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via imaginary weak values
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The advantages of weak measurements, and especially measurements of imaginary weak values, for precision
enhancement, are discussed. A situation is considered in which the initial state of the measurement device varies
randomly on each run, and is shown to be in fact beneficial when imaginary weak values are used. The result is
supported by numerical calculation and also provides an explanation for the reduction of technical noise in some
recent experimental results. A connection to quantum metrology formalism is made.
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In 1988 Aharonov, Albert, and Vaidman (AAV) [1] discov-
ered that the measured value of an observable can be 100 times
bigger than its biggest eigenvalue, provided the measurement
interaction is weak and a postselection is employed. They
showed that a system which is coupled weakly to another, pre-
and postselected system, described by the two-state vector
〈�| |�〉, via an observable C, is effectively coupled to the
weak value of the observable [2]

Cw ≡ 〈�|C|�〉
〈�|�〉 . (1)

The replacement of the interaction operator with its weak
value, which is a complex number [3], is known as the AAV
effect, and the procedure in which the weak value is measured
is referred to as a weak measurement. The promise that this
phenomenon holds for improving precision measurements has
recently started to materialize in the observation of the spin
Hall effect of light [4] and ultrasensitive measurement of beam
deflection [5]. Other areas where the use of weak measure-
ments was investigated include measuring small longitudinal
phase shifts [6,7], charge sensing [8], frequency measurements
[9], and Kerr nonlinearities [10].

The general use of quantum effects for precision en-
hancements, known as quantum metrology [11], is showing
significant results [12] and lately much attention has been
drawn to practical issues such as the effects of an environment
[13,14], noise [15], and technical limitations [16]. According
to Refs. [4,5], the use of imaginary weak values in the
measurement process allows a reduction in technical noise.
In this Rapid Communication we will analyze the process of
weak measurement as a method for precision measurements.
Furthermore, we will present a concrete model for technical
noise affecting the preparation of the measurement device
(meter), and show that in the presence of such a noise the
precision is enhanced.

We start with an overview of known results regarding
the precision achievable by weak measurements. Consider a
physical interaction

H = g(t)PC, (2)

where C is an observable on a system, P is an operator on a
meter, and g(t) is a coupling function satisfying

∫
g(t)dt = k.

Our concern is estimating the size of k, or in some cases simply
observing the interaction. A straightforward approach is to put

the system in an eigenstate of C having some eigenvalue c,
and the meter in a Gaussian state:

�M (Q) = (�2π )−1/4e
− Q2

2�2 , (3)

where Q is a variable conjugate to P , and � is its quantum
uncertainty. An estimate of k can be obtained from the shift
in Q due to the interaction 〈Q〉 = kc, and its precision is
determined by the standard deviation 1√

2
�. In the case kc �

�, little information is acquired from a single measurement,
but by repeating the procedure N times and averaging the
results, the precision is enhanced. Strictly speaking, the
amount of information gathered regarding k is measured by
the Fisher information [15], but for our purposes we can use
the more intuitive concept of signal-to-noise ratio (RS/N ) [17],
which in this case is

RS/N =
√

N
kc

�
. (4)

Since our interest is in the regime where kc � �, which is
a condition for the AAV effect [18], we will, for now, assume
that the AAV effect occurs and later examine its validity in
more detail. Thus, we will consider the system to be initially
in a state |�〉 and take into account the meter results only when
the system was found in a state |�〉, after the interaction, which
implies a replacement C → Cw in Eq. (2) [19]. The shift in Q

is given by 〈Q〉� = k Re Cw [1], and

RS/N =
√

N�

k Re Cw

�
, (5)

where N� ∼ N |〈�|�〉|2 is the number of times the system
was found in a state |�〉. In order for Cw to be larger than any
eigenvalue of C, the scalar product 〈�|�〉 has to be small, so
we can see that we cannot improve (5) significantly, relative
to Eq. (4). It is, however, an interesting fact that by using only
a small portion of our potential data, we get the same quality
of information. In practice, there are many setups where a rare
postselection is beneficial, especially when there is a detection
constraint, such as saturation limits or dead time.

Another option is to measure the meter in the P basis.
Assuming the meter initial state is (3), which we can write

in the P basis as �M (P ) = (�−2π )−1/4e− �2P 2

2 , the final shift
in P is given by 〈P 〉� = k�−2 Im Cw [3] and the standard
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deviation is 1√
2
�−1, giving us

RS/N =
√

N�

k Im Cw

�
. (6)

Surprisingly, for Im Cw = Re Cw, the RS/N for this case is
the same as (5) and it seems measuring an imaginary weak
value is ineffective. However, as we will now show, this is not
the case.

In calculating the RS/N (4)–(6) we considered only the
quantum uncertainty, sometimes called shot noise, and not
any technical issues. Since the setups used in advanced
experiments are highly intricate, there is an enormous range of
possible technical issues and conceiving a general model for
their effect is beyond the scope of this Rapid Communication.
Instead, we will restrict our discussion to faults in the
preparation of the meter, causing its initial state to be shifted
with respect to (3).

Let us start by considering a shift Q0 in the Q basis only,
making the initial state of the meter

�M (Q) = (�2π )−1/4e
− (Q−Q0)2

2�2 . (7)

A measurement of Q, after an interaction (2) with a pre- and
postselected system 〈�| |�〉, will yield

〈Q〉� = Q0 + k Re Cw,
(8)

〈Q2〉� = �2

2
+ (Q0 + k Re Cw)2.

Since the shift Q0 can be different for every run, some
distribution should be used when averaging over the results.
We assume an uncorrelated distribution with vanishing average
Q0 = 0, which can be seen as white noise. A finite average
would describe a systematic error while correlations can
appear, for example, if Q0 has some time dependency which is
relevant to the frequency in which the runs occur or to their total
time. In order to treat such disturbances, an analysis using an
Allan variance [20] is needed, which we will not discuss here.
In Ref. [10], weak measurements were shown to be beneficial
for noise with a long correlation time, however, their results
about their ineffectiveness for white noise was based on the
measurements of real weak values.

We consider the probability of a shift Q0 to be

Pr(Q0) = (�Q

√
π )−1e

− Q2
0

�2
Q , (9)

where �Q is the width of the distribution of the shift. The only
essential characteristics of the distribution, to our results, are

Q0 = 0 and Q2
0 = �2

Q

2 , so taking it to be a Gaussian is strictly
for the simplicity of presentation. An average over Q0 will
result in

〈Q〉� = k Re Cw,
(10)

〈Q2〉� = �2

2
+ �2

Q

2
+ (k Re Cw)2,

meaning the same shift as it was for (3) but with a larger stan-
dard deviation, making the RS/N smaller than (5). Similarly
we can get RS/N = √

Nkc/
√

�2 + �2
Q if the system is in an

eigenstate of C with eigenvalue c.

By writing the meter state, in the P basis, after the
interaction and postselection,

�M (P ) = N (�−2π )−1/4e− �2P 2

2 +i(Q0−kCw)P , (11)

where N = exp[−k2�−2(Im Cw)2/2] is the renormalization
factor due to the postselection, one can see that a measurement
of P will yield

〈P 〉� = k�−2 Im Cw,
(12)

〈P 2〉� = �−2

2
+ (k�−2 Im Cw)2.

This means that the RS/N for this case is the same as (6), the
RS/N for the case of an ideal initial state.

This is the first result of our Rapid Communication: When
one has a dominant technical issue in the preparation of a
variable conjugate to the interaction operator, measurements
of an imaginary weak value can eliminate its effect.

Let us now consider a shift P0 in the P basis, making the
initial state of the meter

�M (P ) = (�−2π )−1/4e− �2(P−P0)2

2 , (13)

with probability

Pr(P0) = (�P

√
π )−1e

− P 2
0

�2
P , (14)

where �P is the width of the distribution of the shift. After
an interaction (2) with a pre- and postselected system 〈�||�〉,
the meter is in a state

�M (P ) = NP0 (�−2π )−1/4e− �2(P−P0)2

2 −ikCwP , (15)

where NP0 is the renormalization factor due to the postselec-
tion. A final measurement of P will yield

〈P 〉� = P0 + k�−2 Im Cw,
(16)

〈P 2〉� = �−2

2
+ (P0 + k�−2 Im Cw)2.

In order to calculate the average over P0 we have to consider
the probability of postselection

Pr(|�〉 | P0) = |〈�|�〉|2 ek Im Cw(2P0+k Im Cw�−2)

= |〈�|�〉|2 N−2
P0

, (17)

which was of no importance for a shift in Q since it did not
depend on Q0. This means that if we prepare an ensemble
of N meters with states (13) according to the distribution
(14), and then, after an interaction (2), we postselect to |�〉,
the postselected ensemble of meters will have a different
distribution:

Pr(P0||�〉) = Pr(P0) Pr(|�〉|P0)

Pr(|�〉)

= (�P

√
2π )−1e

− (P0−k Im Cw�2
P

)2

�2
P . (18)

Calculating the averages using (18) we get

〈P 〉� = k
(
�−2 + �2

P

)
Im Cw,

(19)

〈P 2〉� = �−2

2
+ �2

p

2
+ [

k
(
�−2 + �2

P

)
Im Cw

]2
,
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yielding

RS/N =
√

N�k Im Cw

√
�−2 + �2

p. (20)

While for �p = 0 this RS/N equals (6), for �p > 0 it is bigger.
This is the main result of our Rapid Communication: In the

regime where the AAV effect occurs, a noncoherent spread in
the variable appearing in the interaction improves the precision
of the measurement.

Unlike Q, which is changed according to Re Cw, P is a
constant of motion under the Hamiltonian (2), so the change
in its distribution can be understood via the postselection
probability |〈�|e−ikPC |�〉|2. This means different values of
P would cause different amounts of disturbance on the system
and would have different probabilities to be found after the
postselection. Expanding this probability to first order in (kP ),
|〈�|�〉|2 (1 + 2k Im CwP ), we see that, in this regime, it is
indeed the imaginary part determining how the disturbance
affects the probability.

One might consider a measurement of this disturbance
directly, i.e., varying P and measuring the postselection
probability. The binomial distribution would give an RS/N

of 2k Im CwP

√
N |〈�|�〉|2

(1−|〈�|�〉|2)
, which is comparable to (20) with

the replacement P ↔ √
�−2 + �2

p. This highlights some of
the differences in the experimental challenges each method
presents, with regard to the preparation and measurement
of P .

We turn now to examining the conditions for the AAV
effect, in the context of an imperfect meter preparation. The
evolution (up to normalization) is given by

〈�|e−ikPC |�〉 = 〈�|�〉e−ikCwP

+〈�|�〉
∞∑

n=2

(−ikP )n

n!
[(Cn)w − (Cw)n].

(21)

The AAV effect means that the final state of the meter is
determined by the first term, so we want to see when the second
term is negligible. In an experiment aimed at measuring a tiny
effect, k is extremely small, so it would be natural to look at the
case where k → 0 in which the condition for the AAV is trivial.

For a more detailed condition, but one that is related to
quantities which are already used, we need to make some
assumptions. One is that, in the sum over n, the first term in
the sum, i.e., n = 2, is the largest, since higher orders would be
smaller. Another one is assuming |(Cn)w| < |Cw|n for n > 1,
which is the case, in general, for a weak value that is larger than
any eigenvalue, limiting our concern to verifying the condition
|kCw|2〈P 2〉 � 1. For the state (7), it amounts to |kCw|2�−2 �
1, implying that there is no dependency on the distribution of
Q0 and also that for a purely real (imaginary) weak value, the
RS/N (5) ((6)) has to be small for N� = 1. Thus, a small RS/N

per measurement is a necessary condition for the AAV effect.
For the state (13), with a distribution (14), we have

|kCw|2(�−2 + �2
p

) � 1, (22)

implying that in order to make the RS/N (20) large, for any
value of �p, one has to perform many measurements.

Naturally, there could be technical problems with the
preparation of |�〉 or the measurement of |�〉 which can
decrease the RS/N . This issue is not within the scope of this
Rapid Communication but we can mention that, since usually
different experimental equipment is used for the meter and
the system, for example, a polarizer and a split detector,
the technical problems are often not related. Furthermore,
our result can assist the experimentalist in choosing what
should be considered as a meter and what should be the
system.

We support our results with a numerical calculation
of a simple example, in which the pre- and postselected
system is a two-level system (qubit) described by (4 +
4w2)−1/2 (〈↑| + 〈↓|) [(1 + iw) |↑〉 + (1 − iw) |↓〉], where |↑〉
(|↓〉) is an eigenstate of C with eigenvalue 1 (−1). The weak
value is given by Cw = iw, but our calculation is not based
on the AAV effect. For an initial state of the meter that is
described by Eqs. (13) and (14), we find that the distribution
of a final measurement of P is given by

ρ(P ) = 2e
k2�2

T − P 2

�2
T |cos(kP ) + w sin(kP )|2[

1 − w2 + (1 + w2)ek2�2
T

] √
π�T

, (23)

FIG. 1. (Color online) The expected results of a final measure-
ment of P , based on Eq. (23): The probability distribution for w = 8
(top) and the RS/N per measurement (bottom). For wk�T < 1 the
form of the distribution is nearly the same and its center is shifted by
wk�2

T , however, when wk�T � 1, the form is distorted. For small
�T , the RS/N is increasing linearly, in agreement with (20). The
maximum is around wk�T ∼ 1. From (22) it is clear that for larger
values of �T the AAV effect is not valid, and thus the RS/N is getting
smaller, as expected for standard measurements. In an experiment
aimed at measuring a tiny effect, such as in Refs. [4,5], the interaction
strength k would be very small, making k�T � 1 the relevant regime,
and only with the factor

√
N� ∼ √

N/w, due to N repetitions, can
the RS/N be larger than unity.
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where �T = √
�−2 + �2

p. This distribution and the RS/N per
measurement for it are plotted in Fig. 1.

In order to put our results in an experimental context, we
analyze two experiments, Refs. [4,5], where weak measure-
ments were used to detect tiny modifications in a paraxial light
beam. In Ref. [4] the beam was displaced by the spin Hall
effect of light, creating a polarization-dependent change in
its transverse spatial distribution. They considered an effective
Hamiltonian of the form of Eq. (2), with C being a polarization
variable, P the transverse momentum, and k was a small
coefficient that needed to be estimated. Polarizers were used
for the pre- and postselection, making Cw purely imaginary,
and a position sensor was located in a distance such that
the center of the spatial distribution was determined by the
transverse momentum immediately after the interaction.

In Ref. [5], a Sagnac interferometer was used where the
angle of one of the mirrors changed the beam’s direction,
depending on which path it took in the interferometer. The
analog interaction of type (2) has C as the which-path variable,
P as the transverse position, and k as the angle of the mirror
times the light wave number. The interferometer was set up
to make the weak value purely imaginary, and lenses were
used to make the transverse position of the beam at detection
proportional to the transverse position immediately after the
interaction, up to a geometrical optical factor.

Thus, even though the interactions were of a different
nature, both results should agree with (19). The manifestation
of �−2 + �2

p in an experiment would be the square of the width
of the final measurement, and indeed, in both experiments
the final result was proportional to this quantity. It was also
mentioned in Refs. [4–6] that this method was especially

beneficial for technical noise. Distinguishing between the
coherent width �−1 and the one caused by technical issues �p

can be rather difficult, but it is unnecessary in our formalism.
Unlike the common practice in quantum metrology [11,15],

our results do not require the meters to be entangled. The
correlations created by the postselection can be viewed
as classical ones and thus the precision scales as

√
N .

Instead, the Cramér-Rao bound is improved simply by
increasing the variance of the Hamiltonian, a task that
can be done in a noncoherent way, and thus might
be much simpler, experimentally, than the creation of
entanglement.

Technical noise is present in any kind of experimental setup
so our result can be applied to physical systems in a vast variety
of fields, such as solid-state physics, optics, atomic physics,
and more. Regarding noise as an advantage means that low-
cost alternatives can be used and that elaborate noise reduction
methods can be avoided. This can mean the use of white light
instead of a laser [7] or operating at room temperature and
without a vacuum chamber.

We have shown that in the scenario of measurement of
imaginary weak values, a shortcoming in the ability to prepare
the meter in an exact known state does not diminish the
precision, and the result of some flawed preparation can in
fact increase the precision. This phenomenon explains some
remarkable recent results where technical noise was overcome
and it has the potential to improve many quantum metrology
schemes.

This work has been supported in part by Grant No. 32/08
of the Binational Science Foundation, and Grant No. 1125/10
of the Israel Science Foundation.

[1] Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev. Lett. 60,
1351 (1988).

[2] Y. Aharonov and L. Vaidman, Phys. Rev. A 41, 11 (1990).
[3] R. Jozsa, Phys. Rev. A 76, 044103 (2007).
[4] O. Hosten and P. Kwiat, Science 319, 787 (2008).
[5] P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, Phys.

Rev. Lett. 102, 173601 (2009).
[6] N. Brunner and C. Simon, Phys. Rev. Lett. 105, 010405 (2010).
[7] C. F. Li, X. Y. Xu, J. S. Tang, J. S. Xu, and G. C. Guo, Phys.

Rev. A 83, 044102 (2011).
[8] O. Zilberberg, A. Romito, and Y. Gefen, Phys. Rev. Lett. 106,

080405 (2011).
[9] D. J. Starling, P. B. Dixon, A. N. Jordan, and J. C. Howell, Phys.

Rev. A 82, 063822 (2010).
[10] A. Feizpour, X. Xing, and A. M. Steinberg, Phys. Rev. Lett. 107,

133603 (2011).

[11] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 96,
010401 (2006).

[12] M. Napolitano et al., Nature (London) 471, 486 (2011).
[13] G. Goldstein et al., Phys. Rev. Lett. 106, 140502 (2011).
[14] D. Braun and J. Martin, Nat. Commun. 2, 223 (2011).
[15] B. M. Escher, R. L. de MatosFilho, and L. Davidovich, Nat.

Phys. 7, 406 (2011).
[16] N. Thomas-Peter et al., Phys. Rev. Lett. 107, 113603

(2011).
[17] D. J. Starling, P. B. Dixon, A. N. Jordan, and J. C. Howell, Phys.

Rev. A 80, 041803 (2009).
[18] S. Wu and Y. Li, Phys. Rev. A 83, 052106 (2011).
[19] Y. Kedem and L. Vaidman, Phys. Rev. Lett. 105, 230401

(2010).
[20] D. W. Allan, IEEE Trans. Ultrason. Ferroelectr. Freq. Control

34, 647 (1987).

060102-4

http://dx.doi.org/10.1103/PhysRevLett.60.1351
http://dx.doi.org/10.1103/PhysRevLett.60.1351
http://dx.doi.org/10.1103/PhysRevA.41.11
http://dx.doi.org/10.1103/PhysRevA.76.044103
http://dx.doi.org/10.1126/science.1152697
http://dx.doi.org/10.1103/PhysRevLett.102.173601
http://dx.doi.org/10.1103/PhysRevLett.102.173601
http://dx.doi.org/10.1103/PhysRevLett.105.010405
http://dx.doi.org/10.1103/PhysRevA.83.044102
http://dx.doi.org/10.1103/PhysRevA.83.044102
http://dx.doi.org/10.1103/PhysRevLett.106.080405
http://dx.doi.org/10.1103/PhysRevLett.106.080405
http://dx.doi.org/10.1103/PhysRevA.82.063822
http://dx.doi.org/10.1103/PhysRevA.82.063822
http://dx.doi.org/10.1103/PhysRevLett.107.133603
http://dx.doi.org/10.1103/PhysRevLett.107.133603
http://dx.doi.org/10.1103/PhysRevLett.96.010401
http://dx.doi.org/10.1103/PhysRevLett.96.010401
http://dx.doi.org/10.1038/nature09778
http://dx.doi.org/10.1103/PhysRevLett.106.140502
http://dx.doi.org/10.1038/ncomms1220
http://dx.doi.org/10.1038/nphys1958
http://dx.doi.org/10.1038/nphys1958
http://dx.doi.org/10.1103/PhysRevLett.107.113603
http://dx.doi.org/10.1103/PhysRevLett.107.113603
http://dx.doi.org/10.1103/PhysRevA.80.041803
http://dx.doi.org/10.1103/PhysRevA.80.041803
http://dx.doi.org/10.1103/PhysRevA.83.052106
http://dx.doi.org/10.1103/PhysRevLett.105.230401
http://dx.doi.org/10.1103/PhysRevLett.105.230401
http://dx.doi.org/10.1109/T-UFFC.1987.26997
http://dx.doi.org/10.1109/T-UFFC.1987.26997

