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Analytic approximate expression for the spectral distribution of the emission from a slab of resonant
two-level atoms prepared by an ultrashort δ pulse
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Using the slowly varying envelope approximation in space and time and the expression for the cooperative
Lamb shift, I obtain an approximate analytic expression for the spectral distribution of the radiation from a slab of
two atoms that was initially weakly excited by an ultrashort resonant pulse. The closed-form expression obtained
reproduces very accurately the numerical exact results computed from the eigenmode analysis for the emission
from the front face of the slab.
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I. INTRODUCTION

In a recent publication [1], I computed numerically, using
the eigenmode analysis, the spectral distribution of the radia-
tion emitted from a slab of two-level atoms which was excited
by a resonant ultrashort δ pulse. This problem had been the
topic of many previous theoretical studies [2–7]. The results
numerically obtained in [1] confirm the general features of the
Friedberg-Hartmann classic work [4].

The eigenmode analysis formalism [1,7–9] provides the
means to compute exactly (by which I mean to arbitrary
precision) the time dependence of the forward and backward
intensities and their spectral distributions, it gives these
quantities in the form of infinite sums over the one-dimensional
Lienard-Wiechert eigenmodes. The limitation on the use of
this method for slabs with a thickness much larger than the
resonance wavelength is only the size of the RAM memory in
the computer used. In this Brief Report, I report on a successful
effort for obtaining closed-form analytic approximate expres-
sions for the same quantities which reproduce very accurately
the exact results for the emission from the front face of the slab.
It is to be noted that successfully reproducing the numerical
results with the present approximate analytical expression will
provide further proof that knowledge of the cooperative decay
rate and the cooperative Lamb shift at initial time is necessary
and sufficient to predict almost all of the features of the spectral
distribution of the forward radiation from the ensemble of
two-level atoms.

In Sec. II, I review quickly the results for this problem
obtained in [1] using the eigenmode analysis. In Sec. III,
I give the closed-form approximate analytic expression for
the forward emission spectral distribution obtained using
the standard slowly varying envelope approximation (SVEA)
and find that, comparing this approximate result with the
exact eigenfunction-derived results, the two spectra agree well
far from the line center; however, they differ significantly
near the line center. Then, I propose a modification to the
SVEA which includes the cooperative Lamb shift that gives
everywhere an approximate expression for the forward spectral
distribution which reproduces everywhere very accurately the
eigenfunction analysis results. In the conclusion, I examine
the results of this approximation for the spectral distribution of
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the backward radiation and show that the new approximation,
which does not include the contribution of the counterrotating
term, fails to give accurate predictions near the line center.

II. SUMMARY OF THE EIGENMODE-DERIVED RESULTS

The integral equation for b(z,t), the excitation amplitude for
an initially weakly excited system, in the Markov approxima-
tion L/c much less than superradiant lifetime, where L = 2z0

is the thickness of the slab, is given, in the interaction picture,
by [8,9]

ḃ(z,t) − iωLb(z,t) + γT b(z,t)

= −Ck0

2

∫ z0

−z0

dz′ exp(ik0|z − z′|)b(z′,t), (1)

where ωL = C/3 is the Lorentz shift, γT is the total width
(= γ2 + γ1/2), which includes in a gas the single-atom
contribution and all the line broadening present (resonant
and foreign gas), C = 4πn℘2/h̄, ℘ is the reduced matrix
element of the electric dipole operator of the atomic transition,
k0 = ω0/c is the wave number of the atomic transition, and n is
the number density of the atoms. [The spontaneous decay rate
of the excitation probability in the isolated atom, as function
of the previous parameters, is γ1 = 4

3 (℘2k3
0/h̄).]

The eigenvalues λo,e
s and eigenfunctions φo,e

s (Z) associated
with the above kernel are obtained by solving the integral
equation

λo,e
s φo,e

s (z) = Ck0

2

∫ z0

−z0

dz′ exp(ik0|z − z′|)φo,e
s (z′). (2)

This integral equation admits two families of solutions, where
the superscripts o and e refer, respectively, to odd and even
parity in space. The form, metric, and normalization of these
eigenmodes are given in [1].

If b(z,t) is written as

b(z,t) = exp[−(γ2 − iωL)t]b̃(Z,T ), (3)

where T = Ct , and Z = z/z0, then the initial polarization of
the system

b(Z,0) = exp(iκZ) (4)
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can be written for arbitrary time as

b̃(Z,T )=
∞∑

s=1

[
co
s φ

o
s (Z) exp

(−
o
sT

)+ ce
sφ

e
s (Z) exp

(−
e
sT

)]
,

(5)

where 
o,e
s = λo,e

s /C, and the coefficients co,e
s in Eq. (5) are

obtained by projecting the initial state of the system over the
basis functions. The field at each of the exit planes of the slab
is equal to

E(z0,t) = A exp(ik0z0)
∫ z0

−z0

dz′ exp(−ik0z
′)b(z′,t), (6)

E(−z0,t) = A exp(−ik0z0)
∫ z0

−z0

dz′ exp(ik0z
′)b(z′,t). (7)

Using (5), one can then write

Ef (T ) = A exp[−(�2 − i�L)T ]

×
∞∑

s=1

[
ce
s (κ)ce

s (u0)Ne
s exp

(−
e
sT

)

− co
s (κ)co

s (u0)No
s exp

(−
o
sT

)]
, (8)

Eb(T ) = A exp[−(�2 − i�L)T ]

×
∞∑

s=1

[
ce
s (κ)ce

s (u0)Ne
s exp

(−
e
sT

)

+ co
s (κ)co

s (u0)No
s exp

(−
o
sT

)]
, (9)

where the subscripts f and b refer, respectively, to forward and
backward for the exit planes, �2 = γ2/C � γ1/C, and Ne,o

s

are the normalization constants for the basis functions. The
spectral distributions for the forward and backward emitted
radiation are obtained by taking the magnitude square of the
Fourier transforms of the fields Ef (T ) and Eb(T ), respectively,
which give

|Ẽf (�̃)|2 = A2

∣∣∣∣
∞∑

s=1

(
ce
s (κ)ce

s (u0)Ne
s

−i�̃ − (�2 − i�L) − 
e
s

− co
s (κ)co

s (u0)No
s

−i�̃ − (�2 − i�L) − 
o
s

)∣∣∣∣
2

, (10)

|Ẽb(�̃)|2 = A2

∣∣∣∣
∞∑

s=1

(
ce
s (κ)ce

s (u0)Ne
s

−i�̃ − (�2 − i�L) − 
e
s

+ co
s (κ)co

s (u0)No
s

−i�̃ − (�2 − i�L) − 
o
s

)∣∣∣∣
2

, (11)

where the different normalized frequencies are the physical
quantities normalized to C, �2 is the resonant broadening [8],
and κ = u0.

III. THE SVEA AND THE MODIFIED SVEA EXPRESSIONS

Making the following substitution in Eq. (1),

b(z,t) = exp[−(γ2 − iωL)t] exp(ik0z)B(z,t), (12)

the integral equation for B(z,t) becomes

Ḃ(z,t) = −Ck0

2

[ ∫ z

−z0

B(z′,t)dz′ + exp(−2ik0z)

×
∫ z0

z

B(z′,t) exp(2ik0z
′)dz′

]
. (13)

The slowly varying envelope approximation consists of ne-
glecting the contribution of the second term in the square
brackets in Eq. (13), which amounts to neglecting the local
backward wave at each point in the sample. In this approxi-
mation the expression of B(Z,T ) is found to be [2]

B(Z,T ) = B0J0(
√

2u0(Z + 1)T ). (14)

Combining Eq. (6) with Eq. (14), one obtains for the
normalized field at the front plane (i.e., Z = 1) [10–12]

ESVEA
f (T )

ESVEA
f (0)

= exp[−(�2−i�L)T ]

∫ 1
−1 dZ′J0(

√
2u0(Z′+1)T )∫ 1

−1 dZ′

= exp[−(�2 − i�L)T ]
J1

√
4u0T√
u0T

. (15)

The normalized spectral distribution of the radiation from
the front plane is the magnitude square of the expression
ãSVEA

f (�̃) = ẼSVEA
f (�̃)/ESVEA

f (0), where

ãSVEA
f (�) = 1

2

∫ ∞

0
dT exp(−i�̃T ) exp[−(�2 − i�L)T ]

× J1
√

4u0T√
u0T

= 1

u0
[1 − exp(−iu0/

SVEA)], (16)

where SVEA = i�2 + (−�̃ + �L). (Recall that �̃ is the
normalized frequency measured from the atomic resonance
frequency.)
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FIG. 1. (Color online) Comparison of the numerical exact results (solid line) for the forward emission spectral distribution with those of
the SVEA expressions (dashed line). u0 = k0z0 = 12.25π,�2 = 2.33/4. (a) 0 < �̃ < 5; (b) 5 < �̃ < 100.
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FIG. 2. (Color online) Comparison of the numerical exact results (solid line) for the forward emission spectral distribution with those of
the SVEA expressions (dashed line). u0 = k0z0 = 100.25π,�2 = 2.33/4. (a) 0 < �̃ < 20; (b) 20 < �̃ < 500.

I compare in Figs. 1 and 2 the spectra given by Eq. (16)
with those from the exact numerical calculations in [1]. For
�̃ � O(u0/π ) the agreement between the SVEA results and
the exact results is very good, but for lower values of �̃, near
the line center, the agreement is not good.

I shall now examine the reason for the above discrepancy
and propose a way to fix it. If we consider the integral
equation (1), its derivative at t = 0 gives

∂B(z,t)

∂t

∣∣∣∣
t=0

= (iωL − γT )B(z,0) − Ck0

2

∫ z0

−z0

dz′

× exp(ik0|z − z′|) exp[ik0(z′ − z)]B(z′,0).

(17)

Using the initial condition B(z,0) = 1, the above quantity
averaged over z gives

∂B(z,t)

∂t

∣∣∣∣
t=0

= (iωL − γT ) − Ck0

4z0

∫ z0

−z0

dz

×
∫ z0

−z0

dz′ exp(ik0|z − z′|) exp[ik0(z′ − z)].

(18)

Now using the value of the double integral
∫ 1

−1
dZ

∫ 1

−1
dZ′ exp(iu0|Z − Z′|) exp[i(Z′ − Z)]

= 2 − exp(−4iu0) − 1

4u2
0

− i

u0
, (19)
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FIG. 3. (Color online) Comparison of the numerical
exact results (solid line) for the forward emission spectral
distribution with those of the MSVEA expressions (dotted line).
u0 = k0z0 = 12.25π,�2 = 2.33/4. The dotted line is difficult to see
as it overlaps with the solid line.

the right-hand side of Eq. (18) reduces to i(ωL − |ωCLS|) −
(γT + γCDR

2 ), where the normalized cooperative decay rate
(CDR) and the normalized cooperative Lamb shift (CLS) slab
are [9]

�CDR = 1

8u0

[
1 − cos(4u0) + 8u2

0

]
, (20)

|�CLS| = 1

4

[
1 − sin(4u0)

4u0

]
=

∣∣∣∣3

4
�L

[
1 − sin(4u0)

4u0

]∣∣∣∣ ,
(21)

where the sign of the CLS is opposite to that of the Lorentz
shift �L = 1

3 .
Now let us examine what the standard SVEA gives for these

quantities at t = 0. The rate of change of the SVEA expression
of the intensity there is

d

dT

(
J 2

1 (
√

4u0T )

u0T

)∣∣∣∣
T =0

= u0, (22)

This result for the width agrees with the large-u0 limit of
Eq. (20); however, for the shift, the SVEA value is zero because
the nonexponential part of the right-hand side of Eq. (15) is
real, whereas Eq. (21) gives �CLS.

This suggests multiplying BSVEA(Z,T ) by
exp(−i|�CLS|T ) in the value of the derivative of
BSVEA(Z,T ) in order to reproduce, in the neighborhood
of T = 0, the exact value of the derivative of B(Z,T ). This
ansatz is exact at T = 0. If this functional form is extrapolated
to all values of T (an approximation), this will mean replacing
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FIG. 4. (Color online) Comparison of the numerical
exact results (solid line) for the forward emission spectral
distribution with those of the MSVEA expressions (dotted line).
u0 = k0z0 = 100.25π,�2 = 2.33/4. The dotted line is difficult to
see as it overlaps with the solid line.
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FIG. 5. (Color online) Comparison of the numerical exact results
(solid line) for the backward emission spectral distribution with those
of the MSVEA expressions (dotted line). u0 = k0z0 = 12.25π,�2 =
2.33/4.

�L by �M in Eq. (16), where

�M = �L − |�CLS| = �L

[
1 − 3

4

(
1 − sin(4u0)

4u0

)]

= �L

(
1

4
+ 3

16

sin(4u0)

u0

)
, (23)

thus giving for the modified SVEA expression

ãMSVEA
f (�) = 1

u0
[1 − exp(−iu0/

MSVEA)], (24)

where MSVEA = i�2 + (−�̃ + �M ).
In Figs. 3 and 4, I compare the results of the spectral

distribution for the modified SVEA as given by Eq. (24) with
those of the numerical summation of the analytical terms
of the eigenmode expansion and note that the two curves
are indeed indistinguishable, a remarkable result given the
large time oscillations and large frequency shifts. Having thus
established the accuracy of the closed-form expression given
by Eq. (24) for the spectral distribution, I have established that
knowing the initial values of the cooperative decay rate and of
the cooperative Lamb shift is key to predicting the emission
from the ensemble. The most important features of the forward
emission spectral distribution are (a) the height of the middle
plateau is ∼= 1

u2
0

and its extent is ≈√
u0�2, (b) the height of the

outermost peaks is ∼= 4
u2

0
and their locations are at �̃ ∼= | u0

π
|,

and (c) the locations of the outermost minima are at �̃ ∼= | u0
2π

|.

IV. CONCLUSION

In this Brief Report, I have shown that the spectral
distribution for the forward emission from a slab of resonant
two-level atoms that was initially weakly excited by a δ
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FIG. 6. (Color online) Comparison of the numerical exact results
(solid line) for the backward emission spectral distribution with those
of the MSVEA expressions (dotted). u0 = k0z0 = 100.25π,�2 =
2.33/4.

pulse can be very well approximated by considering the
expression obtained from the SVEA modified to incorporate
the cooperative Lamb shift. So far, I have left out any results
on the emission from the back face of the slab. As the SVEA
essentially neglects locally the contribution of the backward
wave, one should not expect the modified approximation which
corrects only for the phase of B(Z,T ) to also improve on the
SVEA expression for the amplitude of the emission spectrum
from the back of the slab near line center.

Next, I explore this issue a little further: The expression
corresponding to Eq. (24) for the emission from the back face
is given in the modified SVEA by

ãMSVEA
b (�) = 1

u0(1 − 4MSVEA)
[exp(−2iu0)

− exp(2iu0 − iu0/
MSVEA)]. (25)

In Figs. 5 and 6, I compare the exact numerically obtained
results for the backward emission spectral distribution with
those obtained from Eq. (25) and find, as expected, that
the approximation is poor for the magnitude of the spectral
distribution around its peak. However, it is interesting to note
that the spectral shift in the location of the peak and the
magnitude of the spectral intensity in the wings of the line as
predicted by the modified SVEA results are not too far off from
the exact results. While the issue of the backward emission
is of theoretical interest and the present approximation did
not fully address it, practically, it is of little impact as it
represents less than 1% of the total radiation emitted by the
system.
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