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Effective-medium approach to planar multilayer hyperbolic metamaterials:
Strengths and limitations
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We express the optical properties of multilayered hyperbolic metamaterials (HMMs) in terms of the Fresnel
reflection coefficients at the boundary between the metamaterial and the ambient medium. Formation of a
band of bulk propagating modes in HMMs located far outside the lightcone of homogeneous isotropic media is
demonstrated. Exotic behavior of HMMs, such as the broadband Purcell effect and suppressed outward scattering,
is reproduced. Conditions under which a metal-dielectric multilayer can be approximated by a homogeneous
effective medium with extreme anisotropy (indefinite medium) are derived. It is shown that real multilayer HMMs
usually have a smaller Purcell factor than the corresponding effective medium; however, the reverse scenario is
shown to be possible due to an intermediary role of short-range surface plasmon excitations in the outermost
metal layer in a metal-dielectric multilayer.

DOI: 10.1103/PhysRevA.85.053842 PACS number(s): 42.25.Bs, 78.67.Pt, 78.20.Ci, 42.50.Nn

I. INTRODUCTION

Metamaterials have attracted significant scientific interest
because they offer a way to engineer optical materials with
properties rare or absent in nature, such as media with negative
refraction [1] or giant optical activity [2]. Other examples
of such “exotic” optical properties are those exhibited by
so-called “indefinite media,” [3–6] which feature a special
case of extreme anisotropy where diagonal elements of the
permittivity tensor have different signs (e.g., εx = εy < 0,
εz > 0 for uniaxial anisotropic media). This causes the
dispersion relation ω2/c2 = k2

x/εz + k2
y/εz + k2

z /εx to become
hyperbolic rather than elliptical [see Figs. 1(a) and 1(b)]. In
the idealization that such a dispersion relation holds for all
wave vectors, the photonic density of states (DOS) becomes
unbounded, giving rise to a variety of new physical phenomena
including broadband spontaneous emission enhancement [7]
and metric signature transitions [8]. Practical applications are
also envisaged, such as highly absorptive coatings in which
surface roughness is beneficial rather than detrimental [9].

Interest in indefinite media grew with the introduction of
hyperbolic metamaterials (HMMs), which are metal-dielectric
structures designed to approximately realize the dispersion
relation of an indefinite medium [10]. An increase in the
photonic DOS and the resulting physical effects were success-
fully confirmed in recent experiments [7,9–13]. As with other
metamaterials, it is the subwavelength nature of the structuring
that allows such metal-dielectric structures to be regarded as a
homogeneous effective medium over a range of wave vectors.
The two most straightforward implementations of HMMs are
subwavelength metal-dielectric multilayers [7,9] and rod ar-
rays [10,11,13,14]. For such geometries, the effective-medium
approach is particularly simple. It involves averaging of
permittivity in the directions tangential to the metal-dielectric
boundaries (i.e., pointing along the rods or layer interfaces)
and averaging of inverse permittivity in the directions normal
to the metal-dielectric boundaries. For example, the structure
in Fig. 1(c) with equal layer thicknesses corresponds to an
effective medium with permittivity tensor components εx =
εy = (εm + εd )/2 and ε−1

z = (ε−1
m + ε−1

d )/2 (εm and εd are
permittivities of metal and dielectric, respectively), resulting

in the hyperbolic dispersion relation if εm < 0 and εd > 0.
This simplicity makes the effective-medium approach very
attractive to employ in theoretical calculations [7,11,14,15].

However, it is also evident that the range of applicabil-
ity of effective-medium theory to such structures deserves
investigation. While it is often mentioned that structural
elements need to be “subwavelength,” establishing such a
condition must be done with care for extremely anisotropic
metamaterials, because different polarizations of light behave
very differently in the structure. HMMs, however, present
even more difficulties because their salient properties rely on
propagating waves with anomalously large wave vectors [7]
and, hence, with anomalously short wavelength. This can cause
the effective-medium approximation to break down far sooner
than might be naively expected.

Indeed, our recent communication [16] confirms that, while
the effective-medium approximation allows for the qualitative
reproduction of the broadband Purcell effect for HMMs,
the accuracy is rather poor for the layer thicknesses used
in experiments to date, and effective-medium theory tends
to overestimate the performance of actual HMMs. Another
recent communication [17] reports that the effective-medium
approximation can also underestimate the effects of multilayer
HMMs on an emitter placed inside them. Very generally, the
accuracy of the effective-medium theory was found to strongly
depend on the details of the problem being studied, such
as on the distance between a dipole emitter and an HMM
structure [12,16], or the size of an emitter placed inside an
HMM [18].

A physical understanding of the regime where one can
rely upon the effective-medium approach in predicting the
HMM properties is therefore important. It will necessarily
rely on comparing the nature of wave propagation in a real
HMM to that in the idealized indefinite medium resulting
from homogenization and will lead to guidelines for the
design of HMMs optimized for specific applications such
as spontaneous emission control or suppression of back
reflection. One approach to characterizing the behavior of
metal-dielectric multilayers is based on the point spread
function, which has been applied in a series of recent works
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on subwavelength imaging [19–21]; however, its usefulness
for the study of HMMs is still to be explored. Other strategies,
such as a Green function approach [12] and cavity theory
[17], have been applied. However, a systematic description
of wave propagation in multilayer HMMs that would give
insight into the emergence of a hyperbolic dispersion relation
in metal-dielectric multilayers is still lacking.

In this paper we present a detailed calculation for the
radiation rate of a dipole placed in close proximity to a generic
metal-dielectric multilayer. Starting with the standard Green
function approach [22,23] used in recent accounts [12,18], we
describe multilayer HMMs based on the Fresnel reflection
coefficients at the external boundary of the semi-infinite
metamaterial. The expressions obtained for the radiation rate
in terms of the Fresnel coefficients for propagating and
evanescent waves with arbitrary wave vectors offer significant
insight into the nature of wave propagation in HMMs and the
coupling between an HMM and the outside environment. Such
coupling between the evanescent near field of the dipole and
propagating large wave vector modes in the HMM is confirmed
as the reason for broadband spontaneous emission enhance-
ment by HMMs. However, it turns out that the validity of the
effective-medium approach for a particular multilayer HMM
depends very strongly on the details of the problem considered.
In particular, the layer thicknesses at which a real multilayer
HMM functions as a homogeneous indefinite medium depend
on the distance between the emitter and the metamaterial.
We also identify the regimes where a multilayer structure can
actually have better spontaneous emission enhancement than
its homogenized effective-medium approximation, owing to
an additional coupling via short-range surface plasmons in the
outermost metal layer.

The rest of the paper is organized as follows: In Sec. II we
outline the procedure to calculate the radiation of a dipole in
close proximity to a generic multilayer, and apply it to HMM
structures. In Sec. III we obtain and discuss Fresnel reflection
coefficients for propagating and evanescent waves at the outer
boundary of homogenized and actual HMMs. We establish the
roles of bulk excitations in the HMM and surface excitations
in the HMM’s outermost layer. In the following Sec. IV we
analyze the spontaneous emission enhancement for a dipole
located close to ideal and real HMMs and arrive at applicability
criteria for the effective-medium approximation. Finally, we
summarize in Sec. V.

II. EMITTING DIPOLE NEAR MULTILAYER
STRUCTURES

We consider an electric dipole μ(t) a distance h above
the top layer of a multilayer, at r = (0,0,h) [see Fig. 1(c)],
embedded in a cladding of (real) refractive index nc and
oscillating at frequency ω:

μ(t) = μe−iωt + c.c. (1)

We begin with a calculation of its rate of radiation into the
cladding. The electric field is of the form

E(r,t) = E(r)e−iωt + c.c., (2)

(a)

(b)

(c)

FIG. 1. (Color online) Schematic of isofrequency surface in
dispersion relation k2

x/εz + k2
y/εz + k2

z /εx = ω2/c2 for (a) conven-
tional anisotropic medium (εx = εy > 0,εz > 0) and (b) indefinite
medium (εx = εy < 0,εz > 0). (c) Semi-infinite multilayer HMM
with average layer thickness d = (dm + dd )/2 studied in the present
paper, with a dipole emitter close to its top surface.

and standard Green function techniques [22,23] can be
employed to show that, for z > h, we have

E(r) = ω̃2

4πε0

∫
idκ

2πwc

[μs(κ)ŝ + μp(κ)p̂+]eiκ ·Reiwcz, (3)

where κ and R lie in the xy plane, r = R + zẑ,

μs(κ) = (e−iwch + eiwchRs)ŝ · μ,

μp(κ) = e−iwchp̂+ · μ + eiwchRpp̂− · μ,

and

wc =
√

ω̃2n2
c − κ2, (4)

with ω̃ = ω/c; the square root of a complex number
√

z is
defined such that Im

√
z � 0 and, if Im

√
z = 0, Re

√
z � 0.

Here ŝ and p̂± refer to the unit vectors in the direction of
polarization for s- and p-polarized light, respectively, and in
the latter case the signs in the subscript correspond to the vector
for upward and downward propagating or evanescent waves,

ŝ = κ̂ × ẑ, p̂± = κ ẑ ∓ wcκ̂

ω̃nc

.

The Fresnel coefficients Rs and Rp are those appropriate for
light reflecting from the semi-infinite structure shown in Fig. 1.
They depend on κ = |κ |, ω̃, nc, the dielectric constants of metal
and dielectric (εm,εd ), and the thicknesses of metal layers (dm)
and dielectric layers (dd ) in the structure. We also introduce
the average layer thickness d to mean

d = dm + dd

2
. (5)

An expression similar to Eq. (3) can be written for H(r),
and as r → ∞ the time-averaged Poynting vector reduces to

S(r) = 2Re[E(r) × H∗(r)]

= 2nccε0ω̃
4

(4πε0)2

|μs(κ)|2 + |μp(κ)|2
r2

r̂, (6)
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where the κ appearing on the right-hand side, and below, is the
projection of ω̃ncr̂ onto the xy plane. Taking θ to be the angle
defined in Fig. 1, and φ to be the angle between the projection
of r̂ onto the xy plane and the x̂ axis, we look at the power
radiated into a solid angle d	 about r̂ and divide it by

Wref = 2

4πε0

2

3
cω̃4ncμ

∗ · μ,

the total power radiated by a dipole embedded in a uniform
medium of index nc, to find

lim
r→∞

S(r) · r̂r2

Wref
= 3

8π (μ∗ · μ)
[|μs(κ)|2 + |μp(κ)|2].

We refer to the integral of this over φ as βclad(θ ) and find

4βclad(θ )

3

= f 2
⊥

κ2

ω̃2n2
c

|1 + e2iwchRp|2

+1

2
f 2

‖

[
|1 + e2iwchRs |2 + |wc|2

ω̃2n2
c

|1 − e2iwchRp|2
]

,

(7)

where f 2
⊥ = |μ · ẑ|2/(μ∗ · μ) and f 2

‖ = 1 − f 2
⊥; f‖ and f⊥ are

the normalized in-plane and out-of-plane components of the
dipole moment [22]. The total radiation rate into the cladding,
normalized by Wref, is then given by

bclad =
∫ π/2

0
βclad(θ ) sin θdθ = 1

ω̃nc

∫ ω̃nc

0
βclad κdκ

wc

, (8)

with only the components lying inside the cladding’s lightcone
(0 � κ � ω̃nc) present in the field radiated into the cladding.

Besides the possibility to escape into the cladding, the
energy radiated by the dipole can pass into the multilayer
structure where, because of the absorption in the metallic
layers, it will ultimately be absorbed. The total emission rate
of the dipole b, normalized to Wref, will thus be greater than
bclad. To find it, we calculate the work done by the dipole on
the electromagnetic field. For the dipole at r = (0,0,h) the
associated current density is j(r,t) = j(r) exp(−iωt) + c.c.,
where

j(r) = −iωμδ(R)δ(z − h). (9)

The rate at which work is done by a current distribution on the
electromagnetic field is [24]

−
∫

j(r,t) · E(r,t)dV,

and so the time-averaged total power radiated is

W = −2Re[j∗(r) · E(r)] = 2ωIm[μ∗ · E(0,0,h)]. (10)

Here the expression for the field, Eq. (2), is of the form [22,23]

E(r) = ES(r) + EE(r),

where ES(r) is the field generated by a dipole in a uniform
cladding, and

EE(r) =
∫

idκ

2πwc

ω̃2

4πε0
e2iwch[(Rs ŝ · μ)ŝ + (Rpp̂− · μ)p̂+]

(11)

(a)

(b)

FIG. 2. (Color online) Dependence of (a) the total radiation rate
b and (b) its fraction f directed into the cladding for an isotropically
averaged dipole at a distance h above a multilayer HMM with
metal as the top layer (“HMMm”) and d = 19 nm as in Ref. [7],
a homogenized effective medium given by Eq. (16), and a bulk
metal. The material refractive indices are εm = −17.2 + 0.8i [27]
and εd = 2.59 [28] for λ = 715 nm, giving εx = εy = −7.3 + 0.4i

and εz = 6.1 + 0.05i.

is the remaining contribution, associated with the reflection
due to the multilayer. The result is

W = 2

4πε0

2

3
cω̃4nc(μ · μ∗) + 2ωIm[μ∗ · EE(0,0,h)].

Dividing by Wref and simplifying the resulting expression we
finally obtain

b = 1 + 3

2ω̃nc

Re

(∫ ∞

0

κdκ

wc

[
f 2

⊥
κ2

ω̃2n2
c

Rp

+ 1

2
f 2

‖

(
Rs − w2

c

ω̃2n2
c

Rp

) ]
e2iwch

)
. (12)

Numerical evaluation of this integral is unproblematic when
absorption is present; the formal divergence at wc = 0 can be
removed by a change in variables, and the integral is finite for
h > 0.

The classically calculated values of b and bclad given by
Eqs. (8) and (12) identify the normalized spontaneous emission
rates that a quantum calculation would produce (see, e.g.,
Ref. [25]). Thus b has the meaning of a Purcell enhancement
factor for spontaneous emission. The fraction of radiation
escaping into the cladding, f = bclad/b, characterizes how
good the structure is at suppressing reflected and backscattered
radiation (i.e., how well it performs as a highly absorbing
coating).

As an example demonstration of HMM properties, in Fig. 2
we show b and f for the structure in Jacob et al. [7], with dm =
dd = d = 19 nm. We indicate the results for the calculation
using the full multilayer by a subscript “HMM,” the result
using effective-medium theory by a subscript “eff,” and the
results for the replacement of the multilayer by solid metal by
a subscript m; details of the calculations are presented in the
next section. We see that both beff and bHMM are much greater
than bm, confirming that an HMM affects the spontaneous
emission rate much more strongly than bulk metal. The fraction
of radiation directed into the cladding becomes drastically
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suppressed by an HMM as compared to bulk metal [Fig. 2(b)].
This is in accordance with the results of previous theoretical
and experimental works [7,9–13].

However, we notice that the discrepancy between the
figures for effective-medium and a multilayer HMM is quite
pronounced, and that bHMM eventually approaches bm as the
dipole is brought close to the interface. Likewise, while fHMM

follows feff for larger h, it moves closer to fm as h decreases.
Therefore, the applicability of an effective medium approach
with respect to HMMs warrants further investigation.

III. FRESNEL REFLECTION COEFFICIENTS

Equations (7) and (12) reveal that the structure influences
the emission rate of the dipole placed next to it through the
appearance of the Fresnel reflection coefficients Rs = Rs(κ)
and Rp = Rp(κ) which will be the focus of this section.

It is important to note that, while Eq. (8) involves integration
only within the lightcone in the cladding (κ � ω̃nc), Eq. (12)
contains all possible values of κ , including waves that are
either propagating or evanescent in the media involved. Since
wc is real for κ < ω̃nc and purely imaginary (wc = iqc) for
κ > ω̃nc [see Eq. (4)], it is convenient to split the integral in
Eq. (12) in the form

b = 1 + b< + b>, (13)

where

b< = 3

2ω̃nc

Re

( ∫ ω̃nc

0

κdκ

wc

[
f 2

⊥
κ2

ω̃2n2
c

Rp

+ 1

2
f 2

‖

(
Rs − w2

c

ω̃2n2
c

Rp

)]
e2iwch

)
, (14)

b> = 3

2ω̃nc

Im

( ∫ ∞

ω̃nc

κdκ

qc

[
f 2

⊥
κ2

ω̃2n2
c

Rp

+ 1

2
f 2

‖

(
Rs + q2

c

ω̃2n2
c

Rp

)]
e−2qch

)
. (15)

Only the imaginary part of Rs(κ) and Rp(κ) for κ > ω̃nc is
seen to contribute to b. Thus, comparing ImR for the real
multilayer HMM vs the homogenized effective medium will
serve as a primary indication of how closely the effective
medium reproduces the behavior of the real structure.

A. Homogenized effective medium

A multilayer with subwavelength layer thicknesses is
conventionally homogenized using the Maxwell-Garnett for-
mulas. The resulting effective medium is anisotropic and has
the permittivity tensor ε = diag(εx,εy,εz) with the components

εx = εy = ρεm + (1 − ρ)εd, (16)

εz = [
ρε−1

m + (1 − ρ)ε−1
d

]−1
, (17)

where ρ = dm/(dm + dd ) is the filling fraction of the metal. As
an example, Fig. 3 shows the effective permittivity components
εx and εz for gold-alumina multilayer structures similar to
those used by Jacob et al. [7]. It can be seen that there is a
broad region of filling fractions where Reεx < 0 and Reεz > 0,

(a)

(b)

FIG. 3. (Color online) (a) Effective permittivities εx and εz

for gold-alumina multilayers with different filling fraction ρ. The
material refractive indices are εm = −17.2 + 0.8i [27] and εd =
2.59 [28] for λ = 715 nm. (b) Asymptotic reflection coefficient
R

p

eff(κ → ∞) given by Eq. (22) for the same structures, with and
without absorption losses. The shaded region denotes the range of
ρ ∈ [ρ1; ρ2] where the hyperbolic dispersion relation is exhibited.

so the effective medium is indeed indefinite. We define the
boundaries of this region as ρ1 and ρ2, such that

Reεx(ρ1) = 0, [Reεz(ρ2)]−1 = 0. (18)

The Fresnel coefficients Rs
eff and R

p

eff at the interface
between the cladding and such an effective medium are given
by Ref. [23]

Rs
eff = wc − ws

eff

wc + ws
eff

, R
p

eff = wcεx − w
p

effεc

wcεx + w
p

effεc

, (19)

where wc is given by Eq. (4), εc = n2
c , and

ws
eff =

√
ω̃2εx − κ2, (20)

similar to an evanescent wave in a bulk metal; however,

w
p

eff =
√

ω̃2εx − (εx/εz)κ2. (21)

For very large κ , the second term under the square root in
Eqs. (20) and (21) is dominant so that ws

eff ≈ wc ≈ iκ , w
p

eff ≈
κ
√−εx/εz. The reflection coefficients become independent of

κ , approaching zero for s-polarized light [Rs
eff(κ → ∞) = 0]

and a nonzero constant for p-polarized light:

R
p

eff(κ → ∞) = εx − √
εx/εz

εx + √
εx/εz

. (22)

If the metal were lossless and all permittivities were real,
this asymptotic value of the reflection coefficient would be
purely real unless the signs of εx and εz are different (i.e.,
everywhere except the HMM regime). Indeed, Fig. 3(b) shows
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this for the gold-alumina multilayers. The presence of loss
in the metal is seen to smear the abrupt appearance of
nonzero ImR

p

eff(κ → ∞) at the HMM regime boundaries, with
especially pronounced modification near ρ1.

Regardless of whether losses are present or not, the
emergence of an imaginary part in R

p

eff(κ → ∞) makes b>

in Eq. (15) diverge as h approaches zero, resulting in an
unbounded enhancement of the spontaneous emission. This
is indeed seen for beff(h) in Fig. 2(a).

B. Semi-infinite multilayers

We now compare the effective-medium reflection coef-
ficients Rs

eff and R
p

eff with those of a semi-infinite metal-
dielectric multilayer, Rs and Rp. For completeness, we
consider two kinds of these multilayers with the topmost layer
being either metal (labeled HMMm) or dielectric (HMMd).
The expressions for Rs and Rp can be obtained by first
constructing the transfer matrix for one period. For the HMMm
structure it takes the form

M = MmMd =
(

T 2
m−R2

m

Tm

Rm

Tm

−Rm

Tm

1
Tm

)(
T 2

d −R2
d

Td

Rd

Td

−Rd

Td

1
Td

)
, (23)

and the corresponding HMMd expression is written in the
similar way as M = MdMm. The single-layer reflection and
transmission coefficients in Eq. (23) are determined by the
Airy formulas

Tj =
(
1 − r2

cj

)
exp(iwjdj )

1 − r2
cj exp(2iwjdj )

, (24)

Rj = rcj [1 − exp(2iwjdj )]

1 − r2
cj exp(2iwjdj )

, (25)

where j = m, d and rcj are the Fresnel reflection coefficients
for the cladding-metal and cladding-dielectric interface, given
by

rs
cj = wc − wj

wc + wj

, r
p

cj = wcεj − wjεc

wcεj + wjεc

, j = m,d. (26)

We can then insert infinitesimally thin layers of cladding
material between each period in the structure [26]. The
amplitudes of upward- and downward-propagating wave at
the multilayer surface can be expressed as a column vector(

Rs

1

)
or

(
Rp

1

)
for the incident wave with amplitude equal to unity. Since
removing one period from a semi-infinite periodic structure
does not change it, the fields in the infinitesimal cladding layer
below the topmost period(

as
up

as
down

)
,

(
a

p
up

a
p

down

)
(27)

should be proportional to the fields at the surface. From the
transfer matrix relation(

Rs

1

)
= M

(
as

up
as

down

)
,

(28)(
Rp

1

)
= M

(
a

p
up

a
p

down

)
,

it thus follows that the vector in Eq. (27) should be an
eigenvector of M . Of its two eigenvalues λs

1 and λs
2 (or λ

p

1 and
λ

p

2 ), there should always be one with |λ|>1 as long as there is
some absorption present in the period. From its corresponding
eigenvector [Eq. (27)], one can obtain [26]

Rs = as
0,up

as
0,down

, Rp = a
p

0,up

a
p

0,down

. (29)

Figures 4 and 5 show the Fresnel reflection coefficients
Rs

HMMm,d and R
p

HMMm,d for s- and p-polarized waves, respec-
tively, under the same conditions as in Fig. 2 for both structures
HMMm and HMMd.

For s-polarization, the wave that is transmitted into
anisotropic HMM is ordinary. The normal component of its
wave vector ws

eff given by Eq. (20) is close to being purely
imaginary for all κ , so Rs resembles the reflection coefficients
for a dielectric-metal interface. Hence |Rs | � 1 for incident
propagating waves with κ < ncω̃ (|Rs | = 1 in the lossless
limit), and |Rs | < 1 for the waves with κ > ncω̃, which are
evanescent both in the cladding and in the HMM medium.
For the chosen values of dm = dd = d = 12 and 6 nm, the
coefficients for real multilayers Rs agree well with Rs

eff (Fig. 4).
It can be noticed that Rs

eff is between Rs
HMMm and Rs

HMMd,
which not surprisingly converge together as d decreases.

For p-polarization, the wave that is transmitted into the
HMM is extraordinary and is characterized by hyperbolic
dispersion relation. The coefficient Rp(κ) behaves in a more
complicated way, dictated by the the normal component of the
wave vector w

p

eff as given by Eq. (21) [23]. For smaller κ , w
p

eff
is close to being purely imaginary, and the behavior of Rp

is similar to that of Rs (see Fig. 5) with the exception that it
features a pole slightly outside the cladding lightcone at Reκ �
ncω̃. This pole corresponds to a surface plasmon polariton
(SPP) excitation typical for a p-polarized wave at a dielectric-
metal interface. Here, too, R

p

HMMm and R
p

HMMd approach R
p

eff
from different sides and converge together as d → 0.

As κ exceeds the critical value κcr given by κcr/ω̃ = Re
√

εz,
in our case equal to 2.467, the real part of the expression under
the square root in Eq. (21) changes sign because Re(εx/εz) < 0.
Hence w

p

eff acquires a significant real part, signaling the
propagation of transmitted fields in the HMM, while the
reflected fields are strongly evanescent. From Eq. (19) we
see that as this occurs when κ crosses κcr, there is a change of
behavior in Rp(κ) with an abrupt emergence of nonzero ImRp

(Fig. 5). As seen in Eq. (15), this leads to an increase of b> and,
in turn, of the total emission rate b. However, unlike what we
observed for s-polarized light and for p-polarized light with
κ < κcr, we now see a drastic difference between the effective
medium and the real multilayer metamaterial structures. While
R

p

eff stays essentially constant with increasing κ , as dictated
by the asymptotic behavior in Eq. (22), both ImR

p

HMMm and
ImR

p

HMMd initially follow ImR
p

eff quite accurately but then drop
off and decay toward zero.

It can also be noticed that while ImR
p

HMMd is less than
ImR

p

eff for all κ > κcr, ImR
p

HMMm can exceed ImR
p

eff in a certain
range of κ . This “overshoot” effect becomes more pronounced
if ρ decreases, and for ρ � ρ1 it becomes so drastic that the
reflection coefficient for the real multilayer greatly differs from
its effective-medium counterpart and becomes very strongly
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(a) (b)

FIG. 4. (Color online) Fresnel reflection coefficient Rs for the effective medium and the multilayer HMM for (a) d = 12 nm and
(b) d = 6 nm for s-polarized light, depending on tangential wave-vector component κ . The permittivities of metal and dielectric are the
same as in Fig. 3, with ρ = 0.5.

dependent on whether the topmost layer is metal or dielectric
(Fig. 6). It is also shown that the range of κ with nonzero ImRp

has clearly defined edges for a lossless metal. These edges are
smeared in the presence of losses in a manner similar to what
is seen in Fig. 3(b).

To summarize, we see that a contribution to the radiation
rate b in Eq. (15) due to the nonzero imaginary part of Rp

depends on (i) the asymptotic value of R
p

eff that Rp follows,
(ii) the range of κ over which ImRp �= 0, and (iii) the
discrepancies between ImR

p

HMMm (and ImR
p

HMMd) and ImR
p

eff
caused by the choice of the topmost layer. The first of these
three is given by Eq. (22) so, for example, Fig. 3(b) reveals that
ρ � ρ1 is an optimal choice of filling fraction if ImRp needs
to be maximized [see Eq. (18)]. The remaining two effects will
be addressed in what follows.

C. Band formation for high-κ propagating modes

Having understood that nonzero ImRp in a certain range of
κ is associated with the existence of propagating high-κ modes
in the HMM, we are now in position to determine that range
in the case where it is clearly defined; namely, in the limit of
lossless periodic metal-dielectric multilayers (see the insets in
Fig. 6) where εm is taken to be real. From the Bloch theorem,
it is known that the existence condition for propagating waves
in a one-dimensional periodic medium is directly related to
the properties of the one-period transfer matrix in Eq. (23)
as [29,30]

−1 � cos [kB(dm + dd )] = TrM

2
� 1, (30)

where kB is the z component of the wave vector for a Bloch
wave. If the condition of Eq. (30) is not met, the structure
does not support propagating Bloch waves and exhibits a
photonic band gap. We are going to apply this condition to
HMMs, substituting Eqs. (24) and (25) into Eq. (23). After
some algebra, we see that

TrM

2
= cos [kB(dm + dd )] = cos(wmdm) cos(wddd )

− 1

2

(
εmwd

εdwm

+ εdwm

εmwd

)
sin(wmdm) sin(wddd ).

(31)

If the layer thicknesses are subwavelength and κ is not too
large, it is expected that wjdj � π . Expanding Eq. (31) to the
second order, we get

TrM

2
≈ 1 − w2

md2
m

2
− w2

dd
2
d

2
− (

ε2
mw2

d + ε2
dw

2
m

) dmdd

2εmεd

.

(32)

This equals unity at

κlower = ω̃

√√√√[
dmε−1

m

dm + dd

+ ddε
−1
d

dm + dd

]−1

= ω̃
√

εz, (33)

which coincides with κcr from the previous section. Thus, the
lower band edge for the high-κ propagating modes in the HMM
is indeed determined by the value of κ where the eigenwaves
in the homogenized effective medium change from evanescent
to propagating. The lower band edge is correctly predicted by
the effective-medium approach as long as the phase variation
across each layer wjdj (j = m, d) is sufficiently small at κ =
κcr to allow Eq. (31) to be expanded. Unless εz is very large
[i.e., for ρ not too close to ρ2; see Fig. 3(a)], wj (κcr) is on the
order of ω̃

√
εj , so the conventional subwavelength criterion

njdj � λ holds here. This can be confirmed in Fig. 7(a) where
Eq. (33) is seen to give an accurate prediction for κlower for
layer thicknesses of up to 50 nm unless the filling fraction
approaches ρ2 where 1/εz = 0.

More generally, if the left-hand side of Eq. (32) is expanded
as 1 − k2

B(dm + dd )2/2, the resulting expression

k2
B(dm + dd )2 = w2

md2
m + w2

dd
2
d + (

ε2
mw2

d + ε2
dw

2
m

) dmdd

εmεd

(34)

reduces to

ω2

c2
= k2

B

εx

+ κ2

εz

, (35)

in full accordance with the predictions of the effective-medium
theory. Hence we can conclude that hyperbolic dispersion
relation in periodic HMMs originates from the dispersion
relation for Bloch waves with high κ in the approximation that
dm,d (ω̃2εm,d − κ2)1/2 � π . Following the standard reasoning
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(a) (b)

FIG. 5. (Color online) Same as Fig. 4 but for p-polarized light. The insets show an enlarged view of long-range SPP peak for κ � ω̃.

for wave propagation in periodic media, these Bloch waves re-
sult from coupling between excitations in individual structure
period [29]. Out of all possible excitations, the short-range
SPP (SRSPP) in thin-layer metal-dielectric structures have a
very high κ and should therefore be associated with Bloch
wave formation. The role of these SRSPPs in the appearance
of propagating waves in metal-dielectric multilayers was
discussed by Rosenblatt and Orenstein [30].

The upper band edge occurs at a large κ , which we label
κupper, where wm,d = iqm,d are purely imaginary and have a
large magnitude, so the expansion to any finite order of wjdj

cannot be made. Here it is convenient to rewrite Eq. (31) in
the form

TrM

2
= 1

4
(1 + η)[eqmdm+qddd + e−(qmdm+qddd )]

+ 1

4
(1 − η)[eqmdm−qddd + eqddd−qmdm ], (36)

where

η = 1

2

(
εmqd

εdqm

+ εdqm

εmqd

)
. (37)

For large κ so that qm,d ≈ κ , η becomes independent of κ ,

η → 1

2

(
εm

εd

+ εd

εm

)
. (38)

Note that the right-hand side of Eq. (38) is less than −1 because
εm < 0. So the dominant exponent eqmdm+qddd in Eq. (36) has
a negative prefactor and the whole expression will eventually
approach negative infinity:

lim
κ→∞

TrM

2
= −∞.

Since (TrM)/2 = 1 at κlower [see Eqs. (31) and (32)], there
should be a certain κupper > κlower where (TrM)/2 = −1, and
this value will be the upper band edge for the high-κ modes.

In the particular case of dm = dd = d (ρ = 0.5), which is
experimentally relevant [7], the expression in brackets on the
second line of Eq. (36) reduces to 2. For sufficiently large κ

so that the expression in Eq. (38) can be used for η, Eq. (36)
becomes

TrM

2
≈ 1

4
(1 + η)e2κd + 1

2
(1 − η),

and κupper can be analytically determined as

κupper = 1

2d
ln

[
2(η − 3)

η + 1

]
. (39)

This agrees with the arguments of Jacob et al. [7] where
it was speculated that the cutoff wave number for the high-κ
modes should scale as d−1. For a different filling fraction,
it can be seen that the second term of Eq. (36) is positive
and increases the total expression, so κupper should increase
compared to its value for ρ = 0.5. This is indeed seen in
Fig. 7(b). One can also see that Eq. (39) remains valid for
periods over a wide range, extending to greater than 50 nm.

The reason why the reflection coefficient of multilayer
HMMs eventually departs from that of the effective medium
is that the condition wm,dd � 1 inevitably becomes violated
for larger κ , no matter how small d is. In other words, high-κ
propagating modes have a much shorter wavelength at a given
ω than the vacuum wavelength 2πc/ω, and it is against this
shortened wavelength that the layer thickness d should be
compared. Hence the effective-medium approximation always
breaks down in HMMs for p-polarization: for any given layer
thickness d there exists a κ < κupper for which wm,d (κ)d � 1
fails, and Rp �= R

p

eff. Even in the case of naturally occurring
homogeneous indefinite media (such anisotropy is observed
in some polaritonic crystals [8] or graphite [31]), d has the
meaning of interatomic distances, on the order of 0.1 nm. So
there will still exist a value of κ beyond which the propagating
modes will no longer be supported.

D. Influence of topmost layer

Using the Bloch theorem to derive the dispersion properties
of a metal-dielectric multilayer implies that the structure is
infinite. In a semi-infinite structure such as shown in Fig. 1(c),
the topmost layer (metal or dielectric) is special because it
is adjacent to the cladding. This effect can be noticed in
Figs. 4 and 5 where the reflection coefficients for HMMm
and HMMd structures are seen to be slightly different. In fact,
this difference can become so great (see Fig. 6) that the choice
of the topmost layer can be assumed to dominate the behavior
of the Fresnel coefficient in a wide range of κ . This assumption
can be verified by showing that putting a single metal or
dielectric layer on top of a homogenized effective medium
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(a) (b)

FIG. 6. (Color online) Same as Fig. 5 but for a smaller filling fraction of ρ = 0.156. Dash-dotted lines correspond to the case when losses
in the metal are neglected. The insets show enlarged views near the edges of high-κ bulk propagating mode band.

reproduces the variation between the reflection coefficients of
HMMm vs HMMd relatively faithfully [Fig. 8(a)].

Hence the reflection of, for example, HMMm can be
approximated by a generalized Airy formula [32]

R
p

HMMm ≈ Rm + R
p

eff

(
T 2

m − R2
m

)
1 − R

p

effRm

, (40)

where Rm and Tm are single-layer coefficients given by
Eqs. (24) and (25), and R

p

eff is the effective-medium coefficient
from Eq. (19).

It is known that a thin metal layer supports SPP excita-
tions for p-polarized light, and that their wave vectors are
determined by poles in Rm or by zeros in the denominator in
Eq. (25):

1 − r2
cm exp(2iwmdm) = 0. (41)

One such pole corresponds to κ � ω̃nc and can be determined
by an assumption that κ ≈ ω̃nc everywhere except in wc. This
pole is a symmetric coupling between SPPs at the cladding-
metal interface and is called the long-range SPP (see, e.g., the
review by Berini [33] and references therein). The other pole,
arising from antisymmetric coupling between interface SPPs,
has a much larger κ and is therefore of primary importance
to HMMs. It is called the short-range SPP (SRSPP). It can be
determined by assuming that κ is sufficiently large in Eq. (41),
so that wm ≈ iκ and rcm ≈ r lim

cm ≡ (εm − εc)/(εm + εc) is a

constant. The pole location is then given by

κsp ≈ Re
ln r lim

cm

dm

, (42)

which is within 10% of the actual value for layers up to 5 nm
thick, and which makes a good initial guess if Eq. (41) needs
to be numerically solved for κsp. Then, one can expand Rm

and Tm in the vicinity of κsp according to Ref. [34]

Rm = ρm

κ − κsp

, T 2
m − R2

m = δm

κ − κsp

, (43)

where, in the same approximation as Eq. (42),

ρm ≈ r lim
cm − 1/r lim

cm

2dm

, δm ≈ −2ρm. (44)

With Eq. (43) and R
p

eff approximated by Eq. (22), Eq. (40)
becomes

R
p

HMMm ≈ ρm + δmR
p

eff

κ − κsp − ρmR
p

eff

, (45)

which has a better correspondence to Eq. (40) than the
effective-medium approximation [see Fig. 8 (b)].

We see that, besides a shift in the SRSPP pole, which
is expected whenever the medium next to a metal layer is
changed, an imaginary part of R

p

eff causes the SRSPP resonance

(a)

(b)

FIG. 7. (Color online) (a) Comparison between lower HMM band edge κlower obtained by Eq. (33) and directly from Eq. (31) for period
dm + dd = 25, 50, 100 nm. (b) Comparison between the upper HMM band edge κupper obtained from Eq. (39) and directly from Eq. (36) for
the filling fraction ρ = 0.15, 0.5, 0.8. The inset shows an extended view for the period up to 100 nm.
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(a) (b)

FIG. 8. (Color online) Comparison between imaginary part of
Rp(κ > κcr) (a) for effective medium, actual multilayer HMMm and
HMMd (solid lines), and approximations formed by placing a single
metal or dielectric layer atop the effective medium [Eq. (40), dash-
dotted lines] and (b) for the actual multilayer HMMm (solid), the
approximation of Eq. (40) (dash dot), and the pole expansion of
Eq. (45) (dash dot dot) for ρ = 0.15 and dm + dd = 2 nm.

to broaden even without material losses due to the interaction
between the SPP mode and the propagating modes in an
HMM. Such a broadened SRSPP excitation encompasses a
wider range of wave vectors than an SRSPP in an isolated
metal layer, which can only be broadened due to the action of
losses in metal. Thus, an SRSPP in a metal layer between the
cladding and the HMM can couple to evanescent field in the
cladding more strongly. Such an SRSPP acts as an intermediary
between the dipole field and the propagating modes in the
HMM, which is signified by the increase in the imaginary
part of the reflection coefficient compared to the results of the
effective-medium approximation.

Unfortunately, the shifted SRSPP pole κmax may lie far
outside the immediate vicinity of κsp [i.e., outside the range of
validity of the expansion in Eq. (43)]. However, a numerical
estimate of the coupling enhancement can still be given by
computing the value of ImRP

HMMm(κmax) depending on the
filling fraction. The results (see Fig. 9) show that the strongest
enhancement occurs in the vicinity of ρ1, and that material
absorption in the metal further increases ImR

p

HMMm(κmax). This
is because losses in metal broaden the SRSPP even more and
produce an additional dissipation channel for the external field
in the cladding. While this effect is rather detrimental if high-κ
propagating modes are used (e.g., for subwavelength imaging
purposes), it can be beneficial for designing scattering-free
coatings and cloaks [9].

(a) (b)

FIG. 9. (Color online) Im R
p

HMMm(κ = κmax) depending on ρ

(dots) vs Im R
p

eff (solid blue line) for (a) lossless metal and (b) real
gold. The vertical lines denote the bounds of HMM region.

IV. SPONTANEOUS EMISSION ENHANCEMENT

We now return to Eqs. (7), (8), and (12)–(15) to quantify
how the radiation properties of a dipole are modified in the
immediate vicinity of a HMM vs a homogenized effective
medium. The first thing to notice is that the integration for
bclad in Eq. (8) is performed within the lightcone in the cladding
(e.g., for κ � ω̃nc). As shown above, both Rs(κ) and Rp(κ)
are close to the corresponding Rs

eff(κ) and R
p

eff(κ) in this range.
Hence, it is expected that bclad

HMMm ≈ bclad
HMMd ≈ bclad

eff ≈ bclad
m ,

which was confirmed in numerical calculations.
Furthermore, Eq. (4) ensures that e2iwch = e−2qch decays

exponentially for large κ . This introduces a cutoff in the
integrand of b> in Eq. (15), and in the case of the effective
medium where ImR

p

eff(κ → ∞) = const., this is what makes
an otherwise infinite integral in that term finite. This cutoff
is heavily dependent on h: the smaller h, the larger the range
of κ that significantly contribute. This range can be quantified
by introducing κdipole(h) defined so that the contribution to
b in Eq. (12) for all κ � κdipole is 90% of the total b. If h is
significantly small, it can be expected that κdipole is large, so b>

should be the dominant contribution to b in Eq. (13). Taking
into account that, for κ significantly exceeding κcr, we can
assume ImRs(κ) � ImRp(κ) ≈ ImR

p

eff(κ → ∞) and qc ≈ κ ,
we can determine κdipole from Eq. (15) by solving∫ ∞

κdipole
κ2e−2κhdκ∫ ∞

κcr
κ2e−2κhdκ

= 0.1, (46)

resulting in

e−2hκdipole [1 + 2hκdipole(1 + hκdipole)]

e−2hκcr [1 + 2hκcr(1 + hκcr)]
= 0.1. (47)

In the limits of κdipole � κcr and hκcr � 1, Eq. (47) can
be solved numerically, yielding a universal condition for an
HMM:

hκdipole ≈ 2.661, (48)

and confirming that κdipole is proportional to h−1 if h is
small. For the chosen wavelength λ = 715 nm, Eq. (48)
results in κdipole/ω̃ = (303 nm)h−1; calculations show that this
approximation is good for h � 25 nm.

Decreasing h will enhance the coupling between the emitter
and any medium, so if the medium is absorbing (i.e., a bulk
metal), decreasing h will also lead to an increase of b. This
is a known quenching effect caused by coupling between
the dipole’s evanescent field and evanescent waves in the
metal. Such quenching will also happen in the HMM because
real HMMs include metallic layers and because the effective
medium behaves like a metal for certain field components.
However, when the medium supports propagating high-κ
modes (either as a homogeneous effective medium or as a
multilayer), ImR

p

eff � ImR
p
m for κ > κcr (see Figs. 5 and 6),

and the increase in b is expected to be much stronger near
HMMs than near metals. As we can now confirm, it is through
this mechanism that the HMM modes and the associated
increase of the photonic DOS give rise to the spontaneous
emission enhancement known as the broadband Purcell ef-
fect and reported in previous theoretical and experimental
works [7,11].
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Note that the high-κ modes are essentially propagating;
absorption in the metal just introduces a decay constant (so
that these modes do eventually get absorbed) but does not
make them truly evanescent. Hence the associated sponta-
neous emission enhancement is relatively insensitive to the
absorption losses. This is in stark contrast to coupling between
a dipole and resonant excitations such as surface plasmons,
where the width of the resonance, and hence the strength of
the effect, would depend heavily on the amount of absorption
in the system.

We can see that the Purcell enhancement factor will be the
same for the real HMM and for the effective medium if (and
only if) ImR

p

eff and ImR
p

HMMm,d are in good agreement all the
way up to the cutoff κdipole(h) in the integrand of Eq. (15).
According to Eq. (39), ImR

p

HMMm,d breaks away from ImR
p

eff
for larger κ if d [the average layer thickness as defined in
Eq. (5)] is smaller (see Fig. 5). Therefore, for any given d, the
effective-medium approach will correctly predict the dipole
radiation rate for larger h but will break down as h becomes
smaller. Indeed, the example in Fig. 2 shows that bHMMm
changes from following beff to following bm, and fHMMm
changes from following feff to approaching fm as h decreases.

The applicability region of the effective-medium approach
to describing the HMMs should thus be derived in terms of a
relation between d and h. Where there is a good agreement
between Rp and R

p

eff (i.e., for filling fractions greater than
around 0.25 as seen in Fig. 9), we should compare κdipole with
κupper as obtained from Eq. (36), and assume that the agreement
is good enough if

κdipole < κupper/2. (49)

The case ρ = 0.5 is special because κupper can be determined
analytically from Eq. (39), and because κupper for any other
filling fraction is greater [see Fig. 7(b)], so Eq. (49) with
ρ = 0.5 can be used as an over-restrictive effective-medium
applicability condition for other filling fractions. For the
chosen values of εm and εd , it results in a criterion d < h/6.5.

However, for the values of ρ that approach ρ1, the
correspondence between Rp and R

p

eff is poor due to the
influence of the topmost layer (see Figs. 9 and 6). Then, κdipole

should be compared to κsp in Eq. (42) instead:

κdipole � κsp, (50)

resulting in a different, far stronger criterion, d � h/11, for
the chosen values of εm and εd .

For large h, the field reaching the multilayer no longer cou-
ples to the high-κ HMM modes (κdipole < κcr), and the applica-
bility condition for the effective-medium approach eventually
becomes the usual subwavelength criterion, as modified by the
large |ε| in the materials involved (“strongly subwavelength” in
vacuum means d � 715 nm, while “strongly subwavelength”
in bulk gold requires d � 170 nm).

To illustrate the obtained applicability conditions, we
calculate b for the structures with ρ = 0.5 as in Ref. [7]
and show the results in Fig. 10. At h = 100 nm, which is
still subwavelength in the cladding but much larger than d,
we see that bHMM > bm � bd [Fig. 10(a)]. The results for
the real HMM converge to those for the effective medium
as d → 0; for HMMm, b < beff, so, in accordance with Fig. 2,
the structure’s properties tend toward those of a bulk metal

(a) (b)

FIG. 10. (Color online) Total radiation rate b for varying d for a
dipole placed at (a) h = 100 nm and (b) h = 10 nm from the surface
of an HMM with ρ = 0.5. Horizontal lines correspond to the values
for the effective medium (beff), bulk metal (bm), and bulk dielectric
(bd ). The vertical line corresponds to the value of d according to the
criterion in Eq. (49).

as d increases. For HMMd, the trend is opposite, which is
associated with an increase in photonic DOS as the structure
gets closer to being a photonic multilayer in the “transparent
metal” regime [35]. The effective-medium approach is seen
to predict the qualitative behavior of the HMM within 10%
accuracy if, following Eq. (49), d < h/6.5 � 15.3 nm.

For the deeply subwavelength, near-field regime (h =
10 nm), one can see that bHMM � bm,d [Fig. 10(b)], in
agreement with predictions in earlier work [7–9,11]. However,
in spite of the subwavelength layer thicknesses, the effective-
medium approach largely fails to predict the correct values of b

unless d � h, namely, d < h/6.5 � 1.5 nm, again following
Eq. (49).

This situation changes drastically for the structures with a
different filling fraction ρ = 0.156, as seen in Fig. 11. We
still see convergence toward beff as d → 0 but it is more
complicated. In particular, for h = 10 nm there is a region
of layer thicknesses where bHMMm significantly exceeds beff

because of the overshoot in ImRp due to SRSPP excitation
in the topmost metal layer. For d = 1.5 nm, the differences
still exceed 30%, and no decent agreement is seen until
d � 0.2(h/11) in accordance with the condition (50). For
h = 100 nm, the overshoot effects play a weaker role, so the
convergence remains within 12% up to d = 15 nm.

Finally, for the fraction of radiation going into the cladding
(Fig. 12) we see that fHMM � fm,d if h and d are both
sufficiently small, in agreement with earlier predictions
[7–9,11]. However, the effective-medium approach again fails
to predict the correct values of f unless d � h. For values of
d ∼ 10–20 nm, the effective-medium approach greatly overes-
timates the HMM performance compared to the real structure,
yielding beff 5–10 times greater than the actual b and feff

10–15 times smaller than the actual f [16]. Equation (49)

(a) (b)

FIG. 11. (Color online) Same as Fig. 10 but for ρ = 0.156. Solid
and dotted vertical lines denote the values of d corresponding to the
criteria in Eqs. (49) and (50), respectively.
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(a) (b)

FIG. 12. (Color online) Fraction of radiation f = bclad/b from a
dipole located h = 10 nm from a semi-infinite HMM, directed into
the cladding for (a) ρ = 0.5 and (b) ρ = 0.156.

seems to be an applicable validity condition. For smaller values
of filling fraction, the SRSPP-mediated overshoot effects
result in a region where fHMMm < feff so the range where
the effective-medium approach is good enough for practical
purposes is extended.

We note finally that the SPP excitations in the topmost
metallic layer can be controlled independently of bulk prop-
agating waves in the HMM by making the topmost layer of
different thickness than the rest of metallic layers in the HMM.
This can be used to maximize the performance of a particular
multilayer HMM, as well as to tailor it to the properties of a
particular emitter.

V. CONCLUSIONS

In summary, we have explored the optical properties of
multilayered hyperbolic metamaterials (HMMs) by investi-
gating the behavior of the Fresnel reflection coefficients at the
boundary between the metamaterial and the ambient medium.
We have shown how a band of bulk propagating modes,
located far outside the lightcone of any isotropic medium,
is formed in metal-dielectric multilayer HMMs, and how
these modes become large-wave-vector propagating modes in
homogeneous indefinite media. It is shown how modes from
this band interact with evanescent field of an emitter placed
in close proximity, giving rise to exotic behavior of HMMs
previously reported [7–9,11], including the broadband Purcell
effect [7] and suppressed outward scattering [9].

Conditions for the applicability of the effective-medium
approximation can be formulated in the form of Eqs. (49)
and (50). They relate the thickness of the metal layer (dm) and
the dielectric layer (dd ) in the HMM to the distance h between
the emitter and the HMM surface. For most values of the metal
filling fraction ρ = dm/(dm + dd ) ∈ [ρ1,ρ2] where ρ1 and ρ2

are defined by Re[ρ1εm + (1 − ρ1)εd ] = 0 and Re[ρ2ε
−1
m +

(1 − ρ2)ε−1
d ] = 0 and denote the region where the multilayer

has hyperbolic dispersion [see Eqs. (16)–(18)], the relation can
be expressed as

dm + dd

h
<

1

5.32
Re ln

[
2

(εm − εd )2 − 4εmεd

(εm + εd )2

]
, (51)

where εm and εd are permittivities of metal and dielectric,
respectively. For ρ1 < ρ < 0.25, the condition is stricter:

dm

h
� 1

2.66
Re ln

[
εm − εc

εm + εc

]
, (52)

where εc is the dielectric constant of the cladding.
These relations are seen to depend on the metamaterial

design and are very different from conventional assump-
tions about subwavelength layer thicknesses. Overall, the
effective-medium approach has a rather poor accuracy for
the layer thicknesses used in reported experiments. Usually, it
overestimates the effect of a multilayer HMMs unless the layer
thicknesses are brought down to a few nanometers. However,
with the values of the metal filling fraction close to ρ1 in
Eq. (18), a multilayer HMM can outperform the corresponding
homogenized medium. This is explained by an additional
coupling between large-wave-vector modes and the dipole
field through intermediate excitation of short-range surface
plasmon polaritons in the outermost layer of the metamaterial.

The results obtained can be straightforwardly generalized
to multilayer structures of a more complex composition. In
addition, extension of results to the case of a dipole inside an
HMM would be intriguing [17,18].
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