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Single-photon transport in one-dimensional coupled-resonator waveguide with local and nonlocal
coupling to a nanocavity containing a two-level system
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Single-photon scattering properties in a coupled-resonator waveguide (CRW) coupled to a nanocavity
embedded with a two-level system are investigated theoretically. Two cases are considered: when the nanocavity
is locally coupled to one resonator and when it is nonlocally coupled to two resonators of the CRW. The
transmission and reflection amplitudes are obtained for the two cases, respectively. The results show that the
position of perfect transmission remains unchanged, while the position of perfect reflection is shifted due to
the nonlocal coupling. An asymmetric Fano resonance appears in the transmission spectrum and can be
controlled by adjusting the coupling strengths in the nonlocal coupling case. The effects of the coupling strengths
and dissipation on the transport properties are also analyzed for the two cases.
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I. INTRODUCTION

Recently, the photon transport in a low-dimensional waveg-
uide has attracted much attention due to its wide application
in quantum-information processing and the realization of
photonic devices. Many experimental [1–6] and theoretical
[7–42] works reported photon transport properties in different
kinds of waveguides, such as metal nanowires [24,25,32,43]
and silicon nanowires [44]. Some photonic devices, such
as single-photon switching [7,13,16,18,24], routers [4,45],
diodes [46,47], and single-photon transistors [27,43], have
been proposed. Many quantum effects, such as Fano [48,49]
and Dicke-type transmission [50], resonance fluorescence
[51], a photon blockade [52], and generating nonclassical light
sources [53], have been investigated. The coupled-resonator
waveguide (CRW) is an important physical model, which can
be realized by photonic crystals [54,55] or superconductor
transmission line resonators [56–58]. The photon transport
properties in the CRW embedded with a two-level or three-
level atom have also been widely explored [15–22]. In this
context, most of the coupling between the atom and the
resonator of the CRW is taken to be local. Recently, Zhou
et al. considered the nonlocal coupling between the atom
and the CRW and explained the destructive interference
phenomenon of the transmission spectra according to the effect
of which-way detection [59]. In addition, the photon transport
in a one-dimensional discrete system locally and nonlocally
coupled to a defect has been investigated recently [60–62].
The nonlinear Fano resonance [60] and the nonlinear Fano-
Feshbach resonances [61] have been discussed based on the
nonlocal coupling between the defect and the one-dimensional
discrete system.

In this paper, we consider the photon scattering in the CRW
coupled to a nanocavity embedded with a two-level system.
This model is useful in quantum-information and quantum
optical devices. First, the two-level system is a qubit, which
plays important roles in quantum information. Second, the
nanocavity can enhance the interaction between the two-level
system and the photon in the waveguide. Many atomic
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cavity quantum electrodynamics experiments use the cavity
to enhance the interaction between the two-level system and
the photon in the waveguide. For example, Aoki et al. reported
realization of single-photon routing by using a fiber-coupled
microtoroidal cavity interacting with individual cesium atoms
[4]. Since the CRW is an important physical model, it is natural
to ask what will happen for photon transport in the CRW which
couples to a nanocavity interacting with a two-level system.
The purpose of this paper is to try to answer this question. Also,
the dispersion relation of the photon in the CRW is cosine. If
the incident photon is in a high-energy regime, the dispersion
relation can be approximately linear. And if the incident photon
is in a low-energy regime, the dispersion relation can be
approximately quadratic in form [16,28]. So this model may
be used to explain more experimental results (such as the
waveguide with linear or quadratic form dispersion relations)
involved in nanocavity-enhancing photon-atom interaction in
cavity quantum electrodynamics experiments.

Recently, Tan et al. discussed entangling two distant
nanocavities via the CRW [63]. Based on their model, if one
embeds a two-level system in the nanocavity, our model may
be realized. Due to the interaction possibly being long range
and nonlocal, we consider two cases, one where the nanocavity
locally couples to one resonator of the CRW and one where
it nonlocally couples to two resonators of the CRW, as shown
in Figs. 1(a), and 1(b), respectively. By using the obtained
analytical results of the transmission and reflection amplitudes,
we show that the photon transport can be modified strongly
due to the nonlocal coupling. The results may be useful in
designing optical quantum devices.

II. LOCAL COUPLING

We consider a simple model first, where the nanocavity
is locally coupled to only one resonator (labeled the 0th
resonator) of the CRW, as seen in Fig. 1(a). A two-level system,
whose ground state and excited state are denoted as |g〉, and |e〉,
respectively, is placed in the nanocavity. The total Hamiltonian
can be written as [16,23]

H = Hp + Hc + Ha + Hi, (1)
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FIG. 1. (Color online) (a) Schematic configuration for the hybrid
system of a one-dimensional CRW locally coupling with a nanocavity
interacting with a two-level system with excited state |e〉 and ground
state |g〉. (b) Schematic view of the nanocavity nonlocally coupling
with two resonators of the one-dimensional CRW.

where Hw,Hc,Ha , and Hi describe the propagation of the
single photon in the CRW, the nanocavity, the atom, and the
interaction, respectively. The four terms are given as

Hw = ωc

∑
j

C
†
jCj − ξ

∑
j

(C†
j+1Cj + C

†
jCj+1), (2a)

Hc = ωaa
†a, (2b)

Ha = ωe|e〉〈e|, (2c)

Hi = −η0(C†
0a + a†C0) + λ(a†|g〉〈e| + a|e〉〈g|), (2d)

where ωc is the resonance frequency of the resonator mode
and ξ is the hopping coefficient. Here, we have supposed that
all the resonators of the CRW have the same frequency. C

†
j

is the creation operator of photon at site j of the CRW. a†

(a) denotes the creation (annihilation) operator of the photon
in the nanocavity, and ωa is the resonance frequency of the
nanocavity mode. ωe represents the frequency of state |e〉 of the
atom. We have set the energy scale such that the energy of level
|g〉 is zero. |m〉〈n|(m,n = e,g) is the dipole transition operator
between |m〉 and |n〉. η0 is the coupling strength between the
0th resonator and the nanocavity. λ is the coupling strength
between the atom and the nanocavity.

Since the number of excitations is conserved in this hybrid
system, for the one-excitation subspace, the eigenstate of the
system has the form [16,23]

|Ek〉 =
∑

j

uk(j )C†
j |0〉w|0〉c|g〉a + uc|0〉w|1〉c|g〉a

+ue|0〉w|0〉c|e〉a. (3)

Here, uk(j ) are the amplitudes of single-photon states in the j th
resonator. |0〉w|0〉c|g〉a (|0〉w|0〉c|e〉a) denotes that no photon
is in the resonator or the nanocavity, and the two-level system
is in the ground (excited) state. |0〉w|1〉c|g〉a represents that the
photon is in the nanocavity. uc and ue are the corresponding
amplitudes, respectively.

From the Schrödinger equation H |Ek〉 = Ek|Ek〉, we ob-
tain

(Ek − ωc)uk(j ) = −ucη0δj,0 − ξ [uk(j − 1) + uk(j + 1)],

(4a)

(Ek − ωa)uc + η0uk(0) − λue = 0, (4b)

(Ek − ωe)ue − λuc = 0. (4c)

By eliminating the amplitudes ue and uc, we obtain the
discrete-scattering equation for the single excitation,

(Ek − ωc + V )uk(j ) = −ξ [uk(j + 1) + uk(j − 1)], (5)

where the effective potential

V (j ) ≡ η2
0(Ek − ωe)

λ2 − (Ek − ωa)(Ek − ωe)
. (6)

For the nanocavity local coupling to the 0th resonator, the
uk(j ) has the solution

uk(j ) =
{

eikj + re−ikj , j < 0,

teikj , j > 0,
(7)

where t and r are the transmission and reflection amplitudes,
respectively. In the CRW, Ek is characterized by

Ek = ωc − 2ξ cos k. (8)

By using Eqs. (5)–(8), together with the continuous condition
uk(0+) = uk(0−), we obtain the transmission amplitude

t = ξ (eik − e−ik)

ξ (eik − e−ik) + V

= ξ (eik − e−ik)(λ2 − �e�a)

ξ (eik − e−ik)(λ2 − �e�a) + η2
0�e

, (9)

and the reflection amplitude

r = −V

ξ (eik − e−ik) + V

= −η2
0�e

ξ (eik − e−ik)(λ2 − �e�a) + η2
0�e

, (10)

where �e ≡ Ek − ωe and �a ≡ Ek − ωa , which are also
dependent on k.

The transmission amplitude can also be rewritten as
t = √

T eiφ , where T ≡ |t |2 is the transmission probability
of the incident photon and φ is the phase shift imposed
on the transmitted photon. Equation (9) indicates that the
transmission vanishes and the reflection reaches the maximum
1 at the band edges with k = 0,π for the local coupling case.
The transmission also vanishes, and the reflection reaches the
maximum at ET =0

k = [(ωe + ωa) ±
√

(ωe − ωa)2 + 4λ2]/2,
which is independent of η0 due to the destructive interference
[see Fig. 2(a)]. Figure 2(b) shows φ as a function of Ek − ωe.
The phase of the scattering photon experiences π jump at
ET =0

k , leading to the total destructive interference.
From Eqs. (9) and (10), one can find that there is a

perfect transmission at ET =1
K = ωe due to the constructive

interference, which is different from the case of a dip in
the previous studies where the two-level system was directly
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FIG. 2. (Color online) (a) Transmission probability T and
(b) phase shift φ as a function of Ek − ωe. In the calculation,
ωc = ωe = ωa = 2. λ = η0 = 0.5. All parameters are in units of ξ .

coupled to the waveguide. Unlike ET =0
k , ET =1

k is independent
of ωa . The phase of the scattering photon is zero, leading to
the constructive interference, as shown in Fig. 2(a).

The coupling strengths are important parameters in this sys-
tem. We show T as a function of Ek − ωe with different λ and η

in Fig. 3 to show the influence of the coupling strengths on the
transmission properties. In Fig. 3(a), λ = 0, which means that
the two-level system is decoupled from the nanocavity. A dip
appears at Ek = ωa = ωe in the transmission spectrum. For the
case of Ek = ωa = ωe, the incident photon and nanocavity are
resonant. Only the nanocavity is excited while the two-level
system is not excited due to λ = 0, so the single photon
is completely reflected (r = −1) at Ek = ωa . When λ �= 0,

FIG. 3. (Color online) T as a function of Ek − ωe with different
coupling strengths (shown in the plots). In the calculation, ωc = ωe =
ωa = 2. All parameters are in units of ξ .

both the nanocavity and the two-level system are excited.
The transmission reaches the maximum at ET =1

k and the
minimum at ET =0

k , as shown in Fig. 2(a). The width between
the maximum and the minimum �E = |ET =1

k − ET =0
k | =

|ωe − ωa ±
√

(ωe − ωa)2 + 4λ2|/2. Particularly, when ωe =
ωa , �E = λ. So the width �E can be extremely small if λ is
very small. However, if λ increases to λ = 2ξ , the two dips at
ET =0

k are superposed in Ek − ω2 = ±2. The peak still exists in
the transmission spectrum due to the constructive interference,
as shown in Fig. 3(b). In addition, if the coupling λ further
increases such that λ � η0, the incident photon can be almost
completely transmitted except k = 0,π . The system becomes
nearly transparent. �E is independent of η0, but the influence
of η0 on the transmission spectrum is obvious. The peak at
ET =1

k becomes narrow as η0 increases. Also, the two side peaks
are strongly suppressed, as shown in Fig. 3(d). If η0 � λ, the
two side peaks are almost completely suppressed, and only a
very narrow peak at ET =1

k exists. Further calculations reveal
that the width of the peak at ET =1

k decreases with decreasing
λ. We also note that the transmission spectrum is symmetric if
ωe = ωa . These transport properties may have an application
in designing optical filters.

III. NONLOCAL COUPLING

In a realistic physical system such as photonic-crystal
waveguide coupled to a nanocavity, the interaction may be
long range and nonlocal. In this section, we will consider the
nonlocal coupling regime. The analytical expressions of the
transmission coefficients are deduced.

The schematic configuration for the nanocavity nonlocally
coupling to two resonators is shown in Fig. 1(b). We suppose
the nanocavity nonlocally couples to the 0th and the 1th
resonator with coupling strengths η0 and η1, respectively. The
Hamiltonian Hi in Eq. (1) should be changed to

Hi = −
∑

p=0,1

ηp(C†
pa + a†Cp) + λ(a†|g〉〈e| + a|e〉〈g|).

(11)
With the modified Hi , from the Schrödinger equation, we
obtain

(Ek − ωc)uk(j ) = −uc

∑
p=0,1

ηpδj,p − ξ [uk(j − 1)

+uk(j + 1)], (12a)

(Ek − ωa)uc +
∑

p=0,1

ηpuk(p) − λue = 0, (12b)

(Ek − ωe)ue − λuc = 0. (12c)

We also modify uk(j ):

uk(j ) =
{

eikj + re−ikj , j < 0,

teikj , j > 1.
(13)
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By solving Eqs. (12a)–(12c) and using Eq. (13), we obtain

t = (eik − e−ik)(�eη0η1 − �a�eξ + λ2ξ )

(eik − e−ik)(�eη0η1 − �a�eξ + λ2ξ ) + �eη0η1(eik + e−ik) + �e

(
η2

0 + η2
1

) , (14a)

r = −�e(η0 + eikη1)2

(eik − e−ik)(�eη0η1 − �a�eξ + λ2ξ ) + �eη0η1(eik + e−ik) + �e

(
η2

0 + η2
1

) . (14b)

The transmission and reflection coefficients become cum-
bersome compared with the results for the case where the
nanocavity locally couples to only one resonator. It is easy to
check that |t |2 + |r|2 = 1. From Eqs. (14a) and (14b), one can
obtain the conditions for perfect transmission,

ET =0
k =

ωa + η0η1

ξ
+ ωe ±

√(
ωa + η0η1

ξ
− ωe

)2 + 4λ2

2
,

(15)
and perfect reflection

ET =1
k = ωe. (16)

Equation (15) shows that, in the case where the nanocavity
is nonlocally coupled to two resonators, the position of the
perfect reflection is shifted. However, the point of perfect
transmission still occurs at ωe, remaining unchanged, as seen
from Eq. (16). This property allows us to vary the width
|ET =1

k − ET =0
k | by changing the coupling strength between

the nanocavity and the CRW, as shown in Fig. 4(a). The
transmission shows strong asymmetric Fano resonance, which
can be adjusted with the coupling strength between the
nanocavity and the CRW. The situation results from the

FIG. 4. (Color online) (a) T as a function of Ek − ωe with
different coupling strengths between the nanocavity and resonator.
(b) T as a function of Ek − ωe with different coupling strengths
between the nanocavity and the atom. In the calculations, ωc = ωe =
ωa = 2. All parameters are in units of ξ .

appearance of a bound state in the continuum [64]. The
width between the two dips in the transmission spectrum is√

(ωa + η0η1/ξ − ωe)2 + 4λ2, which increases with increas-
ing λ, as shown in Fig. 4(b).

To show how the nonlocal coupling affects the photon
transport properties, we plot ET =0

k and ET =1
k as a function

of the degree of nonlocality ρ = η1/η0 in Fig. 5. It clearly
shows that the position of the perfect transmission is fixed,
but the positions of the perfect reflection are shifted. When
ρ = 0, which means the coupling is local, the positions of
perfect reflection are symmetric with respect to Ek = ωe.
With increasing ρ, the position of the perfect reflection
becomes asymmetric. One of the positions of the perfect
reflection closely approaches ET =1

k and another moves far
away. So the nonlocal coupling regime can provide narrower
|ET =1

k − ET =0
k | than the local coupling regime for a system

with the same parameters.
Equation (14b) also shows that the transmission gener-

ally vanishes at k = 0,π . However, if η0 = η1, constructive
interference can be found at k = π , as shown by red solid
and blue dashed-dotted lines in Fig. 4(a). When k = π , the
probability amplitudes take the expression uk(j ) = (−1)j .
For the symmetric coupling case η0 = η1, the equation
for the nanocavity, Eq. (12b), becomes effectively decou-
pled from the discrete system, leading to the constructive
interference.

FIG. 5. (Color online) Dependence of the position of the perfect
transmission (T = 1, blue solid line) and reflection (T = 0, black
dashed and red dash-dotted lines) as a function of ρ. In the calculation,
ωc = ωe = ωa = 2,η0 = 1,λ = 0.5. All parameters are in units of ξ .
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FIG. 6. (Color online) T as a function of Ek − ωe with different
decay rates for the local coupling case. The parameters are taken as
ωc = ωa = ωe = 2, λ = 0.5,η0 = 1. All parameters are in units of ξ .

IV. THE CASE WITH DISSIPATION

The energy relaxations and dephasing are unavoidable in re-
alistic physical devices. In this section, we discuss the influence
of dissipation on the photon transport by phenomenologically
introducing two additional decay rates, γa and γe, for the
nanocavity and the two-level system, respectively. To derive
the transmission and reflection amplitudes of photon transport
with γa and γe, the frequencies ωa and ωe are substituted
by ωa − iγa and ωe − iγe, respectively [17,23]. Replacing
�e = Ek − ωe + iγe and �a = Ek − ωa + iγa in Eqs. (9),
(10), (14a), and (14b), one can get the transmission and
reflection amplitudes for both the local and nonlocal coupling
systems with dissipation.

Figure 6 shows T for the local coupling with dissipation.
Obviously, the perfect transmission at Ek = ωe is independent
of the nanocavity dissipation, as shown by the red solid line in
Fig. 6. In this case, the two-level system is excited, whereas
the nanocavity is not excited. So the dissipation of the two-
level system can influence perfect transmission strongly. T at
Ek = ωe decreases quickly with increasing γe, as shown by
the blue dashed line in Fig. 6. Comparing with Fig. 3(c), one
can also find that the two side peaks decrease with increasing
dissipation of the nanocavity.

Figure 7 shows T for the nonlocal coupling with dissipation.
The influences of dissipation on the photon transport for the
local and nonlocal cases are similar. The perfect transmission
at Ek = ωe is destroyed by γe, independent of γa . However,
when η0 = η1, the nanocavity is decoupled from the CRW, so
the perfect transmission at k = π is independent of γe and γa ,
as shown in Fig. 7(b).

FIG. 7. (Color online) T as a function of Ek − ωe with different
decay rates for the nonlocal coupling case. (a) η0 = 1,η1 = 0.5,
(b) η0 = η1 = 1. The other parameters are taken as ωc = ωa = ωe =
2, λ = 0.5. All parameters are in units of ξ .

V. CONCLUSION

In summary, the single-photon transport properties in
the CRW locally and nonlocally coupled with a nanocavity
containing a two-level system are investigated. The position
of the perfect transmission is determined from the transition
energy of the two-level system, independent of the nanocavity,
and the coupling strength between the nanocavity and the
CRW. However, the position of perfect reflection is shifted
due to the nonlocal coupling. The perfect transmission at the
band edge k = π , and a tunable asymmetric Fano resonance
can appear in the nonlocal coupling case. In addition, the
effect of the dissipation of the nanocavity and the atom on
the photon transport properties is also explored. These results
may have an application in designing photonic devices and
controlling photon-matter interactions based on waveguide
and nanocavity.
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