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Control and analysis of single-determinant electron dynamics

Raghunathan Ramakrishnan* and Mathias Nest
Theoretische Chemie, TU München, Lichtenbergstrasse 4, 85747 Garching, Germany

(Received 14 March 2012; published 3 May 2012)

Methods which use time-dependent orbitals for the description of quantum dynamics of electrons, like
(multiconfiguration) time-dependent Hartree-Fock or time-dependent density-functional theory, produce an
effectively time-dependent electronic structure. This effect is strongest if only a single determinant represents
the system. Focusing on this case, we show how features of the time-dependent electronic structure show up in
optimized laser pulses used for the coherent control task of a population inversion.
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Over the last decade many electronic structure methods
have been extended from the time-independent to the time-
dependent realm, opening the way to first-principles quantum
dynamics of many-electron systems. This has been of special
interest for both physicists and chemists: for physicists, be-
cause attosecond physics became experimentally feasible, and
for chemists, because the making and breaking of bonds, made
of valence electrons, is at the basis of chemistry. The properties
of these time-dependent methods are by now well known:
If one looks at correlated wave-function-based methods like
the time-dependent configuration-interaction (TDCI) [1,2] and
multiconfiguration time-dependent Hartree-Fock (MCTDHF)
[3–5] methods, then we find that only up to around 100
electrons can be treated by the former and around 10 electrons
by the latter method. Given that a small molecule like benzene
already has 42 electrons, there is an obvious demand for
faster or more efficient methods. Two methods come here
to mind: the time-dependent Hartree-Fock (TDHF) method
[6] and the time-dependent density functional theory in the
Kohn-Sham formalism (TDKS) [7–9]. Both methods are very
similar, because they propagate only a small set of orbitals,
and TDHF can actually also be seen as a version of TDKS
with exact exchange and no correlation functional (EXX) [10].
However, these methods also have their drawbacks: TDKS in
the adiabatic approximation lacks a memory kernel, while the
TDHF method lacks correlation. Also, it is very difficult to
combine both with coherent control, although some progress
has been made recently [11,12]. The reason is twofold: First,
the equations of motion (EOM) of the spin orbitals ψ are
nonlinear,

ψ̇j = −iheff[ρ(t)]ψj , (1)

(we are using atomic units throughout) because the effective
single-particle Hamiltonian depends on the density, which in
turn depends on the orbitals. And second, methods involving
time-dependent orbitals produce an effectively time-dependent
electronic structure [13,14]. As a consequence, simple, ana-
lytical pulses, e.g., π pulses for population inversion, become
insufficient [15]. It is the purpose of this Brief Report
to demonstrate the connection between the time-dependent
electronic structure and features of a control laser pulse.

The system which we employ to study the electron
dynamics is the one-dimensional Hooke atom, which has been
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widely used as a benchmark system in time-dependent density
functional theory (TDDFT) [16–18]. The spring constant has
been chosen to be 0.1 a.u., and the electron-electron repulsion
is screened according to

Vee(r1,r2) = 1√
(r1 − r2)2 + 1

. (2)

The time-dependent spatial orbitals ϕj (r,t) are represented in
the basis of the harmonic oscillator eigenstates |n〉

ϕj (r,t) =
M−1∑
n=0

cjn(t)|n〉, j = 1, . . . ,M, (3)

with molecular orbital (MO) coefficients {cjn}. Time-
dependent spin orbitals, ψj (x,t), are then obtained by multi-
plication with either spin up or spin down, and x is a combined
position and spin variable. For a one-dimensional, closed-shell
two-electron system, the time-dependent Hartree-Fock or
Kohn-Sham wave function is given by

|�(x1,x2,t)〉 = |ψ(x1,t)ψ(x2,t)〉. (4)

As we are aiming to achieve a state-to-state transition in
this system, it is necessary to identify excited states. Several
procedures exist to define these in the context of the TDHF
method and TDDFT. From a quantum-dynamical perspective
the most important requirement for these states is that they
should be stationary states [19]. In other words, if we start
a (field-free) propagation in one of these states, the modulus
of the autocorrelation function should be time independent
and equal to 1. For the small system considered in this Brief
Report these stationary states can be found by a simple scan of
all possible combinations of MO coefficients, followed by an
ultrashort time propagation. The {cjn} thus found are accurate
up to at least 10−8.

For M = 2, the two stationary values of c10 were
found to be 1.0 and 0.0, implying no mixing between
the basis functions. For M = 3 there are three stationary
states corresponding to {c10 = 0.98836287,c11 = 0.0,c12 =
0.15211455}, {c20 = 0.0,c21 = 1.0,c22 = 0.0}, and {c30 =
0.00925970,c31 = 0.0,c32 = 0.99995713}. Here it is interest-
ing to note that the stationary orbitals ϕ1 and ϕ3 hence obtained
are not orthogonal, and they represent two coplanar vectors
forming an angle of 80.72◦. We denote the corresponding
Slater determinants of the three-level system as |11〉, |22〉,
and |33〉, where the ground and the second excited state are
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nonorthogonal:

〈11|33〉 ≈ 0.026. (5)

This is a general feature of the nonlinear equations of motion,
which holds for all cases M � 3. By increasing the variational
space to up to four and five basis functions, we optimized the
stationary states, where for M = 5 the first and third excited
states are of ungerade symmetry while the other states are of
gerade spatial symmetry. As a general trend, we note that any
two states of different spatial symmetry are orthogonal to each
other.

Such a search for stationary states is of course only possible
for small model systems, as the one used here. For real many-
electron systems it is necessary to derive electronic structure
information from the time-dependent wave function. One tool
that is often used in this context is the autocorrelation function
(ACF) and its Fourier transform. But here we encounter two
problems: First, if TDKS equations of motion are used, the
wave function is usually not a good state vector, which makes
the interpretation of the overlap of wave functions at different
times difficult. And second, because of the nonorthogonality of
the stationary states, it is questionable to interpret the modulus
squared of the autocorrelation as the probability of being in
the ground state, although this is sometimes done.

Another often-used tool is the Fourier transform of the
oscillating dipole moment. In contrast to the ACF, this is a
good quantity even in the context of TDKS. However, also
this quantity has to be used with care. For example, for the
M = 2 system the energy difference between the ground and
excited states is 0.492 a.u. If we now prepare a wave packet at
time t = 0 as an orbital that is a superposition of the stationary
orbitals

|ϕ(t = 0)〉 = α|ϕ1〉 +
√

1 − α2|ϕ2〉, (6)

the Fourier transform of the oscillating dipole moment should
have a peak at �E. However, this is not the case, as can be
seen in Fig. 1(a). There the peak position is shown for various
values of α, with the excitation energy of the wave packet as
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FIG. 1. Peak position of the Fourier transform of the oscillating
dipole moment. The numbers next to the dots give the value of α and
the horizontal axis is the excitation energy of the wave packet. The
initial state is given by Eq. (6). (a) A wave packet with M = 2; (b) a
wave packet with with M = 3.
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FIG. 2. (Color online) Top: chirped laser pulse, with parameters
f0 = 0.019031 a.u., ω0 = 0.499844 a.u., and ω1 = −0.000508 a.u.
and duration 10 fs. Bottom: population inversion due to the laser
pulse.

the horizontal axis. The peak is for no wave packet close to
the energy difference of the stationary states. This is not really
surprising, because neither state is represented very well during
the propagation. Moreover, the result depends on the value
of α. Therefore, if energy is continuously pumped into the
system, one has to expect a time-dependent effective electronic
structure, with time-dependent resonance conditions.

To show this, we demonstrate a state-to-state transition, for
M = 2, using a chirped laser pulse with the functional form

f (t) = f0 sin2

[
π

2σ
t

]
sin[(ω0 + ω1t)t], t < 2σ. (7)

Here, f0 is the field strength, ω0 the carrier frequency, and ω1 a
chirp parameter. The pulse duration 2σ = 10 fs is fixed, and all
other parameters are optimized. For the optimization problem
we used the bisection global optimization scheme [20], after
choosing a suitable range of variables from a coarse scan of
the parameters. Figure 2 shows the pulse (for parameters see
Table I) and the populations during the |11〉 → |22〉 transition.
The instantaneous population of a stationary state is computed
as

Pn(t) = |〈ψn|ψ(t)〉|2. (8)

The negativity of the optimal chirp (ω1 = −0.000508 a.u.)
agrees with the redshift of the peak in Fig. 1(a): As more
energy is pumped to the system, the energy gap between the
two systems seems to become smaller.

The laser parameters given above are the best that can be
found in the interval that we scanned, but other parameters

TABLE I. Optimal control parameters (in a.u.) for the |11〉 →
|22〉 population inversion in the case of two, three, four, and five
basis functions. Also given is the fitness, i.e., one minus the average
overlap of the time-dependent orbital and the target orbital for a period
of 5 fs after the end of the pulse.

M f0 ω0 ω1 Fitness

2 0.019031 0.499844 −0.000508 0.00000
3 0.102063 0.234844 0.000043 0.00672
4 0.103125 0.249375 0.000030 0.02095
5 0.101953 0.249219 0.000037 0.08465
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FIG. 3. (Color online) Fitness scan for laser parameters ω0 and
ω1, with optimized fluence at each point (logarithmic scale). A fitness
of zero corresponds to an optimal pulse.

are possible which still perform the control task relatively
well. If we define a fitness function as the average of
1 − |〈ψtarget|ψ(t)〉|2 during the field-free evolution of 5 fs after
the end of the pulse, we find multiple local minima. Figure 3
shows the logarithm of the fitness function for a scan over
intervals of ω0 and ω1, where at each point the field strength
is optimized. The global optimum of the fitness in that area
is marked with a red circle. Other “good” pulse parameters
lie along a valley with a stronger chirp with increasing carrier
frequency. All these pulses have in common that they have
a significant intensity around a frequency of 0.4 a.u., during
the middle or end of their duration, which is somewhat less
than the vertical excitation energy of 0.492 a.u. The rugged
character of the control surface makes it more difficult to
identify the global minimum, which could not be found by
simple steepest-descent methods. This ruggedness is only
partially due to the optimization of the field strength for each
pair (ω0, ω1). Even straight two-dimensional (2D) cuts through
the three-dimensional (3D) parameter space show multiple
minima, although not as strongly as in Fig. 3.

Up to here, we have only discussed calculations with
M = 2 basis functions. If we increase this number, it becomes
increasingly more difficult to perform the control task. The
top panel of Fig. 4 shows the population dynamics for three
basis functions (M = 3,4,5). Here, the population inversion
is still almost complete. But if four or five basis functions
are used, which is still far from a full basis-set limit, we see
that a full inversion becomes impossible. The last statement
has to be understood in the sense that we only optimized
the parametrized laser pulse given by Eq. (7). With a more
flexible pulse, one can expect a somewhat better performance.
The failure to perform the control task is mainly due to the
increased state space over which the populations become
distributed. But Fig. 4 shows also something else: For four
and five basis functions the populations of the “stationary”
states are not constant after the laser pulse has been switched
off. This is due to the nonlinearity of the equations of motion,
where the Hamiltonian that generates the dynamics depends
on the density (matrix). If the density at t = 10 fs is not that
of a stationary state, then the Hamiltonian itself will be time
dependent.
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FIG. 4. (Color online) Time-dependent populations of the (top)
three-, (middle) four-, and (bottom) five-level systems; see Table I
for pulse parameters. The simple parametrized laser pulse given in
Eq. (7) is not able to achieve the transition |11〉 → |22〉 for M > 3.
Also visible, the populations of the final states are not constant when
the laser pulse is switched off.

The optimal laser pulse parameters are given in Table I,
together with their fitness. Two changes are remarkable when
we go from a two-level to a many-level system. First, the carrier
frequency ω0 is decreased by about a factor of 2, while the field
strength increases by a factor of about 5. This shows that the
preferred mechanism is now a two-photon absorption. The
reason for this is that our system is almost harmonic at low
energies, so an excitation with the old (M = 2) parameters
leads to a ladder climbing to higher states. In fact, there is
an optimum for the population of the second excited state at
f0 = 0.017 a.u., ω0 = 0.507 a.u., and ω1 = −0.000498 a.u.,
which differs only slightly from the corresponding two-level
parameters. The near equidistance of the energy levels is a
consequence of the Hookean atom model that we used, which
will of course only rarely be observed for real molecules.
The second change is that the pulse is now blueshifted with a
reduction in the chirp parameter by about a factor of 10 to 15.
This coincides with a different peak shift, as shown in Fig. 1(b).
The change in the peak position is neither strictly positive nor
negative, so effectively almost no pulse chirp is necessary.

To conclude, we have shown for a model atomic system that
coherent control combined with single-determinant electron
dynamics becomes increasingly more complicated when the
size of the basis set is increased. If the equations of motion
were linear, by the definition of coherent control [21] the
probability density can be steered to the desired state using
resonance conditions. However, the EOM of TDHF and
TDKS methods are nonlinear and lead to an effectively
time-dependent electronic structure. We have also shown
that it is indeed this phenomenon that is at the heart of
the problem, by introducing a chirp into the laser pulse.
The chirp follows the electronic structure qualitatively, so
the resonance condition is fulfilled better for a longer time.
For real atoms and molecules this means that much more
complicated laser pulses will be necessary, and that these
pulses might not be similar to the one which actually performs
the control task in experiment. However, this does not imply
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that all observables one might be interested in are necessarily
inaccurate, too. Additionally, the quality of the predictions
depends on the effective single-particle Hamiltonian. Both the
Fock operator and the exchange-correlation potentials were
developed for ground-state calculations. It remains to be seen

whether Hamiltonians specially adapted to quantum dynamics
will perform better.
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excellence cluster Munich Centre for Advanced Photonics.
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