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Dynamical Casimir effect in two-atom cavity QED
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We study analytically and numerically the dynamical Casimir effect in a cavity containing two stationary
two-level atoms that interact with the resonance field mode via the Tavis-Cummings Hamiltonian. We determine
the modulation frequencies for which the field and atomic excitations are generated and study the corresponding
dynamical behaviors in the absence of damping. It is shown that the two-atom setup allows for monitoring of
photon generation without interrupting the growth, and different entangled states can be generated during the
process.
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Introduction. In view of the recent progress [1] in experi-
ments on the observation of the so-called dynamical Casimir
effect (DCE) [2], the problem of detecting photons generated
from the initial vacuum state becomes quite actual. It was
shown long ago [3] that the presence of a detector can change
significantly the statistics (including the mean number) of
created quanta, compared with the predictions made for an
idealized empty cavity model. Therefore, it is necessary to
study in detail different detection schemes. At least two
main schemes were proposed until now. In the so-called
MIR experiment, the quanta of the microwave field are to
be detected by an antenna put inside the closed cavity [4].
Another idea was to use as detectors real Rydberg atoms
passing through the cavity [3,5–7] or “artificial atoms” [8]
in the case of Circuit QED systems, such as those described
in Refs. [1,2]. The simplest solutions for a detector modeled
as a single two-level atom were obtained in Refs. [3,5], and
recently results of more detailed theoretical and numerical
studies of the atom-field interaction during the DCE were
presented in Refs. [9–11]. Three-level models of detectors
were considered in Refs. [12,13]. It seems important to analyze
different configurations to choose the optimal scheme.

Here we study how the DCE dynamics is affected by the
presence of two two-level atoms (detectors) interacting with a
single resonance cavity field mode. Our starting point is the
Hamiltonian (we set h̄ = 1)

H0 = ωtn+
2∑

j=1

[
�j

2
σ z

j + gj (aσ+
j + a†σ−

j )

]
− iχt (a

2 − a†2),

where a (a†) is the cavity annihilation (creation) operator and
n ≡ a†a is the photon number operator. The Pauli operators
are defined as σ z

j = |ej 〉〈ej | − |gj 〉〈gj |, σ−
j = |gj 〉〈ej |, σ+

j =
|ej 〉〈gj |, where |gj 〉 and |ej 〉 are the ground and excited
states of the j th atom (j = 1,2), respectively. �j and gj are
the atomic transition frequencies and the atom-field coupling
constants (assumed real for simplicity). If χt = 0, then H0 is
the special case of the known Tavis-Cummings Hamiltonian
[14] studied in numerous papers (see, e.g., Refs. [15–18] and
references therein). Physical realizations of this Hamiltonian
(which holds for |gj | � �j ) were demonstrated in Ref. [19]
for trapped ions and in Ref. [20] for the Circuit QED systems.

The last term in H0 describes the effect of photon creation
(equivalent to squeezing) in a cavity whose fundamental
eigenfrequency varies in time due to the motion of a
boundary [3,21,22]. We suppose that the boundary performs
harmonic oscillations at the modulation frequency η. Then the
instantaneous cavity eigenfrequency depends on time as ωt =
ω0 + ε sin(ηt), where ε is the small modulation amplitude.
Normalizing the unperturbed cavity frequency to ω0 = 1, we
write the modulation frequency as η = 2(1 + x), where x is a
small resonance shift. For a weak modulation, |ε| � 1, we can
write to the first order in ε: χt ≡ (4ωt )−1dωt/dt � 2q cos(ηt)
[3,21,22], where q ≡ ε(1 + x)/4. Moreover, the term ωtn in
H0 can be replaced simply by n, as soon as the main effect
of modulation is due to the presence of operators a2 and a†2

in the squeezing part of H0 but not due to the photon number
preserving part ωta

†a.
In the empty cavity, the resonance generation of many

photons is achieved for x = 0 (being impossible if |x| � |ε|
[23]). On the other hand, it was shown in Ref. [3] that
no more than two photons can be created in the presence
of a single atom if |ε| � |g1|, and this can happen if
|x| ∼ |g1|. Our aim is to find the resonance regimes in the
presence of two atoms for different relations between the
parameters ε, gj , and �j . We show that there are two types
of resonances. For some distinguished values of x �= 0, at
most two photons can be created. But under certain conditions,
the multiphoton generation becomes possible again for x ≈ 0
(contrary to the one-atom case), even if |ε| � |g1|. This
interesting result is one of the main motivations for this
publication.

The dynamics of the closed system (atoms + field mode) is
governed (neglecting dissipation) by the Schrödinger equation
i∂|	(t)〉/∂t = H0|	(t)〉. To find analytical solutions we go
to the interaction picture: |	(t)〉 = exp[−it(η/2)(n + σ z

1 /2 +
σ z

2 /2)]|ψ(t)〉, since the Hamiltonian acting upon the new wave
function |ψ(t)〉 becomes time independent after the rotating
wave approximation (RWA):

HI =
2∑

j=1

[
gj (aσ+

j + a†σ−
j ) − �j + x

2
σ z

j

]

− iq(a2 − a†2) − xn,
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where �j = 1 − �j . We expand the wave function in the atom
and Fock bases as follows:

|ψ(t)〉 =
∞∑

m=0

eixmt [am(t)e−i(2x+�1+�2)t/2|g1〉|g2〉|m〉

+ bm(t)e−i(�1−�2)t/2|g1〉|e2〉|m〉
+ cm(t)ei(�1−�2)t/2|e1〉|g2〉|m〉
+ dm(t)ei(2x+�1+�2)t/2|e1〉|e2〉|m〉]. (1)

Then the Schrödinger equation with Hamiltonian HI leads to
the set of coupled differential equations

ȧm = −ig1
√

mcm−1e
i�1t − ig2

√
mbm−1e

i�2t + qŴmam (2)

ḃm−1 = −ig1

√
m − 1dm−2e

i�1t − ig2
√

mame−i�2t

+ qŴm−1bm−1 (3)

ċm−1 = −ig1
√

mame−i�1t − ig2

√
m − 1dm−2e

i�2t

+ qŴm−1cm−1 (4)

ḋm−2 = −ig1

√
m − 1bm−1e

−i�1t − ig2

√
m − 1cm−1e

−i�2t

+ qŴm−2dm−2, (5)

where ŴmOm ≡√
m(m − 1)Om−2e

−2ixt −√
(m + 1)(m + 2)

Om+2e
2ixt .

Weak modulation with atoms in resonance. This regime is

defined by the inequality |ε| � G ≡
√

g2
1 + g2

2. If two atoms
are in resonance, �1 = �2 = 0, the solution to Eqs. (2)–(5) in
the absence of external modulation (q = 0) is (for m � 2)

am =
∑

α,β=+,−
Fαβ

m exp
(
αiGLβ

mt
)
, (6)

dm−2 = −
∑

α,β=+,−
V β

mFαβ
m exp

(
αiGLβ

mt
)
, (7)

bm−1 = G(
g2

1 − g2
2

) ∑
α,β=+,−

αLβ
mFαβ

m exp
(
αiGLβ

mt
)

× [
g2/

√
m + g1V

β
m/

√
m − 1

]
, (8)

cm−1 = bm−1[g1 → g2; g2 → g1], (9)

where Fαβ
m are constant coefficients,

V ±
m = 1 ∓ 2Rm

2ρ
√

m(m − 1)
, ρ = 2g1g2

G2
,

Rm = 1

2

√
1 + 4ρ2m(m − 1), L±

m =
√

m − 1/2 ± Rm .

Substituting now Eqs. (6)–(9) back into Eqs. (2)–(5) and
assuming that Fαβ

m are slowly varying functions of time, one
can verify that for specific values of the resonance shift x some
of these functions become multiplied by imaginary exponen-
tials with large arguments (compared to q), while others are
multiplied by time-independent coefficients, so one is allowed
to perform the RWA and obtain simplified effective dynamics.
We find that for the initial zero-excitation state |g1〉|g2〉|0〉, at
most two photons can be created whenever G|L±

4 − L±
2 | � q.

The resonant regimes occur for 2x = −αGL
β

2 (with α,

β = +,−), when the only nonzero amplitudes (neglecting
small terms of the order of ε/G) are a0 = cos(qtRβ) (it does
not depend on the sign of α) and Fαβ

2 = Rβ sin(qtRβ)/
√

2,

where R± = 1
2

√
2 ± R−1

2 .
For a single atom (g2 = 0) one has Rm ≡ 1/2, so that R+ =

1 and R− = 0. Then the only resonances with a periodic cre-
ation of at most two photons happen for x = ±|g1|/

√
2. In this

case a0 = cos(qt), while the only other nonzero coefficients
are F∓+

2 = sin(qt)/
√

2 in accordance with Ref. [3]. In the
presence of the second atom, new resonances become possible.
If |g2| � |g1|, then these additional resonance frequencies
have the values x ≈ ±|g1|/2. However, since R− ≈ ρ

√
2 � 1

in this case, the corresponding dynamic is quite slow and the
probability of the photon creation is small, too.

The most interesting situation takes place if |g1| = |g2|.
Then Rm = m − 1/2 and L−

m ≡ 0. We still have the resonances
at x = ±|g1|

√
3/2, when no more than two photons can be

created from the initial ground state, since the only nonzero
coefficients in this case are a0 = cos(

√
2/3qt) and F∓+

2 =
r sin(

√
2/3qt)/

√
3, where r = g2/g1 = ±1. But two other

resonances merge in the single one at x = 0. In this case,
solving Eqs. (2)–(5) with q = 0, one can write (for m � 2)

am = r[WmE−
m(t) + XmE+

m(t) + Ym],

bm−1 =
√

1 − (2m)−1[WmE−
m (t) − XmE+

m(t)] + Zm,

cm−1 = r(bm−1 − 2Zm),

dm−2 = ram

√
m − 1

m
− 2m − 1√

m(m − 1)
Ym,

where E±
m(t) = exp[±ig1

√
2(2m − 1) t]. In the presence of

additional terms proportional to the small parameter q � G

in Eqs. (2)–(5), the coefficients Wm, Xm, Ym, and Zm become
time-dependent. For the standard atomless DCE resonance
η = 2, assuming that |Wm|,|Xm| � 1 for all m, we perform the
RWA and find that Zm(t) = 0, meaning that bm(t),cm(t) ≈ 0
for all times. Only functions Ym vary slowly with time
according to the equations

Ẏm � q

[√
m(m − 1)

2m − 3

2m − 1
Ym−2

−
√

(m + 1)(m + 2)
m − 1

m + 1

2m + 1

2m − 1
Ym+2

]
, (10)

with the initial condition Ym(0) = rδm0. Therefore, eventually
all (even) coefficients Ym become different from zero, so that
many photons can be created from the initial vacuum state.
Equation (10) has two remarkable properties. First, it does not
contain the atomic coupling coefficients. Second, the fractions
in its right-hand side tend to the unit values for m � 1, and in
this limit Eq. (10) has the same form as the equation governing
the evolution of the field amplitudes (in the Fock basis) in
the empty cavity. Since the main contribution to the mean
photon number 〈n(t)〉 is given by the coefficients Ym with
m � 1 if 〈n〉 � 1, we can expect that after some transient
time the photons will be steadily created with the same asymp-
totical rate d ln(〈n〉)/d(εt) as in the empty cavity. Moreover,
since |dm−2(t)|2 = [m/(m − 1)] |am(t)|2, both atoms become
excited simultaneously. Numerical calculations confirm these
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FIG. 1. (Color online) The mean photon number (solid lines)
and atomic excitation probabilities (dashed lines) as functions of
dimensionless time εt . (a) The influence of nonzero detuning x for
g1 = g2. (b) The influence of disbalance g2 − g1 for x = 0. Numerical
values of parameters are given in the text.

predictions, as shown in Fig. 1, where we plot the mean photon
number 〈n〉 and the probability of double excitation P{e1,e2}
for parameters g1 = 4 × 10−2 and ε = 2 × 10−3.1 Figure 1(a)
shows the role of the detuning parameter x when g2 = g1:
the photon creation and atomic excitations practically stop
for x � ε. Figure 1(b) shows the influence of disbalance
g2 − g1 when x = 0; again, all effects practically disappear
if |g2 − g1| � ε.

The mean number of photons for x = 0 is smaller than
that in the empty-cavity case, 〈n0(t)〉 = sinh2(εt/2), due to
initial transient processes, when the atomic populations attain
stationary values: one can see that the line 〈n(t)〉 can be
obtained from 〈n0(t)〉 by some positive shift in time. Therefore,
the x = 0 resonance for |g1| = |g2| is interesting from the
point of view of detecting Casimir photons, since the atoms
get excited simultaneously without interrupting the photon
generation process.

If the second atom is in the dispersive regime, |g2| � |�2|
(while �1 = 0), we define the dispersive shift δ2 ≡ g2

2/�2

and repeating the previous steps we find that for |δ2| � |g1|
the photon generation occurs for the resonance shifts 2x =
(3/2)δ2 ± G2 with G2 ≡

√
2g2

1 + δ2
2/4. The resulting nonzero

probability amplitudes read: a0 = cos[qt
√

1 ± δ2/(2G2)],

a2 = e−i(3/2)δ2t [We−iG2t + X eiG2t ],

c1 = G2e
−i(3/2)δ2t

√
2g1

{W[1 − δ2/(2G2)]e−iG2t

−X [1 + δ2/(2G2)]eiG2t },

1All numerical calculations have been performed for the initial
Hamiltonian H0 without any simplifications. The scheme of such
calculations was described briefly in Ref. [10]. We verified that the
analytical results according to Eq. (10) are indistinguishable from the
numerical ones within the thicknesses of lines.

b1 �
√

2(g2/�2)e−i�2t a2, d0 � (g2/�2)e−i�2t c1,(W
X

)
=

√
1 ± δ2/(2G2)√

2
sin[qt

√
1 ± δ2/(2G2)].

At most two photons can be created in this case.
Dispersive regimes. Many photons can be generated from

vacuum if both atoms are in the dispersive regime, |gj | � |�j |.
In this case, instead of solving coupled differential equations
it is convenient to write the wavefunction |ψ(t)〉 as [11,13]
|ψ(t)〉 = U † exp(−iHef t)U |ψ(0)〉, where the effective Hamil-
tonian Hef ≡ UHIU

† is defined by means of the unitary op-
erator U = exp(Y ). Choosing Y = a†(ζ2σ

−
2 + ζ1σ

−
1 ) − H.c.

(where ζj = gj/�j are small parameters, |ζj | � 1, j = 1,2)
and expanding the exponentials in Taylor’s series we obtain to
the second order in ζj [assuming O(ζ1) ∼ O(ζ2)]

Hef = −(
x + δ1σ

z
1 + δ2σ

z
2

)
n −

2∑
j=1

�j + x + δj

2
σ z

j

− ζ1ζ2

[
�1 + �2

2
σ+

1 σ−
2 − 2iqσ+

1 σ+
2 + H.c.

]

− iq
[(

1 + ζ 2
1 σ z

1 + ζ 2
2 σ z

2

)
a2 − H.c.

]
. (11)

Here δj = g2
j /�j are the dispersive shifts (j = 1,2). In

view of the perturbative expansion the effective Hamiltonian
Eq. (11) is valid roughly for times |δ1|t � 1. For q = 0
it describes the indirect interaction between the two atoms
via the cavity field [24]. Since the state |g1〉|g2〉|0〉 is
the common eigenstate of Y and (σ+

1 σ−
2 + H.c.) with null

eigenvalues, one has U |g1〉|g2〉|0〉 = |g1〉|g2〉|0〉, so the term
(σ+

1 σ−
2 + H.c.) can be dropped out if |ψ(0)〉 = |g1〉|g2〉|0〉.

Besides, if the coefficient in front of n in Eq. (11) is adjusted
to zero, the photon generation term iq(1 + ζ 2

1 σ z
1 + ζ 2

2 σ z
2 )a†2

becomes resonant, while the term 2iqζ1ζ2(σ+
1 σ+

2 − H.c.) can
be neglected for initial times. In this case the wave function for
the resonance shift x = δ1 + δ2 reads as (neglecting a global
phase) |ψ(t)〉 = U †�̂(1 − ζ 2)|g1〉|g2〉|0〉, where the squeez-
ing operator �̂(v) ≡ exp[v qt(a†2 − a2)] has the property
[11,25] �̂†(v)a�̂(v) = Cva + Sva

†, with Cv = cosh(2vqt),
Sv = sinh(2vqt), and ζ 2 ≡ ζ 2

1 + ζ 2
2 .

Average values of the main observable quantities are as
follows (to the second order in ζj ):

〈n(t)〉 = (1 − ζ 2) sinh2[2qt(1 − ζ 2)],

Pe1(t) = ζ 2
1 〈n(t)〉, Pe2(t) = ζ 2

2 〈n(t)〉,
〈(�X±)2〉 = 1

2 {ζ 2 + (1 − ζ 2) exp[±4qt(1 − ζ 2)]},

where X+ = (a + a†)/
√

2 and X− = (a − a†)/(
√

2i) are the
field quadratures. Moreover, for times |δ1|t � 1 the prob-
ability P{e1,e2} of detecting simultaneously both atoms in
their excited states is proportional to ζ 4

1 , so it is very small.
Therefore, by measuring Pe1 or Pe2 one can estimate the
mean photon number. In Fig. 2(a) we show the behavior
of 〈n〉, Pe1, Pe2, and P{e1,e2} for parameters ε = 2 × 10−3,
g1 = 4 × 10−2, g2 = 3 × 10−2, �1 = 10g1, �2 = 15g2, and
x = δ1 + δ2. We see that many photons are created and
the atomic populations are proportional to the mean photon
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FIG. 2. (Color online) The mean photon number and atomic
excitation probabilities versus the dimensionless time εt in the
dispersive regimes: (a) x = δ1 + δ2; (b) 2x = −∑2

j=1(�j + δj ).
Other parameters are specified in the text.

number, while the probability of double atomic excitation is
very small.

If | ∑2
j=1(�j + 3δj )| � q and the resonance shift is tuned

to 2x = −∑2
j=1(�j + δj ), with �1 ∼ −�2, then the photon

generation term becomes off-resonant and the only resonant
term 2iqζ1ζ2(σ+

1 σ+
2 − H.c.) survives in the interaction part

of the effective Hamiltonian Eq. (11) even to higher orders
in ζ1, extending its validity beyond the previous condition
|δ1|t � 1. In this case only the atomic excitations are generated
at a rather small rate 2qζ1ζ2 and the probability of detecting
both atoms simultaneously in the excited states is (1 − ζ 2

1 −
ζ 2

2 ) sin2(2qtζ1ζ2). In Fig. 2(b) we show the behavior of 〈n〉 and
P{e1,e2} for parameters g1 = 4 × 10−2, g2 = 3 × 10−2, �1 =
0.22, �2 = −0.2, ε = 2 × 10−3, and 2x = −∑2

j=1(�j + δj ),
where we see that double atomic excitations are created while
essentially the field remains in the vacuum state.

Other regimes. If atom 1 is resonant (�1 = 0) and weakly
coupled to the field (|g1| � ε), while atom 2 is in the
dispersive regime (|g2| � |�2|), then we make the trans-
formation with Y = a†(ζ2σ

−
2 + iξ1σ

+
1 ) − H.c., ξ1 = g1/(2q),

and ζ2 = g2/�2. For the resonance shift x = δ2, the effec-
tive Hamiltonian describing parametric amplification reads
(after RWA)

Hef = −�2 + 2δ2

2
σ z

2 − iq
[(

1 + ξ 2
1 σ z

1 + ζ 2
2 σ z

2

)
a2 − H.c.

]

− δ2
(
1 − 2ξ 2

1 σ z
1 + σ z

2

)
n − δ2

2

(
1 − 2ξ 2

1

)
σ z

1 .

For the initial state |e1〉|g2〉|0〉, one has U |e1〉|g2〉|0〉 = |e1〉
|g2〉|0〉, so |ψ(t)〉 = U †�̂(1 + ξ 2

1 − ζ 2
2 )|e1〉|g2〉|0〉 (up to a

global phase). This yields the following average values:

〈n(t)〉 = (
1 − ξ 2

1 − ζ 2
2

)
sinh2

[
2q

(
1 + ξ 2

1 − ζ 2
2

)
t
]
,

Pg1 = ξ 2
1 〈n(t)〉, Pe2 = ζ 2

2 〈n(t)〉,

〈(�X±)2〉 = ξ 2
1 + ζ 2

2

2
+ 1 − ξ 2

1 − ζ 2
2

2
e±4q(1+ξ 2

1 −ζ 2
2 )t ,

where Pg1 is the ground state probability of atom 1. Besides,
the probability P{g1,e2} of finding simultaneously atom 1 in the
ground state and atom 2 in the excited state is zero [to the
second order in O(ξ1), O(ζ2)].

Analogously, if both atoms are weakly coupled to the field,
G � |ε|, then by performing the transformation with Y =
ia†(ξ1σ

+
1 + ξ2σ

+
2 ) − H.c. and ξj = gj/(2q) one obtains for

x = �1 = �2 = 0 the effective Hamiltonian [to the second
order in ξj , for O(ξ1) ∼ O(ξ2)]

Hef = iq
[(

1 + ξ 2
1 σ z

1 + ξ 2
2 σ z

2

)
a†2 − 2ξ1ξ2σ

+
1 σ+

2 − H.c.
]
.

In these cases many photons can be created as well, and the
atoms may serve to monitor the photon generation.

Conclusions. We found that the two-atom nonstationary
cavity QED is attractive from the point of view of producing
different types of entangled states and detecting the DCE,
because in specific regimes the atoms can acquire independent
information about the field state without inhibiting the photon
generation process. In particular, we showed that in the
realistic case when the external modulation amplitude is
much smaller than the atom-cavity coupling strengths, many
photons, as well as atomic excitations, can be generated from
the initial zero-excitation state even if both atoms are resonant
with the unperturbed cavity field, contrary to the single
two-level atom scenario. Moreover, simply by adjusting the
modulation frequency, keeping the other parameters unaltered,
one can achieve the regime in which at most two photons
are generated. If the atoms are off-resonant, then for the
zero-excitation initial state many photons can be created for a
specific modulation frequency; yet by appropriately tuning
the modulation frequency one can achieve the regime in
which only atomic excitations are generated. Furthermore,
one can explore the regime in which one atom is resonant
but weakly coupled to the field, while the other atom is in the
dispersive regime—in this case many photons can be created
from vacuum and the atoms act as independent detectors of the
process. This variety of possibilities can be useful for choosing
optimal schemes of detecting the Casimir photons. In view of
the results obtained, generalizations to the systems of three
and more atoms could be quite interesting. But we leave this
problem for another study.
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