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Duality relations in a two-path interferometer with an asymmetric beam splitter
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We investigate quantitatively the wave-particle duality in a general Mach-Zehnder interferometer setup with
an asymmetric beam splitter. The asymmetric beam splitter introduces additional a priori which-path knowledge,
and the additional knowledge is different for particles detected at one or the other output port. Accordingly,
the interference patterns appearing at the two output ports are also different. Hence, in sharp contrast with
the symmetric case, in the present case we should treat the two output ports separately. It turns out that
two nonorthogonal unsharp observables are measured jointly in this setup. We apply the condition for joint
measurability of these unsharp observables to obtain a trade-off relation between the fringe visibility of the
interference pattern and the which-path distinguishability.
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Wave-particle duality is a striking manifestation of Bohr’s
principle of complementarity [1] which lies at the heart of
quantum mechanics. In 1979, Wootters and Zurek [2] first
quantified the wave-particle duality in an Einstein version
of the double-slit experiment. Later, two kinds of duality
inequality were established in the standard Mach-Zehnder
interferometer (MZI) setup. The first one [3], P2 + V2

0 � 1,

concerns the trade-off between the predictability P of two
possible paths taken by a particle passing through the interfer-
ometer and the a priori fringe visibility V0 of the interference
pattern emerging at each output port of the interferometer.
The second one [4–6], i.e.,

D2 + 1 − P2

V2
0

V2 � 1, (1)

concerns the trade-off between the which-path
distinguishability D and the fringe visibility V when
each particle is coupled to another physical system which
serves as a which-path detector (WPD).

Another celebrated quintessential feature of quantum me-
chanics is that there exist incompatible observables, i.e.,
observables which cannot be jointly measured in a single
device. However, in some cases, two incompatible sharp ob-
servables could still be jointly measured on condition that some
imprecision is allowed. Exactly speaking, the unsharp versions
of these observables could be marginals of a bivariate joint
observable so that measurement of the joint observable offers
simultaneously the values of the two unsharp observables [7,8].
The so-called joint measurability problem—given two unsharp
observables, are they jointly measurable?—was first brought
forward by Busch [9], who solved it in a very special case.
Although there have been many partial results concerning
this problem in the past few years [10–15], the necessary
and sufficient condition for joint measurability of two general
unsharp observables of a two-level system was derived only
recently by three independent groups [16–18].
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The problem of joint measurability has also been studied
from other aspects, including the uncertainty relation [19,20],
quantum cloning [21,22], Bell inequalities [23], and so on.
Recently, we brought to light an intimate relationship between
the joint measurability of two unsharp qubit observables and
the wave-particle duality illustrated in the standard MZI setup
[15]. In fact, the measurement made on the WPD system
provides us the which-path information, and meanwhile a
counting detection at each output port of the interferometer
yields an interference pattern. Since these two measurements
are made simultaneously on different systems, the whole
setup provides de facto a joint measurement of two unsharp
observables of the particle. Due to the fact that the beam
splitters in the standard MZI setup are symmetric, i.e., the
proportion of the transmissivity and the reflectivity of each
beam splitter is 50:50, the two unsharp observables jointly
measured turn out to be orthogonal. The condition for their
joint measurability leads to a duality inequality which is similar
to but has a minor difference from Eq. (1) (see Ref. [15] for
details).

The duality inequalities in Refs. [4,5,15] were derived in the
standard MZI setup with symmetric beam splitters. In this Brief
Report, however, we shall take into account the wave-particle
duality illustrated in a more generic scenario, i.e., in a general
MZI setup with an asymmetric beam splitter (ABS). Unlike
in the symmetric case, the a priori which-path information is
different for particles detected at one or the other output port,
and the interference patterns appearing at the two output ports
are also different. Thus in the asymmetric case the two output
ports need to be treated separately. We show that the general
MZI setup, when coupled to an additional WPD system,
provides a simultaneous measurement of two nonorthogonal
unsharp observables. Furthermore, the condition for joint
measurability of these two observables, which we obtained
recently [17], enables us to obtain a duality inequality.

Specifically, consider the two-path MZI setup as depicted
schematically in Fig. 1. For a particle passing through the
interferometer, the two distinct paths after the first beam split-
ter BS1 define two orthonormal states |0〉 and |1〉 which span
a two-dimensional Hilbert space. Without loss of generosity
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FIG. 1. The Mach-Zehnder interferometer with an asymmetric
beam splitter. The particle is prepared in an arbitrary state before
entering the interferometer. Two phase shifts ±φ/2 are introduced
into the two distinct paths, respectively. After the second beam splitter
BS2, two counting detectors A and B record two different interference
patterns. After the particle has interacted with a WPD system D via
a controlled unitary transformation, a special observable W of the
WPD system is measured, from which the which-path information of
the particle is inferred.

we can take BS1 as symmetric since the initial state of the
particle is taken to be arbitrary. Two phase shifts ±φ/2 are
introduced for the two paths |0〉,|1〉, respectively. The second
beam splitter BS2 is taken to be asymmetric and we denote
by r its reflectivity, i.e., the probability of the particle being
reflected, and by t = 1 − r its transmissivity. The action of
BS2 on the particle is effectively a unitary transformation

B =
(√

r
√

t√
t −√

r

)
(2)

on the above-mentioned two-dimensional Hilbert space.
Another physical system D, which serves as a WPD, is

coupled to the particle; see Fig. 1. The interaction between the
particle and the WPD system is effectively a controlled unitary
transformation |0〉〈0| ⊗ ID + |1〉〈1| ⊗ U, where ID and U are
the identity and a unitary operator acting on the Hilbert space
of the WPD system. Thus the evolution of the particle and the
WPD system is governed by the unitary operator

UQD = eiφ/2|ϕ0〉〈0| ⊗ ID + e−iφ/2|ϕ1〉〈1| ⊗ U, (3)

where |ϕ0〉 ≡ B|0〉 and |ϕ1〉 ≡ B|1〉. Let ρ be the state of the
particle after it has passed through BS1 and let ρD be the initial
state of the WPD system D. Then the final state of the whole
system is described by

ρ
(QD)
f = UQD(ρ ⊗ ρD)U †

QD

=
1∑

a,b=0

ei(b−a)φ |ϕa〉〈a|ρ|b〉〈ϕb| ⊗ UaρDU †b. (4)

The probability that a particle is detected at the output port A

is given by

p(φ) = trQD

[|0〉〈0|ρ(QD)
f

] = rw+ + tw−

+2
√

rt |〈0|ρ|1〉trD(ρDU )| cos(φ + α + δ), (5)

where α and δ are defined by

〈0|ρ|1〉 = |〈0|ρ|1〉|eiα (6)

and

trD(ρDU ) = |trD(ρDU )|e−iδ. (7)

One should notice that the ABS BS2 can be regarded as
a kind of which-path detector. Let w+ = 〈0|ρ|0〉 and w− =
〈1|ρ|1〉 be the probabilities for taking the two paths between
the two beam splitters. Consider a simple case where w+ =
w− = 1/2 so that the intermediate stage of the interferometer
provides no a priori which-path knowledge. If the reflectivity
r of BS2 is larger than 1/2 and the particle is detected at the
counting detector A, immediately one can infer that the particle
passes more likely through the path |0〉. So the ABS introduces
additional a priori which-path knowledge, and meanwhile the
fringe visibility of the interference pattern observed at the
counting detector A will decrease. In a general case where
w+ �= w−, the a priori which-path knowledge provided by
BS2 is different for particles detected at one output port of the
interferometer and for particles detected at the other output
port, and accordingly the interference patterns emerging at the
two output ports are also different.

Hence, in sharp contrast with the symmetric case, when
we explore the duality relation between the which-path
information and the fringe visibility of the interference pattern
in the general MZI setup, the two output ports should be treated
separately. In what follows we shall consider only particles
detected at the output port A; the case for the output port B is
similar.

First we consider the case where the unitary transformation
U is turned off, i.e., U = ID. For all particles detected at the
output port A, an interference pattern can be observed when
φ is varied, and the a priori fringe visibility reads [24]

V0 = pmax − pmin

pmax + pmin
= 2

√
rt |〈0|ρ|1〉|

rw+ + tw−
, (8)

where p is defined in Eq. (5), and the maximum and minimum
values are calculated with respect to φ. At the same time, for
all particles detected at the output port A, the probabilities of
taking the two paths |0〉 and |1〉 are respectively

w0 = rw+
rw+ + tw−

, w1 = tw−
rw+ + tw−

, (9)

and the predictability of the two paths is then [25]

P = |w0 − w1| = |rw+ − tw−|
rw+ + tw−

. (10)
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From the positivity of the density operator ρ, i.e., |〈0|ρ|1〉|2 �
w+w−, it is easy to check that

P2 + V2
0 = 4rt |〈0|ρ|1〉|2 + (rw+ − tw−)2

(rw+ + tw−)2

� 4rtw+w− + (rw+ − tw−)2

(rw+ + tw−)2
= 1. (11)

That is, the well-known duality relation between the pre-
dictability and the a priori fringe visibility previously derived
in the standard MZI setup [3,5] still holds in the present case.
In other words, the two quantities P and V0 belonging to the
same ouput port are mutually complementary quantities.

At this point, we have some remarks.
(1) One might wonder whether the path predictability for

all particles

Pall = |w+ − w−| (12)

is also complementary to V0. As is well known, the answer
is yes for the standard MZI case where P reduces to Pall.
However, for the general MZI setup with an ABS, the answer
is no. In fact, there exist cases where

P2
all + V2

0 > 1. (13)

We will prove this fact in the Appendix.
(2) Even in the special case where w+ = w− = 1/2 we

still have P �= 0, that is, we still have a priori which-path
knowledge, which does not arise from the discrepancy of the
two paths but is provided by the ABS. In fact, this is the case
considered in the experiment scheme in [26]. The ABS in the
experiment plays also the role of a which-path detector so
that the which-path information and the interference pattern
are obtained via the same counting detector. What the setup
in [26] tested simply is the trade-off relation between P and
V0 in this special case.

Now we consider the case where the unitary transformation
U is turned on. From Eqs. (5) and (8) it follows that the fringe
visibility reads

V = V0|trD(ρDU )|. (14)

A general strategy S to guess the path taken by the particle is
to divide the outcomes W of the measurement of an observable
Ŵ performed on the WPD system D into two disjoint sets S

and S̄. If W ∈ S, then one guesses the path to be 1; if W ∈ S̄,
then one guesses the path to be 2. The probability of guessing
the right path is given by

LŴ ,S = w0

∑
W∈S

〈W |ρD|W 〉 + w1

∑
W∈S̄

〈W |UρDU †|W 〉. (15)

Let us denote

ηS ≡
∑
W∈S

〈W |ρD|W 〉, ηU
S ≡

∑
W∈S

〈W |UρDU †|W 〉, (16)

together with ηS̄ = 1 − ηS and ηU
S̄

= 1 − ηU
S . The which-path

distinguishability for the given strategy S is then

DS = 2LŴ ,S − 1 = 2w0ηS + 2w1η
U
S − 1. (17)

Recently, we showed that the duality relation in a standard
MZI setup is intimately related to the joint measurement of two

unsharp observables [15]. Generally, for a two-level system
an unsharp observable is nothing else than a two-outcome
positive-operator-valued measure. Two general unsharp ob-
servables {O±} and {O ′

±} of a qubit take the forms

O± = I ± (xI + m · σ )

2
, O ′

± = I ± (yI + n · σ )

2
, (18)

where I is the identity operator acting on the particle, and σ is
the Pauli operator. The non-negativity imposes |x| + |m| � 1
and so on. When x = 0 and |m| = 1, O± are projectors
of eigenstates of a sharp observable m · σ . So generally
an unsharp observable is the smeared version of a sharp
observable. The above two unsharp observables are jointly
measurable if and only if there exists a bivariate joint unsharp
observable {Mμν} whose outcomes can be so grouped that
the marginals correspond exactly to the two given unsharp
observables, i.e.,

Oμ =
∑
ν=±

Mμν, O ′
ν =

∑
μ=±

Mμν. (19)

If y = 0, then the necessary and sufficient condition for their
joint measurability reads [17]√

(1 + x)2 − |m|2 +
√

(1 − x)2 − |m|2

� 2|m × n|√
|m|2 − (m · n)2

. (20)

In our general MZI setup, the unsharp observable N =
{N0,N1 = I − N0} corresponding to the interference pat-
tern registered in the counting detector A is given by
p(φ) = trQ(ρN0) for an arbitrary ρ. Thus we obtain

N0 = trD[U †
QD(|0〉〈0| ⊗ ID)UQD(I ⊗ ρD)] = I + n · σ

2
(21)

with

n =
[

2
V
V0

√
rt cos(φ + δ), 2

V
V0

√
rt sin(φ + δ), 2r − 1

]
.

(22)

For a given strategy S, the probability of finding the WPD
system D in one of the eigenstates in S is given by trQ(MSρ)
for an arbitrary ρ where

MS =
∑
W∈S

trD[U †
QD(I ⊗ |W 〉〈W |)UQD(I ⊗ ρD)]. (23)

Thus the unsharp observable corresponding to the observable
Ŵ and the strategy S is M = {MS,I − MS} with

MS = 1

2

[(
ηS + ηU

S

)
I + (

ηS − ηU
S

)
σz

] = I + xI + m · σ

2
,

(24)

in which notations in Eq. (16) have been used and

x = ηS + ηU
S − 1, m = (

0,0,ηS − ηU
S

)
. (25)

It is clear that as long as r �= 1/2 we have n · m �= 0, i.e.,
the two unsharp observables jointly measured in the general
MZI setup are nonorthogonal, in contrast with a standard MZI
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setup [15]. From the joint measurement condition Eq. (20) it
follows that √

ηSη
U
S +

√
ηS̄η

U
S̄

� V
V0

. (26)

Using Eq. (17) and similarly to the derivation in [15], we obtain

D2
S + 1 − P2

V2
0

V2 � 1 − γ 2
S , (27)

where γS = 2|w0
√

ηSηS̄ − w1

√
ηU

S ηU
S̄
|. By maximizing over

all possible strategies we obtain a duality inequality in the
same form as Eq. (1).

To conclude, we have shown how to illustrate quantitatively
the wave-particle duality in a general MZI scenario with an
ABS. It turns out that the nonorthogonality of two unsharp
observables involved is caused by the ABS. We have employed
the condition for joint measurability of the two unsharp
observables to obtain a duality inequality.

It would be interesting to determine the experimental
setup necessary to measure jointly a pair of most general
unsharp observables of a two-level system, although the
condition for their joint measurability has been established
[17]. Conversely, does the most general joint measurability
condition imply a “thorough” complementarity relation with
realizable and observable effects not limited by the known
duality inequalities? These questions remain open for further
research. The answers may lead to a device-independent
duality inequality.

This work was supported by the NNSF of China, the CAS,
and the National Fundamental Research Program (under Grant
No. 2011CB921300).

APPENDIX

In this appendix, we present the proof that there exist cases
where the inequality in Eq. (13) holds, and therefore Pall and
V0 are not mutually complementary quantities.

It is easy to check that there exist many cases, e.g.,

w− > 1/2, r ∈
(

1

2
,

w2
−

2w2− − 2w− + 1

)
, (A1)

or

w− < 1/2, r ∈
(

w2
−

2w2− − 2w− + 1
,

1

2

)
, (A2)

where the following inequality holds:
√

rt

rw+ + tw−
> 1. (A3)

In these cases, by recalling the form of V0 in Eq. (8), we have

V0 > 2|〈0|ρ|1〉|. (A4)

Suppose ρ is a pure state. We have

P2
all + (2|〈0|ρ|1〉|)2 = 1. (A5)

Thus, in the cases mentioned above we have

P2
all + V2

0 > P2
all + (2|〈0|ρ|1〉|)2 = 1. (A6)
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