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Optical bistability in a doubly resonant χ (2)-nonlinear plasmonic nanocavity
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We demonstrate optical bistability in a χ (2)-nonlinear plasmonic nanocavity. The nanocavity is made from a
metal-insulator-metal waveguide possessing stubs as realistic mirrors. The design of the nanocavity is sufficiently
flexible to allow for resonances at both the fundamental and the second-harmonic frequency and a phase-matched
nonlinear interaction. By using rigorous diffraction theory and a mean-field approach, we establish the conditions
required to observe optical bistability and present optimal configurations with regard to a minimum pump power.
This work might be useful for employing plasmonic nanocircuits in optical computing schemes.
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I. INTRODUCTION

The ability of plasmonic nanowaveguides to localize light
well beyond its diffraction limit makes them promising
constituents for many useful functional devices. A referential
application that triggered many research efforts is that of
optical computing using integrated plasmonic nanocircuits. It
would constitute a paradigm shift since it promises to nullify
performance limitations of ordinary electronic computers
in terms of processing speed, element size, and element
integration [1,2]. To transfer such applications from the realm
of fantasy to real-world devices, however, many obstacles
have to be overcome. At the moment, basic building blocks
are urgently required that allow implementation of complex
logical elements.

A plasmonic nanodevice possessing a bistable response is
one such basic building block. The bistability suggests that for
a certain input power the output power may attain two different
values, depending upon the operational past of the device. Such
a bistable device can be used to implement all-optical logical
functions such as transistors, optical memories, and may
provide clipping and limiting actions. A typical bistable device
consists of an optical resonator (Fabry-Perot) comprising a
medium with a nonlinear response. While considering materi-
als with a χ (2) nonlinearity, only conventional microcavities,
i.e., microcavities made from dielectric materials, have been
discussed so far. However, they cannot be scaled down to
nanometric dimensions and their integration into plasmonic
nanocircuits is therefore out of reach. Nonetheless, they
were instrumental in the study of many basic effects such
as second-harmonic generation [3,4] or optical parametric
oscillation [5]. The main problem to solve while realizing
cavities with a χ (2) nonlinearity is the compensation of the
phase velocity mismatch between fundamental harmonic (FH)
and second harmonics (SH). The phase mismatch not only
substantially reduces the nonlinear interaction between the
involved harmonics but also renders the realization of a doubly
resonant microcavity to be very difficult [4]. Therefore, the
future development of bistable plasmonic devices suitable for
integration into nanocircuits requires particular attention to the
aspect of achieving a phase-matched interaction in a doubly
resonant nanocavity.
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In the present study, we suggest a method for solving
this issue. We present a bistable doubly resonant plasmonic
nanocavity possessing an instantaneous χ (2) nonlinear re-
sponse and assuring phase matching. In the design process
we strictly consider natural available materials so that the
bistable device is amenable to fabrication. The main body of
our suggested nanocavity is made of a metal-insulator-metal
(MIM) plasmonic nanowaveguide where a LiNbO3 layer
is sandwiched between two Ag layers [1]. The nanocavity
is formed by using stub mirrors which are well known
at microwave frequencies. This concept has been recently
introduced into plasmonic MIM waveguides [6,7]. The key
element in our design is that each mirror consists of two
stubs (see Fig. 1). Each of them is almost transparent for
one frequency and strongly reflects the other one. Controlling
the spacing between both stubs permits offsetting the phase
mismatch of the waves at both frequencies per round trip. Thus
this nanocavity design resembles the ideas of a chirped mirror
as used to generate ultrashort pulses. There, different frequency
components are back reflected at different positions along the
spatially extended mirror. In passing, we note that contrary to
an intrinsic optical bistability in resonant nonlinear materials
that exploit a first-order phase transition (for example, see [8]),
the materials we consider here are not resonant.

Since the resulting bistable device shall additionally be
driven with pump powers as small as possible, an optimal
design requires a careful balance of various aspects. On the
one hand, the nanocavity should be as long as possible to allow
for an efficient nonlinear interaction. On the other hand, a large
nanocavity can lower the finesse, since dissipation of the sur-
face plasmon polaritons prevents the efficient buildup of a field.
To provide analytical insights into the problem, we therefore
derive explicit analytical expressions that allow predicting the
optimal parameters to observe optical bistability at minimal
input pump powers. With this work we attempt to provide the
necessary means to design bistable plasmonic nanocavities
using χ (2)-nonlinear materials that could potentially be used
in the future for many applications mentioned above.

II. ANALYSIS

The full description of the properties of the nanocavity has
necessarily to begin with Maxwell’s equations. They are used
to calculate the modal field profile of the MIM waveguide, their
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FIG. 1. (Color online) Schematic of the plasmonic cavity. The
stub mirrors for the fundamental (outer stubs) and second harmonics
(inner stubs) allow for tuning both frequencies independently.

dispersion relations, and in addition, the reflection coefficients
of the nanocavity mirrors [9]. Without loss of generality, we
assume in the following a vacuum wavelength for the FH of
λF = 1.55 μm and for the corresponding SH of λS = λF/2.
The MIM waveguide is made from metal films sufficiently
thick such that the boundary effects are negligible and the fields
in the waveguide will correspond to those for semi-infinite
metals. The dielectric layer is made up of LiNbO3, which is
150 nm thick and whose optical axis is aligned to the x axis
of Fig. 1. The thickness was purposely chosen such that only
the symmetric plasmonic mode (with respect to the magnetic
field) at both frequencies is supported [1]. The complex modal
propagation constant β0 = β ′

0 + iα0/2 of this mode is defined
implicitly by the following transcendental equation [1]:

tanh
(√

β2
0 − k2

0εmd
) = −

√
β2

0 − k2
0εdεm√

β2
0 − k2

0εmεd

(1)

where εm and εd denote the permittivities of metal and
dielectric, respectively, k0 = 2π/λ and d being the thickness
of the dielectric layer.

To quantify the optical properties of the stub mirrors,
the complex reflection and transmission coefficients have
been computed using COMSOL MULTIPHYSICS, which solves
Maxwell’s equations using finite element method [10–12]
while relying on tabulated values for the dielectric functions
of all materials involved [13,14]. The strategy of optimizing
the mirrors consists of two steps. First, by changing the
widths wF,wS and heights hF,hS of each individual stub mirror
one can compute the reflection coefficient at both harmonics
independently [see Figs. 2(a) and 2(b)]. We found that a few
configurations can provide high reflectivity with Rmax > 0.95.

FIG. 2. (Color online) Reflectivities for FH (a) and SH
(b). The dimensions of the stubs are chosen as 215 nm × 180 nm
and 57.5 nm × 30 nm for the FH and SH mirrors, respectively. It can
be clearly seen that these mirrors are highly reflective at either the
FH or the SH frequency while the other frequency is left unaffected.

FIG. 3. (Color online) (a) Sketch of the composite mirror for
both harmonics. (b) Reflectivities |ρF

0 |2 for FH and |ρS
0 |2 for SH of

the composite mirror depending on the stub separation 	l.

In order to tune the nanocavity at each frequency individually,
we have chosen mirrors that are highly reflective at one
frequency whereas they are transparent at the other. This was
done on purpose to ensure that the spatial separation of the FH
and SH mirrors 	l can be used to compensate for the phase
mismatch. This is possible since the different frequencies will
experience a nanocavity of different geometrical but identical
optical lengths. This allows achieving a resonance at both
harmonics in a single configuration. However, the separation
between the two stubs forming the composite mirror also has
to be large enough such that near-field interaction among
neighboring stub mirrors is reduced to negligible and they
regain their response when placed in isolation. Therefore, we
calculated in a second step the complex reflection coefficient
of the composite mirror [Fig. 3(b)] for both FH (|ρF

0 |2) and
SH (|ρS

0 |2), depending on the separation between two stubs
	l. It turned out that for 	l > 50 nm, both mirrors can be
treated independently [Fig. 3(b)]. The reflection coefficient of
the composite mirror agreed with that for an isolated single
stub. These complex reflection coefficients of the composite
stubs are considered in the subsequent analysis of the bistable
response.

To analyze the output power depending on the input power
at the FH frequency, we use the coupled-mode theory for lossy
systems (see Appendix). Ignoring group velocity dispersion,
the standard equations for the slowly varying amplitudes u{F,S}
of forward- and backward-propagating modes at FH and SH
can be written as [15,16]

±i
∂uF

±
∂z

+ i

νF
g

∂uF
±

∂t
+ i

αF
0

2
uF

± + χ
(2)
eff (uF

±)�uS
± exp(−i	βz) = 0

±i
∂uF

±
∂z

+ i

νS
g

∂uF
±

∂t
+ i

αS
0

2
uS

± + χ
(2)
eff (uF

±)2 exp(i	βz) = 0

(2)

where νg denotes the group velocity defined by ν−1
g =

∂β ′/∂ω|ω=ω0 , the subscripts (+) and (−) denote the forward-
and backward-propagating modes, while the superscripts (F )
and (S) stand for FH and SH, respectively. The nonlinear
phase mismatch factor between the FH and SH is represented
by 	β = 2β ′F

0 − β ′S
0 , whereas χ

(2)
eff is the nonlinear coupling

coefficient defined under Kleinman symmetry (details are
documented in the Appendix). Due to strong light localization
in the MIM waveguide, the effective nonlinear coefficient χ

(2)
eff

can be an order of magnitude larger than in conventional
dielectric waveguides. Equations (2) take into account the
propagation losses of the MIM waveguides, which are related
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to the damping lengths (αF)−1 ≈ 31 μm, (αS)−1 ≈ 17.5 μm
for the FH and SH modes, respectively. Thus, the resonator
length l shall be substantially smaller than these damping
lengths. This entails, on the other hand, that the cavity length
will be also much less than the coherence length

Lc = 2π

	β
.

Therefore, the phase mismatch term 	β can be neglected in
Eqs. (2) but it will be taken into account by the appropriate
boundary conditions at the mirrors. They read as

uF
+(0) = ρF

0 exp
[
i
(
lβ ′F

0 + 2β ′F
0 	l + ϕF

0

)]
uF

−(0) + tF
√

P ,

uS
+(0) = ρS

0 exp
[
i
(
lβ ′S

0 + ϕS
0

)]
uS

−(0),
(3)

uF
−(l) = ρF

0 exp
[
i
(
lβ ′F

0 + 2β ′F
0 	l + ϕF

0

)]
uF

+(l),

uS
−(l) = ρS

0 exp
[
i
(
lβ ′S

0 + ϕS
0

)]
uS

+(l).

Here, P denotes the external pump power per unit width and
tF ≈

√
1 − |ρF

0 |2. Because the resonator length l is sufficiently
small so that nonlinear changes and damping are also small
upon round trip, we can further simplify our analysis by
deriving mean-field equations (for details see [15,16]). The
equations for the normalized FH b1 and SH output b2 are

∂b1

∂T
+ (i + 	1)b1 + b∗

1b2 = E0,

(4)
∂b2

∂T
+ (iδ + 	2)b2 + b2

1 = 0,

respectively, where the evolution time T is scaled with respect
to FH photon lifetime τph defined as

τph =
(

1 + (
ρF

0

)2
e−αF

0 l

1 − (
ρF

0

)2
e−αF

0 l

)
l
(
νF

g

)−1
,

whereas δ is the ratio of the photon lifetimes of FH and SH:

δ = νS
g

(
1 − ∣∣ρS

0

∣∣2
e−αS

0 l
)

νF
g

(
1 − ∣∣ρF

0

∣∣2
e−αF

0 l
) .

In the stationary limit (∂/∂T ) = 0, Eq. (4) simplifies to

(i + 	1) b1 + b∗
1b2 = E0,

(5)
(iδ + 	2) b2 + b2

1 = 0.

In passing, we note that we have included the different effective
resonator lengths for both frequencies. The detunings of both
fields from the respective cavity resonances are

	1 = −1 + ∣∣ρF
0

∣∣2
e−αF

0 l

1 − ∣∣ρF
0

∣∣2
e−αF

0 l

(
(l + 2	l)β ′F

0 + ϕF
0 − mπ

)
, (6)

	2 = −νS
g

(
1 + ∣∣ρF

0

∣∣2
e−αF

0 l
)

νF
g

(
1 − ∣∣ρF

0

∣∣2
e−αF

0 l
) (

lβ ′S
0 + ϕS

0 − nπ
)
. (7)

These cavity detunings become zero at resonance, which
practically means that the phase shift of the intracavity waves
becomes a multiple of 2π (m,n = 0,1,2 . . .) after one complete
round trip between the mirrors. Keeping the cavity length
smaller than the nonlinear coherence length, a clear advantage
of the proposed composite stub mirror is the possibility to
change separation 	l between FH and SH stubs independent

of the effective cavity length l. Indeed, the two parameters l

and 	l can be tuned to achieve the resonance condition for
both harmonics (	1,2 = 0). We note that the phase mismatch
between the two harmonics can also be compensated by the
phase shift due to the reflection at mirrors:

2ϕF
0 − ϕS

0 + 	βl + 4β ′F
0 	l = 2πq,

with q = 0,1,2, . . . .

The parameter E0 in Eqs. (4) denotes the normalized
amplitude of the input pump mode, which is related to the
actual pump power as

E0 = iχ
(2)
eff l

∣∣1 + (
ρF

0

)2
ρS

0

∣∣[
1 − (

ρF
0

)2
e−αF

0 l
]2

√√√√νS
g

[
1 + (

ρF
0

)2
e−αF

0 l
]

νF
g

[
1 + (

ρS
0

)2
e−αS

0 l
] tF

√
P .

(8)

Because of the propagation losses, the finesse of the
cavity decreases with increasing length l. On the other hand,
the nonlinear effects accumulate during propagation and,
therefore, they are proportional to this length. Hence there
is an optimal cavity length which shall provide a minimal
threshold for the nonlinear effects.

Searching for the optimal conditions for optical bistability,
we proceed with an analysis of the mean-field equations (4).
Rewriting them for the intensities of the stationary solutions,
one obtains [16,17][|b1|4 + 2(δ − 	1	2)|b1|2 + (

	2
1 + 1

)(
	2

2 + δ2)]|b1|2
= (

	2
2 + δ2

)
E2

0 (9)

and

|b2| = |b1|2√
	2

2 + δ2
. (10)

Equation (9) has three real and positive solutions for the
intensity |b1|2, provided that the conditions

|	2|(|	1| − √
3)

(
√

3|	1| + 1)
> δ

and

	1	2 > 0

hold. According to the above conditions, it is necessary that
both detunings be nonzero and the FH detuning 	1 exceeds√

3. As a result, the input-output response of the resonator is S
shaped [Fig. 4(a)]. The bistable input-output curve possesses
two limit points |E0|2 = |E±|2 (Fig. 2), determined by the
condition

∂|E0|2/∂|b1|2 = 0

[see Fig. 4(a)], where the corresponding values of the intra-
cavity intensities |b±|2 are

|b±|2 = [
2(	1	2 − δ)

±
√

4(δ − 	1	2)2 − 3
(
	2

1 + 1
)(

	2
2 + δ2

)]/
3. (11)

Inserting |b±|2 into Eq. (9), one obtains the values of
the normalized pump intensities |E±|2 required for optical
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FIG. 4. (Color online) (a) The intracavity intensity of the FH
vs the normalized pump intensity Eq. (9) for different frequency
detunings 	2 and constant detuning 	1 = 2.45. |b±|2 and |E±|2
designate the limit points of optical bistability. (b) Intensity of the
external pump field P± for the limit point of optical bistability vs
cavity length l and fixed 	l = 74 nm.

bistability. These values depend strongly on the detunings
	1,2. Then, varying the detunings as independent parameters
and looking for the extrema of the obtained equations, we
calculated the minimal intensity of the pump beam required
for the observation of optical bistability:

E2
min = 64(7 + 3

√
5)

27(
√

5 − 1)
δ ≈ 26.29δ. (12)

These values were obtained for the following optimal FH and
SH detunings:

|	1|min = (2 +
√

5)/
√

3 ≈ 2.45,
(13)

|	2|min =
√

3(3 +
√

5)δ/(
√

5 − 1) ≈ 7.34δ.

The absolute theoretical minimum for the pump intensity
corresponds to the point of the nascent bistability, in other
words, the boundaries in the parameter plane between the
monostable and multistable response of the cavity [see the
curve with |	2|min in Fig. 4(a)]. By using Eq. (12) together
with Eq. (8), we can express the minimum power required for
observing bistability as

Pmin ≈
(
1 − ∣∣ρF

o

∣∣2
e−αF

0 l
)4

vF
g(

2l χ
(2)
eff

)2(
1 − ∣∣ρF

o

∣∣2)
vS

g

|Emin|2. (14)

Using Eqs. (6)–(9), one can easily express the power
required for bistability in terms of the real system parameters of
the cavity. In the vicinity of a longitudinal (Fabry-Perot) reso-
nance, the power for optical bistability (|P±|2) is very sensitive
to the resonator length l [Fig. 4(b)]. Note that in accordance
with the mean-field result (9), there are no real solutions for the
pump power when the cavity is exactly tuned to the resonance
either for FH or SH. By changing the separation between FH
and SH stubs of the composite mirrors one can achieve the
conditions for the optimal detuning given by Eq. (13) and
obtain the minimal value of the pump power. For instance, a
cavity with a resonator length of l ≈ 478 nm and 	l ≈ 54 nm
reaches the minimal value of the pump power Pmin, shown in
Fig. 5(a). Such optimal parameters can be found for any lon-
gitudinal resonance [for different values of m and n in Eqs. (6)
and (7)] where the pump power, given by Eqs. (8) and (12), sig-
nifies the smallest power at which optical bistability can be ob-
served. Due to the balance between the propagation losses and

FIG. 5. (Color online) The absolute theoretical minimum of
pump intensity for optical bistability Pmin vs cavity length when
	l = 54 nm. There are also included the graphs (vertical lines) of P+
for different stub distances 	l.

cumulative nonlinear effect, there is an optimal cavity length
which provides a minimal threshold for optical bistability.

III. CONCLUSION

In summary, we suggested and verified the design of a
plasmonic nanocavity made of a χ (2)-nonlinear material that
possesses a bistable response. The nanocavity is made from
a metal-insulator-metal waveguide which has been equipped
with terminations made from composite stub mirrors. These
composite stub mirrors are essential, and the design of each
stub forming the composite mirror was purposefully chosen
to be highly reflecting for either the fundamental or the
second harmonic frequency, while they are transparent for the
other. This allows one to compensate for any phase mismatch
between the fundamental and the second harmonic by suitably
adjusting the distance between the two stubs forming the com-
posite mirror. Therefore, each involved frequency essentially
experiences a cavity with a slightly deviating geometrical but
equal optical length. This degree of freedom is successfully
exploited to let the nanocavity sustain resonances at both
involved frequencies, rendering the nonlinear conversion to be
phase-matched per round trip. Using rigorous mode analysis
of the waveguide with modal reflection coefficients of the
nanocavity mirrors and the mean-field theory which is used to
analyze the output of the nanocavity depending on the input
power, it was shown that the structure can achieve optical
bistability. Explicit expressions were given that allow opti-
mization of the device such that bistability is observed at the
smallest possible pump power. Taken all together, this provides
a possible route to further establish the field of nonlinear
plasmonics in nanocavities. This promises to be of importance
in various fields of applications, e.g., for the optical computing
and the routing of information in nanoplasmonic circuits that
could be at the heart of future computing architecture.
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APPENDIX: COUPLED MODE THEORY

The nonlinear evolution of modes in the waveguide is
modeled within the framework of unconjugated reciprocity
theorem as reported previously [18]. Assuming perturbative
nonlinear polarization and monomode behavior at both FH
and SH, the electromagnetic field in the waveguide can be
represented as the superposition of the linear modes:

E(x,z,t) =
∑

m=F,S

1

2

[
u′m(z,t)em

0 (x) exp
(
iβm

0 z − iωm
0 t

) + c.c.
]
.

Slowly varying envelopes u′(z,t){F,S} describe the evolution
of modes in time and the propagation direction z, while
e0

{F,S}(x) denotes the vectorial electric field distribution in
linear regime associated with the complex propagation con-
stant β

{F,S}
0 = β

′{F,S}
0 + iα

{F,S}
0 /2 at angular frequencies ω

{F,S}
0

for FH and SH, respectively. By using the orthogonality
relations between forward- and backward-propagating modes
[19] and making a first-order Taylor expansion of the dispersive
propagation constant β0(ω), it is straightforward to arrive at
the following coupled mode equations:

i
∂u′F

∂z
+ i

νF
g

∂u′F

∂t
+ aF(u′F)�u′S exp

[−(
i	β + αS

0

/
2
)
z
] = 0,

i
∂u′S

∂z
+ i

νS
g

∂u′S

∂t
+ bS(u′F)2 exp

[(
i	β + αS

0

/
2 − αF

0

)
z
] = 0.

(A1)

Nonlinear phase mismatch is denoted by 	β = 2β ′F
0 − β ′S

0 ,
while coupling coefficients aF and bS have been defined using
Kleinman symmetry as

aF = ωF
0

∫
dx

[
¯̄χ (2)(x) : eF∗

0 (x)eS
0(x)

][
eF

0⊥(x) − eF
0z(x)

]
2
∫

dx
[
eF

0,⊥(x) × hF
0⊥(x)

]
z

,

bS = ωS
0

∫
dx

[
¯̄χ (2)(x) : eF

0(x)2
][

eS
0⊥(x) − eS

0z(x)
]

2
∫

dx
[
eS

0⊥(x) × hS
0⊥(x)

]
z

, (A2)

where e{F,S}
0⊥ and e{F,S}

0z are the electric field components
transverse and parallel to the propagation direction, re-
spectively. The set of Eqs. (A1) can be cast in a more
simplified form by substituting aF = χ

(2)
eff , bS = γ aF and

transforming u′F = uF/
√

γ e(αF
0 /2)z and u′S = uSe(αS

0 /2)z. This
leads to

i
∂uF

∂z
+ i

νF
g

∂uF

∂t
+ i

αF
0

2
uF + χ

(2)
eff u

F�uS exp(−i	βz) = 0,

i
∂uS

∂z
+ i

νS
g

∂uS

∂t
+ i

αS
0

2
uS + χ

(2)
eff (uF)2 exp(i	βz) = 0.

(A3)

Equations (A3) have been straightforwardly generalized in
the main article to describe the dynamism of forward- and
backward-propagating modes inside a cavity.
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