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Optimal entanglement manipulation via coherent-state transmission
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We derive an optimal bound for arbitrary entanglement manipulation based on the transmission of a pulse in
coherent states over a lossy channel followed by local operations and unlimited classical communication (LOCC).
This stands on a theorem to reduce LOCC via a local unital qubit channel to local filtering. We also present an
optimal protocol based on beam splitters and a quantum nondemolition (QND) measurement on photons. Even
if we replace the QND measurement with photon detectors, the protocol can achieve near-optimal performance,
outperforming known entanglement generation schemes.
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Entanglement is now well known as an essential resource
for quantum communication [1] despite its being found in
an attempt to point out a paradoxical nature of quantum
mechanics [2]. In fact, it is known that any quantum com-
munication [including quantum key distribution (in the sense
of Ref. [3])] can never be accomplished by distant parties who
are not capable of sharing entangled pairs. This implies the
importance of evaluating the potential to share entanglement
through a given communication channel, which determines its
value as a quantum channel. If we look at practical quantum
communication such as fiber-based quantum key distribution,
free-space quantum communication, entanglement generation
in quantum repeaters, quantum communication via super-
conducting transmission lines, and a quantum memory for
bosons (transmission in time), we become aware that all the
protocols rely on a lossy bosonic channel. Thus, quantum
communication based on this channel is practically the most
important class (cf. [4]).

One of the most fundamental protocols in this class is
the family of coherent-state-based protocols represented by
Bennett’s quantum key distribution (called B92 QKD) [5]
and entanglement generation protocols in quantum repeaters
[6–11]. These protocols are based on the transmission of a
pulse in coherent states over a lossy channel, and they are
dominated by the following paradigm: (i) A sender prepares
an entangled state composed of computational basis states
of a qubit A and coherent states of a pulse a. (ii) The
sender then sends the pulse a to the mode b at the receiver’s
site through a lossy channel. (iii) Then, the sender and the
receiver manipulate the shared system Ab through their local
operations and unlimited two-way classical communication
(LOCC) in order to convert the initial entangled state to a
more entangled state. Since entanglement does not increase on
average under LOCC from its definition, in order to increase
entanglement at step (iii), the sender and the receiver need to
take a risk of failure of their LOCC manipulation. Hence, the
potential of the coherent-state-based protocols is determined
by optimizing the LOCC manipulation for obtaining more
entanglement for a fixed failure probability, representing the
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latent ability of the initial entanglement itself. But, the analysis
for such an “entanglement manipulation” for a single entangled
pair Ab in a mixed state has remained a long-standing open
problem, in contrast to that for pure-state inputs [12]. In
addition, the LOCC manipulation is beyond the paradigms
in Refs. [8,10,13]. Therefore, grasping the potential of such
coherent-state-based protocols must be a key step in the
practical and theoretical evolution of quantum communication.

In this paper, we present a theoretical limit of the per-
formance of arbitrary coherent-state-based protocols, as well
as a simple protocol that achieves the limit. Since even
arbitrary LOCC follows this bound, the limit corresponds
to a single-shot distillable entanglement of the initial one
prepared via coherent-state transmission, bounding all types
of quantum communication regarded as an entanglement
manipulation (such as B92 QKD). The derivation of the
bound is based on a general proposition to reduce LOCC
manipulation via a local unital qubit channel to local filtering.
The derived limit is represented in terms of the total success
probability and an average entanglement monotone [14] of
the generated entangled states, and it is determined only by
the transmittance of the channel. The bound is shown to be
accomplished by a simple protocol composed only of beam
splitters and a quantum nondemolition (QND) measurement
[15] on photons. If we substitute photon detectors for the
QND measurement, the protocol can entangle distant qubits
with near-optimal performance, which is shown to outperform
known protocols [6–10]. Since these protocols are simple as
in Fig. 1(a) but comparable to any complicated LOCC, the
protocols will play important roles in constructing various
quantum communication schemes.

Coherent-state-based protocols. We start by defining the
protocols considered here: (A-i) A sender called Alice
prepares a qubit A and a pulse a in her desired state in
the form of

∑
j=0,1 ei�j

√
qj |j 〉A|αj 〉a for a computational

basis {|j 〉A}j=0,1, coherent states {|αj 〉a}j=0,1, real parameters
�j , and qj � 0 with

∑
j=0,1 qj = 1; (A-ii) Alice sends the

pulse a to a receiver called Bob, through a lossy channel
described by an isometry |α〉a → |√T α〉b|

√
1 − T α〉e, where

T is the transmittance, b is a mode at Bob’s place, and e is
the environment; (A-iii) then, Alice and Bob manipulate the
system Ab through LOCC to obtain an entangled state τ̂ A′B

k

between Alice’s system A′ and Bob’s system B, and declare
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whether they obtain a success outcome k occurring with a
probability pk or a failure outcome. Note that the output
systems A′B are not limited to qubits [16]. In what follows,
the set of all the success events k is denoted by S.

As a measure of the performance of the protocols, we take
the total success probability, i.e.,Ps = ∑

k∈S pk. We also need
to choose an entanglement measure for estimating the value
of the obtained entangled states {τ̂ A′B

k }k∈S . Since the output
system A′B has no restrictions, in contrast to those described
in Refs. [8,10,13], the singlet fraction may be unsuitable.
Thus, we take an entanglement monotone E applicable to any
bipartite system A′B, which does not increase, on average,
under any local pure operation and is convex [14]. In addition,
here we require it to be a convex monotonically nondecreasing
function of the concurrence C [17] at least for qubits, which is
satisfied by various entanglement measures (cf. [18]). Based
on such an E, as another measure of the protocols, we adopt
the average Ē of the obtained entangled states {τ̂ A′B

k }k∈S ,
namely,Ē = [

∑
k∈S pkE(τ̂ A′B

k )]/Ps . We also allow Alice and
Bob to switch among two or more protocols probabilistically.
This corresponds [13] to taking the convex hull of achievable
points (Ps,PsĒ).

Virtual protocol. For an actual protocol, we define the
virtual protocol [10] that works in the same way as the
actual protocol but simplifies the analysis significantly. Steps
(A-i) and (A-ii) indicate that when the pulse arrives at Bob’s
site, the state of the total system Abe is written in the form
|ψ〉Abe = ∑

j=0,1
√

qj |j 〉A|uj 〉b|vj 〉e for states {|uj 〉}j=0,1 and
{|vj 〉}j=0,1 with |〈u1|u0〉|1−T = |〈v1|v0〉|T > 0. Thus, for a
state

|ψ ′〉Ab :=
∑

j=0,1

√
qj e

i(−1)j ξ |j 〉A|uj 〉b, (1)

with 2ξ := arg[〈v1|v0〉], and for a phase-flip channel

�A
u (ρ̂) := 1 + u

1−T
T

2
ρ̂ + 1 − u

1−T
T

2
ẐAρ̂ẐA, (2)

with ẐA := |0〉〈0|A − |1〉〈1|A, we have Tre[|ψ〉〈ψ |Abe] =
�A

|〈u1|u0〉|(|ψ ′〉〈ψ ′|Ab). Hence, we can consider any protocol
to have the following sequence: (V-i) System Ab is prepared
in |ψ ′〉Ab; (V-ii) �A

|〈u1|u0〉| is applied on qubit A; (V-iii) Alice

and Bob perform an LOCC, which provides τ̂ A′B
k . We call

this sequence “the virtual protocol.” We next introduce a
proposition that enables us to derive an optimal bound in more
general settings.

Proposition. Let (Ps,Ē) be the performance of an LOCC
protocol starting with qubits AB in state EA(|ϕ〉〈ϕ|AB),
where EA is a random local unitary channel [19] defined by
EA(ρ̂AB) := ∑

l qlÛ
A
l ρ̂ABÛ

A†
l . Then, there is a protocol that

is not less efficient than (Ps,Ē) but that is based only on Bob’s
measurement (cf. [20]). In addition, for Schmidt coefficients
λ0 and λ1(�λ0) of |ϕ〉AB , The performance (Ps,Ē) must be
in the region of {(Ps,Ē) | 0 � Ps � 1,0 � Ē � E(Cmax(Ps))
with Cmax(Ps) := (2

√
λ0λ1)−1C(EA(|ϕ〉〈ϕ|AB)) for Ps < 2λ1

and Cmax(Ps) := P −1
s

√
(Ps − λ1)/λ0C(EA(|ϕ〉〈ϕ|AB)) for

Ps � 2λ1.
Proof. Let Kraus operators {M̂A

k ⊗ N̂B
k }k∈S be Alice and

Bob’s successful measurement in step (V-iii), where the index
k refers to a branch of the tree of all possible outcomes of

their LOCC operation. Without loss of generality, the input
spaces of M̂A

k and N̂B
k can be assumed to be qubit spaces. If

Alice and Bob can achieve the measurement {M̂A
k ⊗ N̂B

k }k∈S ,
they can always, in principle, obtain a state τ̂ AB

k := (M̂A
k ⊗

N̂B
k )EA(|ϕ〉〈ϕ|AB)(M̂A

k ⊗ N̂B
k )†/pk . From the convexity of the

entanglement monotone E [14], the performance of this
protocol based on local pure operations is not less than
protocols where, for a setS ′ ⊂ S, they provide a mixture of the
states (

∑
k∈S ′ pkτ̂

AB
k )/(

∑
k∈S ′ pk) instead of states {τ̂ AB

k }k∈S ′ .
Thus, we can assume that Alice and Bob return the state τ̂ AB

k

with probability pk . Note that the range of τ̂ AB
k can be assumed

to be qubit spaces.
For fixed ÛA

l and branch k, by applying Proposition 1 in
Ref. [21] to every round of Alice with retaining the causality
of the branch [22], we can compose unitary operators {V̂ A

k|l}k
and Kraus operators {ÔB

k|l}k that satisfy

(
M̂A

k ÛA
l ⊗ N̂B

k

)|ϕ〉AB = (
V̂ A

k|l Û
A
l ⊗ ÔB

k|l
)|ϕ〉AB, (3)

with dk := det(M̂A†
k M̂A

k )det(N̂B†
k N̂B

k ) = det(ÔB†
k|l Ô

B
k|l). On the

other hand, using the formula in [17], we can show that
the concurrence C for the state τ̂ AB

k is described by
pkC(τ̂ AB

k ) = √
dkC(EA(|ϕ〉〈ϕ|AB)). Thus, if Bob performs

{ÔB
k|l}k , he obtains a state τ̂ AB

k|l := ÔB
k|lEA(|ϕ〉〈ϕ|AB)ÔB†

k|l /pk|l
with probability pk|l := 〈ϕ|ÔB†

k|l Ô
B
k|l|ϕ〉 and concurrence

C(τ̂ AB
k|l )=√

dkC(EA(|ϕ〉〈ϕ|AB))/pk|l=pkC(τ̂ AB
k )/pk|l . Since∑

l qlpk|l = pk holds from Eq. (3) and
∑

l qlpk|lE(τ̂ AB
k|l ) �

pkE(τ̂ AB
k ) is implied by

∑
l qlpk|lC(τ̂ AB

k|l ) = pkC(τ̂ AB
k ) and the

convexity of E(C), the original LOCC protocol is concluded
to be outperformed by a protocol that performs only Bob’s
measurement {ÔB

k|l}k with probability ql and returns k and l as
the outcome.

Thus, we focus on a protocol that is based on
Bob’s measurement {ÔB

k }k and returns state ρ̂AB
k :=

ÔB
k EA(|ϕ〉〈ϕ|AB)ÔB†

k /pk with probability pk . We note that
there are Kraus operators �̂B and {L̂B

k }k∈S satisfying L̂B
k �̂B =

ÔB
k . In fact, if we define them as �̂B := (

∑
k∈S Ô

B†
k ÔB

k )1/2

and L̂B
k := ÔB

k (�̂B)−1, where �̂−1 is the inverse of �̂ in its
range, the operators satisfy �̂B†�̂B � 1̂B and

∑
k∈S L̂

B†
k L̂B

k �
1̂B from

∑
k∈S Ô

B†
k ÔB

k � 1̂B . Hence, we can regard Bob’s
measurement {ÔB

k }k as a sequential measurement of �̂B

followed by {L̂B
k }k∈S . On the other hand, the entanglement

monotone E of the state τ̂ AB
s := �̂BEA(|ϕ〉〈ϕ|AB)�̂B/Ps with

Ps = ∑
k∈S pk is not less than [

∑
k∈S pkE(ρ̂AB

k )]/Ps , because
the entanglement monotone E does not increase through a
local operation on average [14]. Therefore, we can assume
that Bob merely applies a filter �̂B to qubits AB.

Let us proceed to the optimization of (Ps,E(τ̂ AB
s ))

over the filter �̂B . From the monotonicity of E(C),
our attention is concentrated on the maximization
of C(τ̂ AB

s ) for a fixed Ps . On the other hand, for
the Schmidt decomposition of |ϕ〉AB = ∑

j=0,1

√
λj |jj〉AB ,

we have Ps = 〈ϕ|�̂B†�̂B |ϕ〉 = ∑
j=0,1 λj 〈j |�̂B†�̂B |j 〉 and

PsC(τ̂ AB
s ) = [det(�̂B†�̂B)]1/2C(EA(|ϕ〉〈ϕ|AB)) � (�j=0,1〈j |

�̂B†�̂B |j 〉)1/2C(EA(|ϕ〉〈ϕ|AB)), where the equalities hold
by choosing �̂B with 〈0|�̂B†�̂B |1〉 = 0. Combined with
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�̂B†�̂B � 1̂B , this shows that Cmax(Ps) is the maximum of
C(τ̂ AB

s ), which concludes the proposition.
Optimal bound. Let us apply the proposition to

our problem. Schmidt coefficients of |ψ ′〉Ab are
λ± := [1 ± √

1 − x2]/2, and the concurrence of the
input state is C(�A

|〈u1|u0〉|(|ψ ′〉〈ψ ′|Ab)) = |〈u1|u0〉| 1−T
T x

from Ref. [23], where x := 2
√

q0q1(1 − |〈u1|u0〉|2).
Hence, Cmax(Ps) = |〈u1|u0〉| 1−T

T for Ps < 1 − √
1 − x2

and Cmax(Ps) = P −1
s |〈u1|u0〉| 1−T

T x[1 − 2(1 − Ps)/(1 +√
1 − x2)]1/2 for Ps � 1 − √

1 − x2. Since Cmax(Ps) is a
monotonically nondecreasing function of x, the choice of
q0 = q1 = 1/2 gives the maximum value of Cmax(Ps), which
is further bounded by an achievable concurrence C

opt
u∗ (Ps)

with

Copt
u (Ps) := u

1−T
T

√
(1 − u)(2Ps + u − 1)

Ps

(4)

for

u∗ := 1
2

[
(1 − Ps)(2 − T ) + √

4P 2
s (1 − T ) + (1 − Ps)2T 2

]
,

(5)

satisfying 1 − Ps � u∗ � 1. Therefore, the performance of
any protocol must be in the convex hull of {(Ps,PsĒ) | 0 �
Ps � 1,0 � Ē � E(Copt

u∗ (Ps))}.
Optimal protocol. We have shown that the achievable region

of an arbitrary protocol is described by Eqs. (4) and (5). Here
we present a specific protocol achieving the optimal bound
C

opt
u∗ (Ps) except for a trivial point Ps = 1. We allow Alice

and Bob to use an implementable [7] interaction between
an off-resonance laser pulse in a coherent state |α〉a and a
matter qubit A, which is described by a unitary operation
Ûθ |j 〉A|α〉a = |j 〉A|αei(−1)j θ/2〉a for j = 0,1. θ depends on
the strength of the interaction (θ ∼ 0.01 [7]). Let us consider
the following protocol [see Fig. 1 (a)]: (1) Alice makes a
probe pulse in a coherent state |α/

√
T 〉a (α � 0) interact

with her qubit A in a state (
∑

j=0,1 e−i(−1)j ζα/
√

T |j 〉A)/
√

2 with

ζα := (1/2)α2 sin θ by Ûθ , and she applies a displacement
operation D̂−(α/

√
T ) cos(θ/2) to the pulse a; (2) Alice sends

the pulse to Bob through a lossy channel a → b1 (with
transmittance T ) together with the local oscillator (LO); (3)
on receiving the pulse b1 and the LO, Bob generates a second
probe pulse b2 in a coherent state |β〉b2 with β � α from the
LO, and he makes the pulse b2 interact with his qubit B in
state (

∑
j=0,1 e−i(−1)j ζβ |j 〉B)/

√
2 by Ûθ ; (4) Bob applies a

displacement operation D̂−β cos(θ/2) to the pulse b2; (5) Bob fur-
ther applies a 50:50 beam splitter described by |α1〉b1 |α2〉b2 →
|(α1 + α2)/

√
2〉b3 |(α1 − α2)/

√
2〉b4 to the pulses in modes b1

and b2; (6) Bob applies a QND measurement to pulses b3 and
b4 in order to execute a projective measurement {Q̂b3b4

s ,1̂b3b4 −
Q̂b3b4

s } with Q̂b3b4
s := 1̂b3b4 − ∑∞

n=0 |n〉〈n|b3 ⊗ |n〉〈n|b4 ; (7) if
Bob receives an outcome corresponding to the projection
Q̂b3b4

s , Bob declares the success of the protocol.
In the virtual protocol for this scheme, since Bob’s oper-

ations in steps (3)–(7) commute with the phase-flip channel
�A

|〈u1|u0〉|, the operations are assumed to be directly applied
to the state |ψ ′〉Ab. In this frame, the state after step (5) is

qubit A
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b2

optical
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FIG. 1. (Color online) (a) Schematic of near-optimal protocol.
If we replace the photon detectors D1 and D2 with the QND
measurement to perform the projection Q̂b3b4

s , we can reduce the
protocol to the optimal one. (b) Performance of various protocols.
The average concurrence C̄ as a function of the success probability
Ps when T = e−l/ l0 with l0 = 25 km (∼ 0.17 dB/km attenuation) and
θ = 0.01, for (i) the optimal protocol, (ii) the near-optimal protocol,
(iii) a photon-detector-based two-probe protocol [10] that achieves a
tight bound [13] for single-error-type entanglement generation, (iv)
an optimized photon-detector-based single-probe protocol [8,9], and
(v) a homodyne-detection-based single-probe protocol [7].

described by

|χ〉ABb3b4 = 1
2 [|00〉AB |iγ+〉b3 |−iγ−〉b4

+|01〉AB |−iγ−〉b3 |iγ+〉b4+|10〉AB |iγ−〉b3 |−iγ+〉b4

+|11〉AB |−iγ+〉b3 |iγ−〉b4 ], (6)

with γ± := [(β ± α) sin(θ/2)]/
√

2. This state can be rep-
resented, in the respective phase spaces of modes b3 and
b4, by |χ〉ABb3b4 in Fig. 1(a). This figure suggests an in-
tuitive reason why this protocol can generate entanglement
between qubits AB: If there are more photons in mode
b3 (b4) than in mode b4 (b3), the possibility that the
state has lived in the subspace spanned by {|00〉AB,|11〉AB}
({|01〉AB,|10〉AB}) is higher. A direct calculation shows
||A〈j |Q̂b3b4

s |χ〉ABb3b4 ||2 = [1 − e−γ 2
+−γ 2

−I0(2γ+γ−)]/2 for j =
0,1 and ABb3b4〈χ |(|1〉〈0|A ⊗ Q̂b3b4

s )|χ〉ABb3b4 = [e−(γ+−γ−)2 −
e−γ 2

+−γ 2
−I0(2γ+γ−)]/2, where I0(x) := ∑∞

n=0(x/2)2n/(n!)2 is
a modified Bessel function. Thus, the success probability Ps is

Ps = 1 − e−(β2+α2) sin2(θ/2)I0((β2 − α2) sin2(θ/2)). (7)

Combined with the fact that the final state is writ-
ten �A

uα
(|φ〉〈φ|ABb3b4 ) with |φ〉ABb3b4 := Q̂b3b4

s |χ〉ABb3b4/
√

Ps

and uα := e−2α2 sin2(θ/2), the calculation results also show
that the concurrence C between A and Bb3b4 satisfies
C(�A

uα
(|φ〉〈φ|ABb3b4 )) = C

opt
uα

(Ps) from Ref. [23]. On the other
hand, for any α and P satisfying 1 − uα � P < 1, there is a
choice of β for making Ps = P hold. Hence, fixing Ps = P ,
we can choose α such that uα is equivalent to u∗ of Eq. (5).
Thus, the present protocol attains the optimal performance
C

opt
u∗ (Ps).
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Near-optimal protocol. We have shown that a protocol
employing the QND measurement on incoming pulses can
optimally generate entanglement between Alice’s qubit A and
Bob’s entire system Bb3b4 including pulses b3b4. However, in
practice, it is difficult to achieve such a QND measurement,
and the pulses b3b4 are unsuitable for storing the entangled
state for a long time. Therefore, it is important to find a
protocol that does not need to use a QND measurement and
produces entanglement between Alice and Bob’s qubits AB

instead of A and Bb3b4. One such protocol can be obtained
by replacing steps (6) and (7) in the optimal protocol with the
following steps [see Fig. 1 (a)]: (6′) Bob counts the number of
photons by using photon-number-resolving detectors in modes
b3 and b4, respectively, and (7′) if the outcomes m and n

of the two detectors are different, Bob declares the success
of the protocol. Note that the significant recent progress
[24] of photon detector technologies is allowing us to use
photon-number-resolving detectors. However, the usage of the
photon-number-resolving detectors assumed here is only for
simplicity. That is, our protocol works even if we replace those
detectors with more realistic ones such as threshold detectors,
as seen in Ref. [10].

Let us consider the modified protocol. From the
definition, the success probability Ps must be the same
as Eq. (7). In the virtual protocol for this scheme, with
probability Pmn := e−γ 2

+−γ 2
− (γ 2m

+ γ 2n
− + γ 2m

− γ 2n
+ )/(2m!n!),

the protocol returns outcomes m and n, and
provides a final state �A

uα
(|φmn〉〈φmn|AB) for state

|φmn〉AB := b3〈m|b4〈n||χ〉ABb3b4/
√

Pmn with concurrence

C(�A
uα

(|φmn〉〈φmn|AB)) = u
1−T
T

α e−γ 2
+ − γ 2

−|γ 2m
+ γ 2n

− − γ 2m
− γ 2n

+ |/
(2m!n!Pmn) from Ref. [23]. Hence, for an
entanglement monotone E with E(C), the average
of the entanglement monotones is determined by
Ē = [

∑
m,n�0 (1 − δmn) PmnE(C(�A

uα
(|φmn〉〈φmn|AB)))]/Ps .

Parameters α and β (determining γ±) should be chosen to
maximize Ē with Ps fixed.

In Fig. 1(b), we show the performance of several known
protocols [7–10] as well as the optimal and near-optimal
protocols in terms of the average concurrence C̄. For compar-
ison, we assume that all the devices used in the protocols are
ideal. From the figures, we can confirm that the near-optimal
protocol performs similarly to the optimal protocol and it
outperforms the existing protocols [6–10]. Such a superiority
of our protocol remains even if we assume the usage of more
realistic photon detectors. Through the relation E = E(C) for
qubits, one could also easily estimate the performance even in
terms of the entanglement monotone E.

In conclusion, we have provided an optimal bound
E(Copt

u∗ (Ps)) defined by Eqs. (4) and (5) for arbitrary LOCC
entanglement manipulation via coherent-state transmission.
In addition, we have presented a simple optimal scheme
and its practical version [Fig. 1(a)] with almost optimal
performance. This suggests that quantum optical devices
in quantum communication can become as powerful as
arbitrary operations for distilling entanglement from the
state prepared via coherent-state transmission. The setting
of the problem respects a shared nature of known realistic
schemes [5–11], but we believe that our solution to the
problem will provide new insights into fundamental theories
such as those in Refs. [4,12,17,21] and into limits on other
quantum communication protocols as in Refs. [25,26].
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l |ϕ〉AB becomes |ϕk1,...,k2n|l〉AB

for the measurement outcomes k1, . . . ,k2n at the 2n-th
round, and Alice applies a Kraus operator M̂A

k2n+1|k1,...,k2n
at

the (2n + 1)-th round. Then, Proposition 1 in Ref. [21]
presents a Kraus operator ÔB
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