ G)(t), G(0) = 1, (7)

drives the dynamics of the levels populations, the decoherence
term, and the amplitude c1(t) = 〈1| ⊗ E〈0||�(t)〉,

c1(t) = c1(0) e−iω0tG(t). (8)

III. THE CRITICAL FREQUENCY

We analyze the dynamics induced by reservoirs described
by spectral densities with a general band-gap condition:

J (ω) = θ ((ω − 	g)/ωs)
((ω − 	g)/ωs), (9)

where θ (ν) represents the Heavside step function, 	g is the
band-gap frequency, and ωs is a scale frequency. The nonnega-
tive and summable function 
(ν) describes the spectral density
with the origin in the band gap. The class of spectral densities
under study, labeled as 
α(ν), is defined by requiring that the
nonnegative and summable functions fulfill the constraints


α(ν) = O(ν−1−ε), for ν → +∞, ε > 0, (10)


α(ν) ∼ 	0 να +
∞∑

n=1

	n ναn, for ν → 0+, (11)

−1 < α < α1 < α2 < α3, . . . , α 
= �α�, (12)

αn 
= �αn�, for n = 1,2, . . . , αn → +∞,
(13)

for n → +∞,

where the symbol �·� denotes the integer part. The condition
(10) means that at high frequencies 
α(ν) � Kν−1−ε , where
K > 0 and ε is a positive arbitrarily small parameter, and
guarantees that the function 
(ν) is summable. The constraint
(11) describes various power law behaviors of the spectral
density near the band-gap edge: subohmic for 0 < α < 1,
and superohmic for α > 1, while the case 0 > α > −1
shows divergencies near the band-gap frequency referring to
structures describing photonic band-gap materials [1,10]. The
additional conditions (12) and (13) state that the power series
expansion in the band gap contains no integer powers and
play a fundamental role in the determination of the asymptotic
dynamics; see Appendix below for details.

The above class includes spectral densities that are the
result of the product of να and every nonnegative function,
admitting an infinite terms Taylor series expansion in the
origin, due to the request for divergency of the powers αn,
and fulfilling the nonnegativity and summability conditions.
Examples of such spectral densities are given by the expression
[(ω − 	g)/ωs]αf ((ω − 	g)/ωs), where the function f (ν)
takes the forms an0 νn1 , (	̄/ωs + ν)β , and [ln(1 + ν)]n0 , where
	̄ is a frequency, and β and a are nonvanishing and positive
constants, respectively, while n0 and n1 are nonvanishing natu-
ral numbers. Notice that for spectral densities with a band-gap
frequency coinciding with the qubit transition frequency, ω0 =
	g , corresponding to forms 
α(ν) = να/(a + ν2) obtained for
0 < ν < 1, the exact dynamics can be described through either
incomplete Gamma functions [18] or Fox H functions [19] for
either α = 1/2 or 0 < α < 1, respectively.
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The time evolution depends on a general spectral density
via the following relationship:

G̃(u) = 1

u − iS
((	g − ω0 − iu)/ωs)
, (14)

where G̃(u) is the Laplace transform of the function G(t),
driving the dynamics of the qubit through Eqs. (5), (6), and
(8), while S
 represents the Stieltjes transform of the function

 [20,21]. Details necessary to derive Eq. (14), are given
in the Appendix. The inverse problem, finding the spectral
density corresponding to a general dynamics, assigned through
the function G(t), is solved from Eq. (14) by performing the
inverse Stieltjes transform [22],


(ν) = lim
ε→0

1

π
Re

{
1

G̃(ωs(ε − iν) + i(ω0 − 	g))

}
. (15)

The constraints of real value, nonnegativity, and summability
that the function 
(ν) has to fulfill deny the possibility to
design a general dynamics, via the function G(t), through the
spectral density. For example, the spectral density inducing
an exponential decay, G(t) = e−λt , where λ > 0, results in
J (ω) = λ�((ω − 	g)/ωs)/π , which is not summable. The
exponential-like decays can be obtained, for example, by
adding negative values of the frequencies [7].

By analyzing the long time scale dynamics induced by
spectral densities described by Eqs. (10) and (11), a critical
condition emerges if the qubit transition frequency equals the
band-gap frequency plus an effective frequency resulting to
be the first negative moment of the spectral density of the
reservoir,

ω(c)
α = 	g +

∫ ∞

0


α(ν)

ν
dν. (16)

Such critical behavior derives from the function Gα(t), driving
the time evolution through Eqs. (5), (6), and (8); details
are given in the Appendix below. For times t 
 1/ωs , the
following asymptotic forms hold true in the subohmic regime,
0 < α < 1,

Gα(t) ∼ γα ei(ω0−	g )t (ωs t)−1−α, ω0 
= ω(c)
α , (17)

Gα(t) ∼ γ (c)
α ei(ω0−	g )t (ωs t)−1+α, ω0 = ω(c)

α , (18)

where

γα = πωs	0 eiπ(1−α)/2

[
ω0 − 	g − ∫ ∞

0 
α(ν)/ν dν
]2

sin(πα)�(−α)
,

γ (c)
α = ωs sin(πα) eiπ(−1+α)/2

π	0�(α)
.

In the superohmic case, for noninteger values α > 1,
outside the critical condition, ω0 
= ω(c)

α , the long time-scale
dynamics is driven by

Gα(t) ∼ γα sin(πα)ei(ω0−	g )t (ωs t)−1−α

(−1)n sin (π (α − n))
, (19)

where n = �α� + 1, while for ω0 = ω(c)
α , the resulting form

Gα(t) ∼ ωs(1 + η(c)
α (ωs t)1−α) ei(ω0−	g)t

ωs + ∫ ∞
0 
α(ν)/ν2 dν

, (20)

where

η(c)
α = (−1)nπ	0 csc (π (α − n))e−iπ(1+α)/2

�(2 − α)
[
ωs + ∫ ∞

0 
α(ν)/ν2 dν
] ,

gives the following limit

|Gα(∞)| = ωs

ωs + ∫ ∞
0 
α(ν)/ν2 dν

. (21)

Thus, according to Eq. (6), the oscillating coherent term
does not vanish, and, according to Eq. (5), trapping of the
initial population appears with the ratio given by Eq. (21),
approaching unity for ωs 
 ∫ ∞

0 
α (ν) /ν2 dν.
For 0 > α > −1, the resulting function Gα(t) is the same

as the one given by Eq. (18) and shows oscillations enveloped
in inverse power law relaxations arbitrarily faster than 1/t

and slower than 1/t2. No critical behavior emerges from the
long time scale dynamics induced by the analyzed spectral
densities, which are divergent near the band-gap frequency.
Details on the demonstrations concerning the superohmic,
subohmic, and divergent spectral densities are given in the
Appendix.

In summary, over long time scales, by continuously varying
the qubit transition frequency, the oscillating function Gα(t)
jumps from decays proportional to t−1−α for ω0 
= ω(c)

α to
either vanishing forms proportional to t−1+α in the subohmic
case, 0 < α < 1, or nonvanishing terms partially decaying
proportionally to t1−α in the superohmic case, for noninteger
α > 1, for ω0 = ω(c)

α . Thus, discontinuities appear in the long
time scale dynamics of the populations and the coherence term
of the reduced density matrix, described by Eqs. (5) and (6),
respectively, and in the wave function, through Eq. (8). The
critical configuration cannot be realized if the qubit transition
frequency is smaller than either the band-gap frequency, if it
exists, or the first negative moment of the reservoir.

The long time scale dynamics exhibits features relevant
for the control of decoherence in the limiting cases of α

tending to 1− and 1+. In an occurrence of the critical
frequency, ω0 = ω(c)

α , arbitrarily slow decoherence processes
are obtained in the subohmic regime for α → 1−, Eq. (18),
while, in the superohmic case, the oscillating coherence term
relaxes arbitrarily slowly, Eq. (20), to a nonvanishing value,
showing partial trapping of the initial population with the
ratio

∣∣ωs/[ωs + ∫ ∞
0 
α (ν) /ν2 dν]

∣∣2
, approaching unity as the

second negative moment of the spectral density becomes
negligible if compared to the scale frequency. The above
analysis fails for natural values of the parameter α. By
considering different examples of ohmic spectral densities
near the band-gap frequency, α = 1, the asymptotic behavior
does not depend uniquely on the power, equal to unity, and,
differently from the previous cases, a collective behavior does
not emerge.

Qualitatively, by setting ωs 
 1, the inverse power law
regime appears at early times and the continuous function
G(t) approaches unity, since G(0) = 1. Thus, arbitrarily slow
decoherence processes of a qubit are obtained in the critical
configuration, by approaching the boundary between sub- and
superohmic regimes.
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A. Particular cases

We consider reservoirs described by two relevant forms of
spectral densities, with either stretched exponential or inverse
power law cutoff at high frequencies, and we recover the
general results in these particular cases.

The first spectral density analyzed corresponds to


(e)
α (ν) = 	eν

αe−λ ν1/2
,

(22)
α > −1, α 
= �α�, λ > 0,

subohmic for 0 < α < 1, and superohmic for α > 1 near
the band-gap frequency 	g . The superscript (e) indicates the
stretched exponential cutoff at high frequencies. The critical
frequency reads

ω(e)
α = 	g + 2	eλ

−2α� (2α) , (23)

and, over long time scales, t 
 1/ωs , the corresponding
function G(e)

α (t) is described by the following asymptotic form,
holding true for t → +∞,

G(e)
α (t) ∼ 2	eωs�(−2α)�(2α + 1) cos(πα)

�(−α)[ω0 − 	g − 2	eλ−2α�(2α)]2

× ei[−π(1+α)/2+(ω0−	g )t] (ωs t)−1−α, ω0 
= ω(e)
α ,

(24)

both for 0 < α < 1 and noninteger α > 1. If the qubit
transition frequency equals the critical value, at the subohmic
condition, 0 < α < 1, it results in

G(e)
α (t) ∼ ωs ei[π(1+α)/2+(ω0−	g)t]

2	e�(α)�(−2α)�(2α + 1) cos(πα)

× ei(ω0−	g )t (ωs t)−1+α, ω0 = ω(e)
c . (25)

For noninteger α > 1 and ω0 = ω(e)
α , partially damped coher-

ence emerges,

G(e)
α (t) ∼ ωse

i[−π/2+(ω0−	g )t]

ωs + 2	eλ2(1−α)�(2(α − 1))

×
(

1 + 2	e�(2α + 1)�(−2α) cos(πα) (ωs t)1−α

�(2 − α)(ωs + 2	eλ2(1−α))�(2(α − 1))

)
,

(26)

and trapping of the populationis revealed, with the ratio

|G(e)
α (∞)| = ωs

ωs + 2	eλ2(1−α)�(2(α − 1))
. (27)

For 0 > α > −1, the function G(e)
α (t) is given by the one

reported in Eq. (25), for every value of the frequency ω0,
showing relaxation arbitrarily faster than 1/t and no critical
behavior. Notice that arbitrarily slow decoherence processes
are obtained for ω0 = ω(e)

α and α tending to either 1− or 1+.
As a second case, we consider


(p)
α (ν) = χνα

μ2 + ν2
, − 1 < α < 2, α 
= 0,1, (28)

describing reservoirs as either subohmic for 0 < α < 1, or
superohmic for 1 < α < 2, near the band-gap frequency,

including the nonanalytical behavior of photonic band-gap
materials for 0 > α > −1. The superscript (p) indicates an
inverse power law cutoff at high frequencies. Again, a critical
frequency reveals

ω(p)
α = 	g + πχ μα−2 csc (πα/2) /2, (29)

such that, over long time scales, t 
 1/ωs , the dynamics is
driven by the function G

(p)
α (t), described by the following

asymptotic forms, holding true in the limit t → +∞,

G(p)
α (t) ∼ πχ ωse

iπ(1−α)/2

μ2[ω0 − 	g − πχ μα−2 csc(πα/2)/2]2

× ei(ω0−	g)t (ωst)−1−α

sin(πα)�(−α)
(30)

for either 0 < α < 1 or 1 < α < 2 and ω0 
= ω
(p)
c ,

G(p)
α (t) ∼ μ2ωs sin(πα)eiπ(−1+α)/2

πχ�(α)

× ei(ω0−	g)t (ωst)
−1+α (31)

for either ω0 = ω
(p)
α and 0 < α < 1, or 0 > α > −1 and every

ω0 > 0. The conditions ω0 = ω
(p)
α and 1 < α < 2 lead to an

oscillating partially damped coherence term

G(p)
α (t) ∼ ωs ei[−π/2+(ω0−	g )t]

ωs − πχμα−3 sec(πα/2)/2

×
(

1 − πχμ−2 csc(πα)(ωst)1−α

�(2 − α)[ωs − πχμα−3 sec(πα/2)/2]

)
,

(32)

and to trapping of the population, with the ratio

|G(p)
α (∞)| = ωs

ωs − πχμα−3 sec(πα/2)/2
. (33)

As in the previous case, for 0 > α > −1, the function G
(p)
α (t) is

given by the one reported in Eq. (31), for every positive value of
the frequency ω0, showing relaxation arbitrarily faster than 1/t

and no critical behavior. Again, arbitrarily slow decoherence
processes are obtained for ω0 = ω

(p)
α and α → 1−.

IV. CONCLUSIONS

The control of decoherence through the engineering of the
external environment has been studied in details, especially for
boson-boson models [23,24] and atoms interacting with struc-
tured reservoirs [25]. Spectral densities with photonic band
gaps provide coherent control of the spontaneous emissions
if one resonant frequency is near a photonic band gap [9,26].
Modulations through external fields [15] and manipulations
of reservoir modes through time-dependent dissipative envi-
ronments [16] are relevant examples of dynamical control of
decoherence.

We propose a static control of qubit decoherence, obtained
by setting special critical conditions involving the reservoir.
For special spectral densities either subohmic or superohmic
near an arbitrary band gap, the critical conditions are obtained
if the band-gap frequency plus the first negative moment of
the spectral density equals the qubit transition frequency.
By considering scale frequencies ωs � 1, the regime of
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inverse power law decay starts at early times, and arbitrarily
slow decoherence processes are obtained in the critical
configuration by approaching the boundary between the sub-
and superohmic conditions. This method is based on the
discontinuities appearing in the long time inverse power law
relaxations describing the dynamics of the qubit. A condition
sufficient to make the effect disappear is to consider qubit
transition frequencies less than either the band-gap frequency,
if it exists, or the first negative moment of the spectral density
of the reservoir. In this way, the long time scale dynamics is
stabilized.

The proposed effect might be observed experimentally
by letting a two-level atom interact weakly [rotating wave
approximation (RWA)] with the field modes of a cavity
[25,27] or photonic band-gap materials [28] described by
the spectral densities designed above. Since an N -period
one-dimensional (1D) lattice may reproduce a band gap
through a proper sequence of dielectric unit cells, an arbitrarily
shaped density of frequency modes can be modeled through the
sequence of the transmission coefficients of each unit cell [29].
Also, a diffractive grating and photonic crystals engineer 1D
photonic band-gap (PBG) microcavities [30]. Notice that the
spectral density Je(ω) = j0 ωc (ω/ωc)αe−ω/ωc gives a simple
expression of the corresponding critical frequency, ω(e)

α =
j0 ωc �(1 + α), where ωc is the cutoff frequency, j0 is a
dimensionless coupling constant, and the superscript e refers to
the exponential cutoff at high frequencies. Anyway, a detailed
analysis of an apparatus reproducing the above scenario is not
one of the purposes of the present paper.

The present results suggest that, under certain conditions,
arbitrarily slow decoherence might be derived in the general
open quantum system dynamics, described by the quan-
tum dynamical semigroups through the Gorini-Kossakowski-
Sudarshan-Lindblad form [31]. This hypothesis will be the
argument of further research.
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APPENDIX: DETAILS

We give details about the long but straightforward calcu-
lations leading to the results shown in the paper. The time
evolution of the qubit is driven by the function G(t), solution
of Eq. (7), through Eqs. (5), (6), and (8), related to the spectral
density through Eqs. (9) and (12). For spectral densities
described by the functions 
α (ν), fulfilling the conditions
(10) and (11), the asymptotic behavior of the function Gα(t)
is obtained through the identity

1

ν + z
=

n−1∑
k=0

(−1)k
zk

νk+1
+ (−1)nzn

νn(ν + z)
. (A1)

For noninteger values of the powers appearing in the power
series expansion of the function 
α (ν) around the origin,
a series expansion of the Stiltjes transform S
α

(z) can be
performed. In fact, by considering 
α (ν) = 	0ν

α + 
α,n (ν),
where 
α,n (ν) = o (να) and n = �α� + 1, it results in

S
α
(z) ∼

n−1∑
k=0

(−1)kzk

∫ ∞

0


α(ν)

νk+1
dν

+ (−1)n+1π	0z
α

sin (π (α − n))
+ o(zα), z → 0, (A2)

holding true in the sector |arg z| � π − δ, where δ is an
arbitrarily small positive parameter. The above treatment holds
true for any noninteger α > 1, and 0 > α > −1, due to the
divergency of the noninteger sequence αn. In this way, the
function G̃α(u), given by Eq. (12), result in

G̃(u) = 1

/(
i

(
ω0 − 	g −

∫ ∞

0

α(ν) dν

)
− i

n−1∑
k=0

zk

(−1)k

×
∫ ∞

0


α(ν)

νk+1
dν + iπ	0(−1)nzα

sin (π (α − n))
+ o(να)

)
,

(A3)

where z = −i[u − i(ω0 − 	g)]/ωs . The series expansion of
Eq. (A3), around z = 0, equivalent to u = i(ω0 − 	g), con-
verges in the sector | arg z| � π − δ, where δ is an arbitrarily
small positive parameter. Thus, the long time behavior can be
found through the asymptotic series obtained via the term by
term Laplace inversion. For 0 < α < 1, such asymptotic series
leads to either Eq. (15) or Eq. (16), whether the constant [ω0 −
	g − ∫ ∞

0 
 (ν) /ν dν] vanishes or not. The latter condition
provokes the appearance of the critical frequency ω(c)

α , given
by Eq. (14). The above procedure works for noninteger α > 1
and leads to either Eq. (17) or Eq. (18), whether the qubit
transition frequency equals the critical value or not. The case
0 > α > −1 is analyzed in the same way and the resulting
function Gα(t) is the same as the one reported in Eq. (16),
for every ω0 > 0. The definition of the long time scale, 1/ωs ,
descends from the convergence criteria of the related power
series expansions. This concludes the details necessary to
recover the results shown in the paper. The dynamics induced
by reservoirs corresponding to the spectral densities 
(e)

α (ν)
and 


(p)
α (ν), given by Eqs. (22) and (28), is described by the

functions G̃(e)
α (t) and G̃

(p)
α (t), inverse Laplace transforms of the

functions G̃(e)
α (u) and G̃

(p)
α (u), obtained through Eq. (12) and

the corresponding Stieltjes transforms [16]. The asymptotic
series obtained through the term by term inverse Laplace
transforms of the series expansions of the form G̃(e)

α (u) lead
to Eqs. (24), (25), (26), and (27), describing the long time
scale dynamics, whether the qubit transition frequency equals
the corresponding critical value (23), or not. In similar way,
starting from the form G̃

(p)
α (u), Eqs. (30), (31), (32), and (33)

are obtained giving the time evolution over long time scales,
whether the frequency ω0 equals the critical value (29) or
not. This concludes the details necessary to recover the results
concerning the particular cases.
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