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Compton process in intense short laser pulses
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The spectra of Compton radiation emitted during electron scattering off an intense laser beam are calculated
using the framework of strong-field quantum electrodynamics. We model these intense laser beams as finite
length plane-wave-fronted pulses, similar to Neville and Rohrlich [Phys. Rev. D 3, 1692 (1971)], or as trains
of such pulses. Expressions for energy and angular distributions of Compton photons are derived such that a
comparison of both situations becomes meaningful. Comparing frequency distributions for both an isolated laser
pulse and a laser pulse train, we find a very good agreement between the results for long pulse durations which
breaks down, however, for ultrashort laser pulses. The dependence of angular distributions of emitted radiation
on a pulse duration is also investigated. Pronounced asymmetries of angular distributions are found for very short
laser pulses, which gradually disappear with increasing the number of laser field oscillations. Those asymmetries
are attributed to asymmetries of the vector potential describing an incident laser beam.
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I. INTRODUCTION

Compton scattering of a laser beam with a relativistic
electron beam has become an efficient source of highly polar-
ized, intense x-ray and y -ray radiations. These monoenergetic
and tunable Compton photon beams find numerous industrial,
medical, and scientific applications. In particular, they bring
a great deal of attention in the view of future colliders such
as the International Linear Collider (ILC) [1], the Compact
Linear Collider (CLIC) [2], and the Super B [3], which are
planned to use the Compton y rays to produce highly polarized
positrons. Taking into account those various applications and
research interests, it becomes of great importance to predict
theoretically spectral and spatial distributions of Compton
photon beams, and to control their properties using the incident
beam parameters.

The hypothesis of a wavelength shift of x rays scattered by
a free electron at rest has been put forward by Compton in
Ref. [4], and proved by himself experimentally [5]. Following
theoretical investigations have been focused on the so-called
linear Compton scattering [6—11]. However, in extremely in-
tense laser fields the scattering can occur in a nonlinear regime;
the process known as the nonlinear Compton scattering. For
the development of related theoretical studies, the reader is
referred to a recent review by Ehlotzky and co-authors [12]. In
brief, in a majority of works concerning the nonlinear Compton
process, the incident laser beam has been described as a
monochromatic plane wave field which enables one to fully
account for the electron—laser-beam interaction using standard
methods of strong-field quantum electrodynamics (QED) (see,
for instance, [12—-16] and references quoted therein). The
first analysis that goes beyond the monochromatic plane-
wave approximation when analyzing the nonlinear Compton
scattering that we are aware of was by Neville and Rohrlich
[17]. By generalizing the usual strong-field QED methods
to account for a finite length plane-wave-fronted pulse, the
authors considered the Compton scattering by a Klein-Gordon
particle. Although the method proposed in [17] allows one to
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consider QED processes in laser pulses of an arbitrary duration
and strength it has not had a big impact until very recently.
Only very few papers on the scattering of a Dirac particle by
a shaped laser pulse can be found in the literature. There is a
paper by Narozhny and Fofanov [18] who have considered a
situation when a driving laser pulse is still sufficiently long to
allow one to simplify the problem significantly. In Ref. [19],
the same approach has been persuaded in the context of a
resonant Compton scattering. However, for intense few-cycle
laser pulses which are used nowadays in experimental setups,
a more adequate treatment of the temporal structure of an
incident laser pulse is necessary. This has been offered in
very recent papers [20-25] using the approach of Neville and
Rohrlich [17].

In Ref. [20], Boca and Florescu have formulated the formal-
ism for the nonlinear Compton scattering based on temporally
shaped Volkov solutions for a Dirac particle. The calculated
spectral distributions of Compton photons were compared for
different pulse shapes and pulse durations. In the limit of along
pulse, these results coincide with the results of [ 18] showing no
significant dependence on the precise form of the laser pulse.
On the other hand, for short laser pulses pronounced carrier-
envelope phase effects in spectral distributions of the Compton
photons were demonstrated in [20,22]. A complementary
study for single-cycle laser pulses was presented in [24],
whereas the emphasis on a comparison with the nonlinear
Thomson scattering (for reviews, see, for instance [26,27])
was put in Refs. [21,23,25]. All these theoretical works follow
various related experiments. Experimentally, the nonlinear
Compton scattering of relativistic electrons by an intense laser
pulse has been observed for the first time by Englert and
Rinehart [28]. In another experiment, the transition between
the Thomson and Compton regimes of electron scattering has
been reported [29]. However, the most prominent experiment
showing nonlinear effects in the Compton scattering is the
SLAC experiment [30,31] in which the fourth harmonic of the
Compton radiation was detected.

Using the approach of Neville and Rohrlich [17], developed
recently by Boca and Florescu [20], we shall consider in
this paper the Compton scattering of an electron by a strong
temporally shaped laser field. Our focus here is to develop new
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theoretical and numerical methods to describe the situation
when the incident laser field represents either an isolated laser
pulse or a train of such pulses. The sensitivity of both spectral
and angular distributions of the Compton radiation to a laser
pulse duration will be studied in this paper in great detail.

Our paper is organized as follows. In Sec. II, we shall
introduce the theory of Compton scattering of electrons by
a temporally shaped ultrastrong laser beam. Two cases will
be considered, when the laser beam is represented by a train
of laser pulses (Sec. Il A) and by an individual laser pulse
(Sec. IIB). In each case, a distribution of emitted radiation
energy will be defined such that a comparison between the
two situations is possible. In Sec. III, we shall define a laser
pulse shape that will be used in our numerical calculations. In
Sec. IV, we will analyze frequency distributions of Compton
photons for different pulse durations. The results for an isolated
laser pulse, a train of laser pulses, and for a monochromatic
laser field will be compared. Angular distributions of emitted
radiation for a single laser pulse will be shown in Sec. V.
The emphasis will be put there on asymmetries in angular
distributions which are observed for Compton processes
induced by ultrashort laser pulses. Section VI will then be
devoted to a summary of our results and to some final remarks.

Throughout the paper, we use the following mathematical
convention and notation. In formulas, we keep/ = 1, however,
our numerical results are presented in relativistic units such that
¢ = me = 1, where m, is the electron mass. We write a - b =
a*b,(u =0,1,2,3) for a product of any two four-vectors a
and b, and ¢ = y - a = y*a, where y* are the Dirac gamma
matrices. In the following, the Einstein summation convention
is used.

II. THEORY

Using the S-matrix formalism, we find that in the lowest
order of perturbation theory, the probability amplitude for
the Compton process ¢, ; — €pie T VKos with the initial and
final electron momenta and spin polarizations p;jA; and psAs,
respectively, equals

A(elji)\i - eI:f)\f + VKU) =—ie / d'x jl(:)»t)mki(x) ’ A(K_;(x)’
(1)

where Ko denotes the Compton photon momentum and
polarization. In the above equation,

1 .
A(*) * IK-X’ 2
ko (%) V 2e0wg V fKko® @

where V is the quantization volume, &p is the vacuum
electric permittivity, wx = cK° =c¢|K| (K - K =0), and
eks = (0,ek,) is the polarization four-vector satisfying the
conditions,

K- EKo = Oa EKo " EKo' = _800'/’ (3)

foro,0’ = 1,2. Moreover, j;xfr’)pi ,\i(x) (pluses indicate that we

deal with particles of positive energy) is the matrix element of
the electron current operator with its v component equal to

[ @] = Vi Oy ¥ (). )
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Here, t/f;{)(x) is the so-called Volkov solution of the Dirac
equation [32,33],

Gy mec? ¢ ), —isSPx)
Vi () = _VE,, (1 T pAk)”px e , )
with
kex 242
G cAlp) - p €A <¢)}

+)

Moreover, E, = cp’,p=%p),p-p= mgcz, and u is

the free-electron bispinor normalized such that

au) = 8, (7
The four-vector potential A(k - x) in Eq. (5) represents an
external electromagnetic radiation generated by lasers in the
case when a transverse variation of the laser field in a focus is
negligible. In this case, one can derive the exact solution to the
Dirac equation coupled to the electromagnetic field [Eq. (5)],
provided that k - A(k-x) =0and k - k = 0.

In our further discussion, we shall adopt the Coulomb gauge
for the radiation field which means that the four-vector A(k - x)
has the vanishing zero component and that the electric and
magnetic fields are equal to

Etk-x)=—8,Ak -x) = —ck’A'(k - x), (8)

Bk-x)=V x Atk -x) = —k x A'(k - x), 9)

where “prime” means the derivative with respect to k - x. Let
us also remember that the electric field generated by lasers has
to fulfill the following condition [34]:

o0
/ E(ck’t — k- r)dt =0, (10)
—00
which is followed by
lim A(ck’t —k-r)= lim A(ck’t —k-r). (11)
t——00 =00

In the next sections, we shall consider two cases; when the
vector potential A(k - x) describes a sequence of identical laser
pulses (the so-called train of pulses, for which the plane wave
is a particular realization) or a single laser pulse. Each of these
situations requires a separate theoretical treatment.

A. Train of laser pulses

Let us assume that the duration of a single pulse within the
fieldis T,. This means that the electromagnetic potential can be
expanded as a Fourier series with the fundamental frequency
w=ck =27 /Ty,

Ak-x)= Y Ayexp(~iNk-x). (12)
N==£1,£2,...

Here, we do not account for the zero Fourier component since
it can be eliminated by the gauge transformation of the vector
potential. Moreover, in actual computations, we account only
for a finite number of higher harmonics. Let us also remember
that it is usually assumed that the laser field is adiabatically
switched on in the remote past and switched off in the far
future. Thus, the electron momentum present in Eq. (5) can
be interpreted as the field-free asymptotic momentum of the
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electron. Having this in mind, we consider the most general
form of the laser field,

Ak - x) = Aoler filk - x) + & fo(k - x)], 13)
in which two real four-vectors ¢; describe two linear polar-
izations of the laser field such that 81»2 =-—1,¢6-& =0and

k- = 0. Moreover, k = k°(1,n) and the normalized to 1
vector n determines the direction of propagation of the laser
beam. Let us note that in the case of a pulse train, the so-called
shape functions f;(¢) are periodic functions of ¢ with the
period equal to 2. They are, however, not periodic for the
case of a single laser pulse, as will be discussed in the next
section. Hence, the probability amplitude for the Compton
process equals

N _ | 2mac(mec?)?
A€o = s T ko) = VEpEporvi ™ (P

where « is the fine-structure constant, ¢ = e2 /(@mepc), and

A= fd4xefi(5;;ir)(x)fS;,J;)(x)wa)
=) MmeC
X ul’f)»f<l - Mz k

[filk - x)f K+ falk - xwﬂ) o
(15)

In the above equation we have introduced the important
relativistically invariant parameter,
_ leAol

)
MeC

LAtk - )¢ K+ falk - X)¢zk]>

X¢KJ<1+M2p

(16)

which measures the intensity of the laser field. After some
algebraic manipulations, we find that a phase present in
Eq. (15) equals

SpP(x) = ;P00 = K -x = (i — pr = K) - x + Gk - ),

A7)

where the so-called dressed by the laser field momentum has
been introduced, ) 5
i)+ (s

p=p+ lwm c)? >k (18)
2 p-k '
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‘We have found also that
k-x
g
Gk-x)= / d¢|: — meec<pl
0 pi-k

N .8 8
—umec(% - ’1’; 2>f2(¢)

+ 2 umee? (— 1
—(ume.c R
ZM ¢ pi'k pf‘k

x (fH@) — (f1)+ f2 () — <f§>)}. (19)

_ pren

)f (@)

In the above equations, we understand that

1 T, 1 2
(fy = 7/ dtf(ck’t —k-r) = 2_/ def(¢). (20)
T Jo

p J0O
Since for a train of laser pulses there is no zero Fourier
component of shape functions, we have ( f;) = 0. At this point,
let us emphasize that this is not in general true for a single laser
pulse.

The advantage of applying the decomposition (17) consists
in the fact that G(k - x) in Eq. (19) is a periodic function of
its argument k - x. Hence, we can make the following Fourier
expansion,

o0

Z Gume Nk (1)

N=—o00

[fitk - OV [folk - x)]"e™ C60) =

For a monochromatic plane-wave laser field, the Fourier
coefficients G(N""") can be expressed in terms of the generalized
Bessel functions. For a general pulse, they are represented
by a multiple sum over the product of many ordinary Bessel
functions, and for this reason we do not present their explicit
form (see, e.g., for a bichromatic laser field in the context
of laser-induced pair creation [35]). Using the above series
expansion we can now carry out the space-time integration in
Eq. (15). This leads to

A=Y Dy / A e 1PN =Ky (22)
N

where

1 1 1
—(+) (+) 0,0 —(+) (+) —(+) (+) (1,0)
Dy =it,; #xotp,On + —,umec[< % i i B ko F1 KU 5, — ok i i F1 K ko U, )G

2

1 1
=(+) +) =(+) (+) ©.1)
+< it ko fokuy — iy fakf kot )GN }—

0,2
+al) gk taku) GY ’+( PRI g e

(pmec)” 2,0
oo L B ka by G

T #ok ot Ky )Gy ] 23)

Performing now the integration in Eq. (22), which leads to the four-momenta conservation condition,

pi + Nk — pr —

K =0, (24)

we arrive at the angular distribution of energy power of Compton photons that with polarization ¢ are emitted in the space
direction ng, provided that the initial electron has the momentum p; and the spin polarization A;,

d*py iAi
("KU p )_ZZ/d3pfdwK

a)
Crog |Dn 1?8 (pi + Nk — pr — K). (25)

2 EEpf
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Due to the presence of the delta function, the remaining
integrals can be performed exactly. Let us note first that
since K = K% = K°(1,ng), the momentum conservation
condition (24) leads to

k- pi

KO=N———— (26)
ng - (pi + Nk)
and
- k- pi

Hence, the final dressed electron momentum py is independent
of K9, and

/dK°5<'>(p + Nk — pp — K%)= 1. (28)
Moreover,
3
fd3pfa<3><pi+Nk—pf K)=|-2| = ’f{,, (29)
d pe Pr

and finally,

d*P (t)(nKU Piri) a(mec)? a)K
—’ => > ————EIDyI>. (30)
0
~ 57 2ol by

Multiplying the above equation by the duration of a single
pulse 7}, we obtain the energy distribution which is emitted in
the direction ng with the polarization o per pulse,

d?EY A
(nKO- P )_ pzza(m C) a)K|D |2 (31)
At

For a monochromatic plane-wave laser field, being a particular
realization of the laser pulse train, the integer N is interpreted
as a net number of laser photons absorbed during the process.
In a more general case of a multichromatic field, the quantity
Nhao, where o = ck?, is a net energy absorbed from the laser
field. This interpretation allows one to define the angular and
frequency distribution of energy emitted as Compton photons
which, based on Eq. (31), is

dECy(nkos piri)
dQk

pZ “(m C) ‘”" Dyl (32)

If we are not interested in polarization and spin effects, then
we sum up over o and average with respect to A;,

d E( )N(nK Pl)
dQk

d E N("KU Pl)»)

DIPY R

012A =+

which symbolically can be written as

PES (ng; pi)
dNdQg

_ dPEQ(nk; py)
B dQ ’

(34)

and interpreted as the angular and frequency (since there is one-
to-one correspondence between N and the Compton photon
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frequency wg) distribution of radiation energy generated
during the process per one laser pulse.

B. Single laser pulse

In this section, we will formulate theory for the Compton
process by an isolated laser pulse. Let a pulse last for a period
T,,. This introduces the fundamental frequency @ = 27/ T, and
the laser field four-vector k = k°(1,n), where w = ck°, with a
direction of the laser pulse propagation given by the unit vector
n. Thus, the laser field potential is of the form (13), with the
same meaning of the symbols as above. In order to interpret
the momentum p in the Volkov solution (5) as the asymptotic
momentum of the free electron (in both the remote past and
the far future), we assume that

Atk-x)=0 for k-x <0 and k-x >2m. (35
Similar to the case of a laser pulse train, we expand the
four-vector potential A(k - x) in the Fourier series. This time,
however, in order to maintain the condition (35), a constant
term in the Fourier expansion can appear. Such a term will be
absent in the electric field (8), so that the obligatory conditions,
(10) and (11), for the laser field can be satisfied. At this point
let us stress that the existence of the zero Fourier component
in (13) may have profound consequences. Basically, since
it leads to a nonvanishing (f;), a modified definition of the
laser-dressed momentum must be introduced,

ﬁ=p—ume6<l; Lipy + 22 fz)

() + (fz)
p-k

2 (umeep ) (36)

2
Since now p is polarization dependent one may expect, for
instance, to observe asymmetries in angular distributions of
the Compton photons. This will be discussed in detail in
Sec. V.

Next, we have to reformulate the theory in such a way that
it could effectively be used in numerical investigations. To this
end let us go back to the space-time integral (15). It can be
expressed in terms of integrals,

= / AL fi(k - T falk - x)]"e 158 08 0= Kex1,
(37)

with n,m = 0,1,2. By passing to the light-cone variables
(Appendix A) we see that the integral over x~ is limited
to the finite region, 0 < x~ < 27/ kO, provided that n and
m are not simultaneously equal to 0. Hence, in order to
determine numerically C*? we have to transform this integral
to a more suitable form; this is done by applying the Boca-
Florescu transformation presented in Appendix B. We have
the following correspondences:

O=pi—p—K, (38)

and

h(@) = a1 f1($) + ar fo() + [ f1 (@) + f7(@)],  (39)
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with

>.8 .8
ay = _Mmec<l71 1 Pt 1) _ —Qodl/ko,
pi-k ik

=

a = —umec(—p e 82) = —Q%a/k". (40)
pi-k  preok
1 1 1 _
b= — - — ) =—-0°/%",
5 (umec) <pi-k pf-k> 0°b/

which also defines parameters @; and b, provided that Q° #
0. We shall demonstrate below that this condition is always
fulfilled [see Eq. (49) below]. Finally, applying Eq. (B11) we
arrive at

cO0 — / d*x{a filk - x) + @ fok - x) + B[ f2k - x)

+ 2k - x)]}e—i[Sif(x)—Siﬂx)—K-x]. 1)

The next steps basically follow the procedure of Sec. Il A. We
make the decomposition, similar to Eq. (17),

S(x) = SP() — K -x = (i — pr — K) - x + Gk - x),

(42)
with the dressed momenta defined by Eq. (36), and
k-x - )
Gk-x)= / dqb[ - /Lmec<p1 &1 Pr 81)
0 pi-k pr-k
i & f - &
< (fi(@®) — (i) - umec<u _ M)
pi-k  pr-k

1 1 1
X (fa) — (o)) + E(Mmec)z(m -t k)

x (fH) — (f1)+ 2 (@) — (ff))}- (43)

Now, after applying the Fourier decompositions (21), we
obtain Dy similar to (23) with the only replacement,

GOV = @Gy + mGYY +B[GEY + GNP, (@44

which follows from the application of the Boca-Florescu
transformation with respect to Eq. (41).

Performing the space-time integration in Eq. (15) and
keeping in mind that 0 < x~ < 2n/ k0, we arrive at

; ) N 1— e72r[iP1¢/k0
A=) @)y s(py)s )(PN)DNT, (45)
N N
where
Py = pi+ Nk — pr — K. (46)

In order to solve the momentum conservation conditions
imposed by the three delta functions, let us introduce the
four-vector w = p; — K, so that

pf=pl+w, pt=w" (47)

Since the electron mass is different from zero, it follows from
the first equation that w~ > 0, and

2 —\2 2
Omeey — )yt wi _ Kby i gg)
w

I _ _
Py = Y-
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which means that
pi- K
e

< 0.
(49)

Q"=pl—p{—K'=pl—pl —K'=—

This is exactly the applicability condition for the Boca-
Florescu transformation (B11).
Since Py and P do not depend explicitly on N, and

3 oDy p—ys@ply _ kOP?
d’pe 8 (Py)d (PN)—_k.pf’ (50

we obtain the differential distribution of energy,

PEP(Ko; piki) Z a(mec)*kO(K°)?
dogdQx 4= Quypitk - po)

Z 1— 6727'[iP,?,/k0 2
Dy————| ., 6D
TR

emitted as Compton photons by a single pulse, or if we are not
interested in polarization effects,

Af

X

PECK; p) 1 PEL (Ko pii)
— g =3 Yoy 2 ()

ddeZQK o1 et da)Kdng

Here, the question arises: how to define the energy distri-
bution of Compton photons scattered by a single laser pulse
so it is meaningful to compare it with the distribution (34). To
answer this question let us go back to Eq. (45) and note that
for a very long pulse the maximum of |.A|? is achieved for
Py = PJ = 0. This allows us to define the effective energy
Negthck? absorbed from a laser pulse as compared to the energy
Nnck® absorbed from a train of laser pulses such that P&H =0,
that is,

K'+p - p} K+ pf — p}

k0 27 ’
Hence, we can define an analog of (34) for an isolated laser
pulse,

Netr = = cT, (53)

FPEPK; p)  dog PEP(K; p)
dNefdeQK a dNeff da)KdZQK

We do not present here the explicit form for the derivative
dwg /d Negr which is rather lengthy and can be determined
numerically in a more efficient way. The aim of this paper,
among others, is to discuss for how long laser pulses two
formulas given by Egs. (34) and (54) provide similar results.

(54)

III. SHAPE FUNCTIONS

In our further investigations, we shall consider linearly
polarized laser pulses which propagate in the z direction
(n = e;), with a polarization along the x axis (e; = ey).
This means that f>(¢) = 0, and so we shall denote the first
shape function f(¢) simply as f(¢). This function has to be
chosen such that the electric field satisfies the condition (10).
Moreover, we shall assume that the laser pulse lasts for a finite
time Tj,. This excludes commonly used shape functions with
envelops proportional to functions gradually decreasing in the
remote past and the far future, like, for instance, the Gaussian
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function or some rational combinations of the hyperbolic
functions [20-23,25] (we also exclude rectangular pulses as
unphysical). This will allow us to define without an ambiguity
the number of oscillations within the pulse (as opposed,
for instance, to Ref. [20]). There are many possibilities for
choosing such functions, but for the purpose of this publication
we consider the following one-parameter shape function,

£k - x) = Ny sin® <];v x) sin(k, - x)

0sc
k-
= Ny sin (Tx> sin(Nock - ), (55)

for 0 < kp - x < 27 Ny, and O otherwise. The pulse duration
equals T, = 2w Nosc/wr, hence ki = (wp/c)(1,n) = Nogck.
Moreover, oy is the central frequency of the laser pulse.

Let us mention that the shape function (55) determines both
the electric and magnetic fields of the laser pulse, Egs. (8) and
(9), respectively. Hence, the shape function for the four-vector
potential equals

k-x
k- x) = /0 o1 (@), (56)

and vanishes for k- x <0 and k- x > 2. In Eq. (55), the
free parameter, Nosc = 1,2, ..., determines the number of
oscillations within the pulse. The normalization constant Np
is defined such that

1 [ 1
(f = fo") = E/o (f(@) — fo)’dp = 5 (57

in order to establish the connection with the monochromatic
plane-wave approximation. In the above equation, fj is the
constant term in the Fourier expansion of f(¢). Both shape
functions, f'(k-x) and f(k-x), for some small N, are
presented in Fig. 1. As one can anticipate from this figure, for
the given values of N, (f) # 0. However, with increasing
the number of laser field oscillations ( f) starts to deteriorate,
and finally goes to 0. Therefore, we expect that for sufficiently
long laser pulses the energy spectrum of Compton photons
will approach the one for a train of laser pulses. This will be
illustrated in the next section.

We want to emphasize that the aforementioned discussion
relates to a single laser pulse. For a train of pulses, the
only difference is that the shape function for the electric and
magnetic fields, given by Eq. (55), is repeated for all times.
This means that for the pulse train, f'(k-x) and f(k - x)
are periodic functions of their argument, with vanishing zero
Fourier components.

IV. FREQUENCY DISTRIBUTIONS

We start with discussing the frequency distribution of
Compton radiation for a given ng and for the case when
electrons are initially at rest. For the laser field we choose the
one generated by the Ti:sapphire laser with central frequency
w suchthathiwp, = 1.5 eV & 3 x 10~°m.c? (this corresponds
approximately to wavelength 800 nm). Such a choice is
motivated by the fact that presently these are the most powerful
lasers generating electromagnetic radiation in the visible part
of the spectrum. For very long laser pulses, the parameter
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10

0 0.5 1 15 2
¢/

FIG. 1. (Color online) Laser field shape functions [defined by
Eqgs. (55) and (56)] normalized according to Eq. (57). Each curve
relates to a different number of laser field oscillations, namely, Nos. =
2 (solid blue line), Ny, = 3 (dashed red line), and N, = 4 (dash-
dotted black line).

u introduced in (16) equals 1 for the laser field intensity
of the order of 10'® W/cm?. It is instructive to realize that
nowadays intensities of the order of (10%°-~10?>) W/cm? are
available experimentally [36], and those correspond roughly
to u ~ 7-70.

In Fig. 2, we compare energy distributions of Compton
photons scattered either by a single laser pulse, Eq. (54), by
a train of such pulses, Eq. (34), and by a plane laser wave
(which, in fact, is a train of pulses with a constant envelope)
for the case when = 1 and Ny, = 16. We observe here a
perfect agreement of the first two approaches and a failure of
the monochromatic wave approximation. This agreement is
also attained for much larger Compton frequencies provided
that the spectra are plotted as functions of energy absorbed
from the laser field (i.e., N for an isolated laser pulse and
N for a train of pulses); see the lower panel of Fig. 3. On the
contrary, when the frequency dependence of emitted photons
is investigated, a shift of energy spectra is observed (see the
upper panel of Fig. 3). The shift is caused by a different
dressing of the initial and final electron momenta for these
two cases, which we have discussed above. As expected, for
longer pulses this discrepancy gradually disappears since the
constant term in the Fourier expansion of the electromagnetic
potential for a single pulse becomes gradually smaller; this
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FIG. 2. (Color online) Energy spectra, Eqs. (34) and (54), for
Compton photons emitted in the direction ng determined by the
polar and azimuth angles 6 = 0.2 and ¢x = 0 (in radians). The
initial electron is at rest and the laser photon frequency is such that
hop, =3 x 10™m.c?. The intensity of the laser beam is determined
by w = 1. The solid (blue) line corresponds to scattering by a
single laser pulse, Eq. (54), the dashed (green) line to scattering
by a train of pulses, Eq. (34), whereas the red bullets indicate the
Compton photon frequencies, wx = cK® in Eq. (26), for integer
N. The black pentagrams represent the energy spectrum (34) for
a plane wave, when the shape function in Eq. (55) is proportional
to sin(ky - x). In all cases Ny = 16. The lower panel shows the
enlarged part of the upper one in order to prove a very good agreement
between the results obtained for a single pulse and a train of such
pulses.

is confirmed by our results for even larger N, which we,
however, do not present here. Instead, in Fig. 4 we show
frequency distributions of emitted photons for extremely
short laser pulses such that there is either two or even one
oscillation within the pulse (N =2 or 1, respectively).
In both these cases, a significant disagreement of frequency
distributions of Compton radiation for an individual pulse and
a laser pulse train is observed, in addition to a pronounced
discrepancy with the results obtained using the monochro-
matic plane-wave approximation. We confirm therefore that
for ultrashort laser pulses available these days, a precise
theoretical treatment of their temporal properties is indeed
necessary.

It is worth noting the existence of regular side lobes in
energy spectra of Compton photons, as shown in Fig. 2.
Namely, apart from a dominating peak in the spectrum there
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energy spectrum (rel. units)

930 940 950
Neff or N

FIG. 3. (Color online) The same as in Fig. 2 but for larger
frequencies (upper panel). In the upper panel, we clearly see the
“blue-shift” of the spectrum for Compton photons scattered by a train
of pulses, as compared to those scattered by an individual pulse. This
shift is absent, however, when the spectra are shown as functions of
N or N (lower panel).

are also subpeaks located asymmetrically on its right-hand
side (i.e., for larger frequencies). The exactly same structure
has been already observed and interpreted as the interference
phenomenon in Ref. [21] (see also references therein).

In closing this section, let us comment on the momentum
dressing in strong-field QED processes. In the case of a
monochromatic laser field, such a dressing is gained when
separating the classical action S;j') (x) [Eq. (6)] into oscillatory
and linear parts. A similar approach has been proposed here,
even though for finite laser pulses the respective periodicity
of a four-vector potential is lost. The reason that we have
introduced it anyway is that the concept of the momentum
dressing allows one to define a convenient method for perform-
ing numerical calculations. In addition, a perfect agreement
between the results for a single laser pulse and a laser pulse
train observed in the lower panel of Fig. 3 indicates that the
concept of quasimomenta is still valid for a 16-cycle laser
pulse such that u = 1. As we have checked this for the same
pulse duration but for stronger laser fields (larger w), this
agreement starts to deteriorate and the concept of momenta
dressing breaks down eventually. This may have profound
consequences, particularly when analyzing the laser-induced
pair creation process, as it has been pointed out in Ref. [37].
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FIG. 4. (Color online) The same as in Fig. 2 but for very short
pulses with Ny, = 2 (upper panel) and Ny, = 1 (lower panel). Let us
note that pentagrams, representing the results for the monochromatic
plane wave, in both these panels and in Fig. 2 provide the same results
up to multiplication by the number of oscillations N.

V. ANGULAR DISTRIBUTIONS

When discussing the angular distributions of Compton
photons, it is more convenient to introduce a polar angle ®g
such thatitisequal to Ok for0 < ¢ < m,and O =27 — Ok
for the azimuthal angle ¢g + 7. With this definition, the
distribution (54) is a periodic function of ®g. Usually, the
angular distribution of the Compton radiation is a very rapidly
changing function of @ for a given gk . These changes cannot
be observed experimentally because of the finite angular
resolution of detectors. In order to account for this fact we
have to average the spectrum (54) with some function, the
so-called window function, concentrated around a given value
of the polar angle ® . Let us choose the window function as

14 cos6 p
Ws(0) = NW(T) ; (58)
with 8 > 0, which is normalized such that
2
/ dOWg(0) = 1. 59)
0

The parameter 8 defines the half-width of this function equal
to the angular resolution of the detector. Let us assume that
the angular resolution of a detector is roughly 0.027 radians,
which is achieved if 8 = 2048. Then, the average of a periodic
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FIG. 5. (Color online) Angular distributions of the Compton
radiation energy (green lines), Eq. (54), as functions of the angle Ok
in the plane spanned by the laser field propagation direction and the
polarization vector (i.e., in the xz plane) for an ultrashort (Nys = 2,
upper panel) and arelatively long (Nos. = 8, lower panel) laser pulses.
The laser field central frequency wy is such thatiwp = 3 x 10™*m,c?
whereas ;1 = 1. The initial electron is at rest and the Compton photon
energy equals fiwg = 10~2m.c?. The smooth blue lines represent the
averaged distributions, as described by Eq. (60).

function g(0) with the period 2 is defined as

2w
(8)w,(Ok) =/0 doOWg(Ok — 0)g(0). (60)

This integration can be efficiently carried out by applying the
fast Fourier transform. In our analysis, g(0) is the differential
energy distribution (54) for a given wg and for a given
azimuthal angle ¢k .

In Fig. 5, we show angular distributions of the Compton
radiation energy (green lines) which is emitted during electron
scattering by a single laser pulse. While the upper panel shows
the results for an ultrashort laser pulse with Ny = 2, the
lower panel is for a relatively long laser pulse such that
Nose = 8. In both cases, the central laser frequency is such
that iwp, = 3 x 107*mec?, and p equals 1. As before, we
assume that initially the colliding electron is at rest. The
presented distributions are for a fixed energy of Compton
photons such that hwg = 10 2mec? and for g = 0. As
was anticipated above, we observe very rapid oscillations of
angular distributions, and so we plot also their average (60)
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FIG. 6. (Color online) Polar plots of the (normalized to 1 and
window-averaged) Compton photon energy distribution, Eq. (60), as
functions of ®g for different-cycle laser pulses with Ny = 2,4,8,
and 16, as indicated under the plots. The other parameters are exactly
the same as in Fig. 5.

which is represented by a blue line. For a two-cycle laser
pulse, a strong asymmetry in angular distributions (54) and
(60) is observed, which is the consequence of asymmetry
of the shape function f(¢) with respect to the change of
the polarization vector direction €; — —e;. Let us note that
in the current case, the shape function of the electric field
f'(¢) does not possess such an asymmetry. This indicates that
symmetry properties of the electromagnetic potential (not the
electric field) are responsible for symmetries of energy angular
distributions of Compton photons. In Fig. 6, we present only
window-averaged angular distributions (60) for laser pulses
of different duration, namely, Ny = 2,4,8, and 16, and for
the same parameters as in Fig. 5. Once again, we see that
the angular asymmetry of those distributions, dominant for
very short laser pulses, gradually disappears with increasing
the number of laser field oscillations Nys.. For Ny = 16,
the angular distribution is roughly symmetric. We would like
also to note that the corresponding distributions for Compton
scattering by positrons are similar to Figs. 5 and 6, however,
they are mirrored with respect to @ = .

Let us emphasize that all the results presented here relate
to the case when an initial electron is at rest. In experiments,
however, we deal with a situation when incident electrons
move with very high kinetic energies; in the SLAC experiment
reaching almost 50 GeV that corresponds to the Lorentz
factor y of the order of 10° [30,31]. In Refs. [30,31], these
energetic electrons were colliding with a counterpropagating
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FIG. 7. (Color online) Polar plots of the normalized to one
Compton radiation energy distribution (54) (iwx = 100m.c?) as a
function of ®g for two- and 32-cycle laser pulses (left and right
panels, respectively). Here, fiwp = m.c? (in the electron rest frame)
and p = 10. For visual purposes, the rates have been raised to
power 0.01.

laser beam to produce highly energetic radiation. We would
like to emphasize that the calculations performed in this
paper remain valid in the rest frame of the electron from the
countermoving beam, if we scale the fundamental frequency
of the laser field by roughly a factor of 2y . This means that for
a relativistic electron that moves with a large Lorentz factor
y and collides, for instance, with a Ti:sapphire laser field, the
Doppler upshifted frequency of the laser field in the electron
rest frame can reach m.c?. For this reason, in Fig. 7 we present
angular distributions of the Compton radiation for the case
when in the electron rest frame the laser field central frequency
is such that iwp, = mec?, and also i = 10. These distributions
are for the Compton photons of energy hwg = 100m.c? (in
the chosen reference frame) and they have been normalized
to 1. Let us note that the probability rates of pair creation in
the forward direction are significantly smaller (by roughly
20 orders of magnitude) than the offside lobes in angular
distributions. For visual purposes, however, we have raised
the data to power 0.01 so even small details of the spectra
become visible. While in the right panel of Fig. 7 the results
for a 32-cycle laser pulse are presented, in the left panel we
show the results for a much shorter pulse which contains only
two oscillations of the laser field. Even for much stronger
fields than considered previously, we observe a very clear
asymmetry in angular distributions of Compton photons for
very short laser pulses. As before, this asymmetry is absent for
long pulse durations. We would also like to point out that the
angular distributions shown in Fig. 7 have not been averaged
according to the prescription defined by Eq. (60). As one can
observe for the given parameters, there is a small angular
window within which the Compton photons are emitted. In
general, it follows from §V(Py) that is present in Eq. (45),
that p? — pi” > K% — K which imposes the limits on the
scattering angle of Compton photons. In particular, in the
electron rest frame this condition can be rewritten in a simple
form,

cos Og > 1 —mec?Jwx. (61)

Hence, we find that for the parameters specified in Fig. 7
(hwg = 100m.c?), the Compton photons are emitted in a cone
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such that |Og| < «/E/ 10 radians. This agrees well with our
numerical results.

VI. CONCLUSIONS

In this paper, the nonlinear Compton scattering of an intense
laser beam by an electron has been considered. We have
modeled the incident laser beam as a finite-length plane-wave-
fronted laser pulse or a sequence of such pulses. For both cases,
the frequency and angular distributions of energy emitted as
Compton photons have been unambiguously defined such that
a comparison between these two cases became meaningful.
The theory of nonlinear Compton scattering that has been
developed here accounts for, in principle, arbitrary laser pulses
(i.e., arbitrary pulse shapes, pulse durations, etc.) which are
used nowadays in experiments.

Here, we have envisaged the case when the initial electron
is at rest and it is stroked by an intense laser beam. Comparing
situations when the laser beam is represented by an individual
laser pulse and by a train of such pulses we recognized that for
pulses which include several oscillations of the laser field, both
approaches lead to the seemingly same results for Compton
radiation spectra. This agreement deteriorates, however, with
decreasing duration of the incident pulse, and particularly for
very-few-cycle pulses a detailed treatment of their spectral
characteristic becomes important. A sensitivity of angular
distributions of emitted photons to the incoming pulse duration
was also investigated. We found that for ultrashort laser pulses
the respective angular distributions show asymmetries which
are due to asymmetries of the vector potential defining the
incident laser beam. Those asymmetries disappear, however,
for very long pulse durations.
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APPENDIX A: LIGHT-CONE COORDINATES

Throughout the paper, we apply the following definitions
and notations for the light-cone coordinates. If the space
direction is determined by a normalized to 1 space vector n,
then for an arbitrary four-vector a we introduce the light-cone
coordinates such that

I R a’+al
a'"'=n-a, a =a —a’, a = 2 s
(A1)
at =a—d'n.
With this definition,

a-b=ad"—a-b=a b " +a"h —at b, (A2)
and

d*x = dx~dxtd*x*. (A3)

APPENDIX B: BOCA-FLORESCU TRANSFORMATION

Let h(¢) be a real and integrable function which does not
vanish only within a finite interval, ®y < ¢ < ®. We define
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also the integral,

¢
H(¢) = / du h(u). (B1)

oo

Let us note that H(¢) is 0 when ¢ < @, it is a constant
if ¢ > ® [we shall further denote this constant as H(®) =
fcli) du h(u)], and rather than that it can have any value. We
consider the integral,

C = /d4x efiH(k-x)fiQ-x’ (B2)

in which Q is an arbitrary four-vector and k satisfies the
zero-mass on-shell relation, k -k = 0. Let us assume that
k =k°1,n), where n*> =1 and k° > 0. Hence, using the
light-cone variables introduced in Appendix A, we obtain

C = (n)*sM(QHsP(QHIK’, 0T), (B3)

where
1(K°,0%) = / dx e THE)+0"x7], (B4)

Next, we regularize this integral similar to a regularization
introduced in Ref. [20],

Ig(kO7Q+) — /dxfefi[H(kox’)JrQ*x’]fs\x’l’ (BS)

so that it becomes absolutely convergent. Here, it is understood
that ¢ > 0. By noting that

/dx*[—i(koh(k‘)x*) + Q") —esgn(x7)]

—iHEKOxT)+Q x " 1=elx™| _ ,—i[H(K"x ")+ Q" x 1—elx™| oo

—0Q

X e

)

(B6)
where sgn(x ™) is the sign function, we arrive at
10 LG, 00) =1+ 12, (B7)
with
IV = —ik° / dx~h(K0x ™ )e IMHETOTI=el T (Bg)
and

1P =—¢ / dx~sgn(x ") HKkx O TI=elTl - (BY)

Since the integral I is over the finite region such
that <I>0/k0<x’ <<I>/k0, we can put there ¢ =0. In
the second integral we divide the integration space into
three regions, (—oo,®%/k%], [®°/k°, & /K], and [®/k",00).
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This leads us to

PHYSICAL REVIEW A 85, 062102 (2012)

Do e(giiQJr)q)o/koL 4O £ n & e (EHONHP /K
o (=Po) e—iQ+ (®o) e—iQ*t 8+iQ+( )
/d’/ko dx~sgn(x")e THEXDHOTTI=elT| 4 g(_ @) H® | __—___ (1 — =12 -
—¢ x “sgn(x")e —®)e ¢ B
@0/k0 & S—iQ+ 8+iQ+
— (D)o H@—ErioHe/R0__° (B10)

Hi0T

where 6(®) is the step function. As one can see, this integral in the limit when ¢ — 0 vanishes provided that 0" # 0. Since
from the condition 6V (Q ™) we have also Q° = Q! we conclude that 0T = Q° # 0. Finally, we obtain

‘ ‘ K0
4 —iH(k-x)—iQ-x _ __
/ e -0

/d4x h(k . x)e—iH(k-x)—iQ-x,

(B11)

which holds only if Q° # 0. This is an analog of the transformation derived by Boca and Florescu in Ref. [20].
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