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Coherent perfect absorbers for transient, periodic, or chaotic optical fields:
Time-reversed lasers beyond threshold
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Recent works [Chong et al., Phys. Rev. Lett. 105, 053901 (2010); Wan et al., Science 331, 889 (2011)] have
shown that the time-reversed process of lasing at threshold realizes a coherent perfect absorber (CPA). In a CPA,
a lossy medium in an optical cavity with a specific degree of dissipation, equal in modulus to the gain of the
lasing medium, can perfectly absorb coherent optical waves at discrete frequencies that are the time-reversed
counterpart of the lasing modes. Here the concepts of time reversal of lasing and CPA are extended for optical
radiation emitted by a laser operated in an arbitrary regime, i.e., for transient, chaotic, or periodic coherent optical
fields. We prove that any electromagnetic signal E(t) generated by a laser system S operated in an arbitrary
regime can be perfectly absorbed by a CPA device S ′ which is simply realized by placing inside S a broadband
linear absorber (attenuator) of appropriate transmittance. As examples, we discuss CPA devices that perfectly
absorb a chaotic laser signal and a frequency-modulated optical wave.
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I. INTRODUCTION

A laser oscillator is a device that self-organizes to emit
a narrowband coherent electromagnetic radiation when the
pumping level exceeds a threshold value. Above the first lasing
threshold, lasers are generally complex nonlinear systems [1]
and may emit different kinds of output signals E(t), rang-
ing from the ideal monochromatic wave under single-mode
continuous-wave operation to irregular or chaotic signals when
multimode or other kinds of instabilities set in Refs. [1,2] or
giant pulses or periodic trains of ultrashort optical pulses when
operated in the Q-switching or mode-locking regimes [3,4].
Generally speaking, a “time-reversed” laser refers to a device
that, rather than emitting the signal E(t) propagating outgoing
from the laser cavity, is capable of perfectly absorbing the
same signal E(t) that propagates backward into the cavity,
without any reflection [5]. Such a device thus realizes a
coherent perfect absorber (CPA) for the signal E(t). For a
continuous-wave field, it is known that a dissipative resonator
can perfectly absorb incident light at the condition of critical
coupling [6]. Recently, Douglas Stone and coworkers have
suggested and proven rather generally the possibility to realize
a CPA exploiting the time-reversed process of lasing at
threshold. In this case, the laser system behaves as a linear
one, and the time-reversal process is realized simply by the
replacement ε(r) → ε∗(r) for the complex dielectric constant
ε of the medium. In this way, any linear absorbing medium of
arbitrary shape behaves as a CPA at some discrete frequencies
under appropriate coherent illumination (the time reverse of
the output lasing modes) and provided that a precise amount
of dissipation in the medium occurs (equal in modulus to
the threshold gains for lasing). The CPA idea has received
much interest and stimulated theoretical and experimental
studies along different lines [7–16]. In particular, in Ref. [8]
an experimental demonstration of interferometric control of
the absorption based on CPA was reported using a thin slice
of silicon illuminated by two beams, whereas, in Refs. [7,9],
a laser-absorber device, which can operate as a CPA and as

a laser simultaneously, has been suggested, combining the
CPA and PT -symmetry concepts. Time reversal of other
optical instabilities, such as time-reversal of optical parametric
oscillation, have been proposed to realize a multicolor CPA
in Ref. [11]. Also, extension of the concept of time-reversed
laser and CPA to the spaser and plasmonic nanostructures
has been suggested in Refs. [13,14]. Here the energy of
the incoming wave is fully transferred into surface plasmon
oscillations and evanescent electromagnetic fields. CPA-based
devices may have potential applications to the realization of
a new class of absorptive interferometers and nanosensors. In
all previous studies, time reversal of lasing has been limited
to consider either a laser at threshold or above threshold in
steady-state operation. However, as previously mentioned, a
laser can operate in rather complex or transient regimes, which
are highly nonlinear. A major and foundational open question
is whether there exists a device that realizes the time reversal
of a laser operating in any (generally highly nonlinear) regime,
i.e., capable of perfectly absorbs the field E(t) emitted by a
laser operating in any regime. If yes, how can we realize (at
least, in principle) such an “anti-laser” device?

It is the aim of this work to answer to such two major
questions. By considering an optical system with a single input
or output channel and in the plane-wave approximation, we
will prove rather generally that for any electromagnetic signal
E(t) generated by a laser system S operated in an arbitrary
regime, i.e., emitting a transient, irregular, chaotic, or periodic
signal, one can always construct a CPA device S ′ that perfectly
absorbs the field E(t) emitted by system S and that a possible
simple realization of this system is obtained by placing inside
S, near the output coupler, a broadband linear absorber (atten-
uator) of appropriate transmittance. As examples, we discuss
two CPA devices that perfectly absorb the former, a chaotic
signal emitted by a single-mode laser operated in the Lorenz-
Haken instability regime, and the latter, a frequency-modulated
(FM) optical wave emitted by a multimode FM-operated
laser.
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FIG. 1. (Color online) Schematic of (a) a laser system S, made
of a ring-cavity of length L with a single output coupler (lossless
beam splitter BS with transmittance T and reflectance R = 1 − T ),
and (b) corresponding CPA system S ′. Note that S ′ is simply obtained
from S by the insertion of a linear absorber (attenuator) nearby the
output coupler with transmittance Ta = R2. The inset in (a) shows
the scattering relations of the field amplitudes at the lossless BS.

II. BASIC CPA IDEA

Let us consider a rather general ring-cavity laser system S of
length L with a single output coupler, consisting of a lossless
beam splitter BS, as shown in Fig. 1(a). The laser cavity
contains a gain medium and possibly other optical elements or
devices, such as saturable absorbers, amplitude or frequency
modulators, etc., depending on the operating regime of the
laser. The electric field E(z,t) circulating inside the cavity
can be written as E(z,t) = A(z,t) exp(ikz − ωt), where ω is a
reference frequency, k = ω/c is the wave number in vacuum, z
is the longitudinal spatial coordinate along the ring, and A(z,t)
is a slowly varying envelope. Without loss of generality, ω

is chosen to be a resonance frequency of the empty cavity,
so kL is an integer multiple of 2π . After one cavity transit,
the envelope φ(t) ≡ A(z = L−,t) at the plane z = L− can be
formally written as

φ(t) = P̂ (ψ(t − TR),t), (1)

where ψ(t) = A(z = 0+,t) is the field envelope at the z = 0
plane, TR = L/c is the cavity transit time, and P̂ is a functional
of ψ(t − TR) that describes the field evolution over one cavity
round trip. The specific form of P̂ (ψ,t) depends on the optical
elements and devices put inside the cavity and, in general,
cannot be given explicitly, requiring to solve coupled equations
that account for, e.g., polarization and population dynamics in
the active medium or in saturable absorbers possibly present
inside the laser cavity with the appropriate initial conditions
for the population and polarization variables (see, for instance,
Ref. [17]). Explicit forms of the operator P̂ can be given
is some cases, for example, for mode-locked lasers [18].
However, for our purposes we do not need to explicitly specify
the form of P̂ here. The time delay TR in Eq. (1) is introduced

in such a way that for an empty cavity P̂ is the identity
operator, i.e., P̂ (ψ(t − TR),t) = ψ(t − TR). The evolution of
ψ(t) at successive cavity transits and the corresponding output
laser field E(t) are simply obtained by imposing the scattering
relation between input and output channels at the beam splitter
BS. For a lossless BS, the scattering matrix is unitary, and one
can write (see the inset of Fig. 1)(

ψ

E

)
=

( √
T

√
R

−√
R

√
T

)(
f

φ

)
, (2)

where T and R = 1 − T are the BS transmittance and
reflectance, respectively, that are assumed to be spectrally
flat. For the laser system S without an injected signal, one
has f (t) = 0, φ(t) = (1/

√
R)ψ(t) and thus one obtains the

following equation for ψ(t)

ψ(t) =
√

RP̂ (ψ(t − TR),t). (3)

The signal E(t) emitted by the laser system in then given by

E(t) =
√

T

R
ψ(t). (4)

Once the initial field distribution ψ(t) is assigned in the interval
0 < t < TR , Eq. (3) can be used to determine the evolution of
ψ(t) at successive transits in the ring. To clarify this point, let
us introduce a local time variable τ , with 0 < τ < TR , and let
us set t = nTR + τ , where n = 0,1,2,3, . . . is the round trip
number in the ring. After setting ψ (n)(τ ) = ψ(t = nTR + τ ),
Eq. (3) can be written as

ψ (n)(τ ) =
√

RP̂ (ψ (n−1)(τ ),τ + nTR). (5)

For an assigned initial condition ψ (0)(τ ), the map (5) enables
us to determine recursively the field distributions ψ (n)(τ ) at
successive round trips. The functional P̂ (ψ (n−1)(τ ),τ + nTR)
is generally computed in the frame of an initial-boundary
value (Goursat) problem of coupled differential equations
(see, for instance, Ref. [17]; see also the example discussed
in the appendix). The temporal evolution of the emitted
field ψ(t) depends on the operating regime of the laser. For
example, it could describe a periodic train of ultrashort pulses
when the laser is operated in the mode-locking regime; in
this case, the self-consistent equation (3) has the form of a
differential-delayed equation, the so-called master equation
of mode-locking [3,18]. But it could also describe a rather
irregular waveform, such as for a laser operated in the chaotic
regime (see, for instance, Refs. [2,19]). The main question is
now as follows: Is there an optical system S ′ that can perfectly
absorb the optical field E(t) emitted by the laser system S, i.e.,
can we in some way time reverse a laser that is operated in an
arbitrary regime?

The answer is affirmative, and a possible realization of
the system S ′ is depicted in Fig. 1(b). The laser system S ′
is basically obtained from S by just inserting, near the output
beam splitter BS, a broadband linear absorber (attenuator) with
a transmittance Ta given by

Ta = R2. (6)

In this way, it can be shown rather generally that S ′ behaves
as a CPA when the signal f1(t) injected into the cavity is
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given by

f1(t) =
√

RE(t) =
√

T ψ(t), (7)

where E(t) is given by Eq. (4) and ψ(t) is the solution to Eq. (3)
with the appropriate initial conditions. Such an injected signal
is basically the output of the laser S, attenuated by the factor√

R [20].
To prove that S ′ time reverses the laser system S when

Eqs. (6) and (7) are satisfied, let us inject into S ′ via the
beam splitter port the signal f1(t). Let us then indicate
by E1(z,t) = A1(z,t) exp(ikz − iωt) the electric field that is
established inside the cavity of the system S ′ after signal
injection and by E1(t) the corresponding output field [see
Fig. 1(b)]. In this case one can obviously write [compare with
Eq. (1)]

φ1(t) =
√

TaP̂ (ψ1(t − TR),t), (8)

where we have set ψ1(t) = A1(z = 0+,t) and φ1(t) = A1(z =
L−,t). In fact, the cavity round-trip operator P̂1 of the system
S ′ is simply obtained by cascading the propagator P̂ of S with
the transmission amplitude

√
Ta of the added linear absorber,

i.e., P̂1 = √
TaP̂ . On the other hand, the scattering relation of

the field amplitudes at the beam splitter BS in the system S ′
relates ψ1(t), φ1(t) and the injected signal f1(t) according to

ψ1(t) =
√

T f1(t) +
√

Rφ1(t). (9)

From Eq. (9) one obtains φ1(t) = (1/
√

R)ψ1(t) −√
T/Rf1(t), which, after substitution into Eq. (8), yields

the following equation for the intracavity field ψ1(t) that is
established inside the cavity at the plane z = 0+

ψ1(t) =
√

T f1(t) +
√

RTaP̂ (ψ1(t − TR),t). (10)

The field E1(t) leaving S ′ is then obtained from the scattering
relation at the beam splitter and reads explicitly E1(t) =
−√

Rf1(t) + √
T φ1(t), which by means of Eq. (9) can be

written as

E1(t) =
√

T

R
ψ1(t) − f1(t)√

R
. (11)

Similarly to the case of the laser system S in the absence of the
injected signal, Eq. (10) can be written as a recursive relation

ψ
(n)
1 (τ ) =

√
T f

(n)
1 (τ ) +

√
RTaP̂

(
ψ

(n−1)
1 (τ ),τ + nTR

)
, (12)

where we have set ψ
(n)
1 (τ ) = ψ1(τ + nTR) and f

(n)
1 (τ ) =

f1(nTR + τ ). Once the initial field distribution ψ
(0)
1 (τ ) is

assigned, the map (12) enables one to determine the evolution
of the intracavity field ψ1(t) at successive round trips. Let
us now assume that the two systems S and S ′ are initially
prepared in the same state, i.e., that ψ

(0)
1 (τ ) = ψ (0)(τ ) and that

atomic variables (population inversion and polarization) have
the same initial values in the active medium (for example, their
equilibrium values). In this case, one can readily show, using
Eq. (5), that, if the injected signal f1(t) is chosen according to

f1(t) = 1 − √
Ta√

T
ψ(t), (13)

the recursive relation (12) admits of the solution ψ
(n)
1 (τ ) =

ψ (n)(τ ) for any n. This implies that the intracavity fields

ψ1(t) and ψ(t) established in the two systems S and S ′ are
the same. Note that this result holds even if the map (12)
shows different attractors (such as for a bistable system),
provided that the initial conditions in S ′ belong to the basin
of attraction of the CPA solution ψ

(n)
1 (τ ) = ψ (n)(τ ). This

ensures that, asymptotically, one has ψ
(n)
1 (τ ) → ψ (n)(τ ) as

n → ∞, even though ψ
(n)
1 (0) �= ψ (n)(0). But for some other

initial conditions it might happen that ψ
(n)
1 (τ ) is not attracted

toward ψ (n)(τ ), and the CPA scheme fails. However, like in any
nonlinear dynamical system showing different attractors, one
can switch the path from one stable attractor to another one
by introducing large perturbations of the system parameters
(e.g., by transiently changing the cavity losses or the gain in
the medium). As discussed in Sec. III A with reference to
a specific example, the result holds for transient or chaotic
regimes as well, which are very sensitive to the initial state of
the system.

The field E1(t) emitted by the system S ′ is obtained after
substitution of Eq. (13) into Eq. (11). For ψ1(t) = ψ(t), one
obtains

E1(t) =
√

Ta − R√
T R

ψ(t), (14)

which vanishes if the transmittance Ta is chosen to satisfy
Eq. (6). Correspondingly, the injected field f1(t), as obtained
from Eq. (13) after setting Ta = R2, is given by Eq. (7). Hence,
provided that Eqs. (6) and (7) are met and the two systems S

and S ′ are initially prepared in the same state, S ′ behaves as
a CPA device for the signal emitted by S, regardless of its
operational regime.

III. EXAMPLES OF CPA DEVICES

In this section we discuss two examples of CPA devices
corresponding to a laser oscillator S operating in two nontrivial
regimes. The former example is a CPA device for a chaotic
optical signal emitted by a single-mode homogeneously broad-
ened laser operated in the chaotic (Lorenz-Haken instability)
regime [1,2,19]; the latter example is a CPA device for a
frequency-modulated (FM) optical signal emitted by a FM-
operated laser with an intracavity phase modulator [3,21,22].

A. CPA for a chaotic optical field

The first example we would like to discuss is a CPA
device that perfectly absorbs a chaotic optical field emitted
by a single-mode homogeneously broadened laser operated
in the chaotic (Lorenz-Haken instability) regime [1,2,19]. In
this case, the laser system S just contains a homogeneously
broadened two-level medium of length l with a small-signal
gain coefficient per unit length g, which is provided by
population inversion in the medium. In the single longitudinal
mode and uniform field approximations, the intracavity field
A(z,t) is assumed to be almost uniform along the ring (i.e.
almost constant for 0 < z < L) and slowly varying in time over
one cavity round trip [2]. In this case, map (5) can be effectively
replaced by a set of three coupled differential equations de-
scribing the evolution of the intracavity field, polarization, and
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population inversion in the two-level medium, the so-called
Lorenz-Haken model of the single-mode homogeneously
broadened laser (see the appendix for technical details). These
equations read [2]

dψ

dt
= −κ(ψ + 2C	)

d	

dt
= −γ⊥[(1 + i�)	 + ψn]

dn

dt
= −γ‖

[
n − 1 − 1

2
(ψ	∗ + ψ∗	)

]
(15)

where ψ(t), 	(t), and n(t) are the intracavity electric field, po-
larization, and population inversion, respectively, normalized
as in Refs. [2,12]; γ‖ and γ⊥ are the population and dipole
decay rates, respectively;

κ = T c

2L (16)

is the cavity decay rate; C = gl/T ; and � = (ω0 − ω)/γ⊥
is the normalized detuning parameter between the cavity
resonance frequency ω and the atomic transition frequency
ω0. In particular, at resonance � = 0 (i.e., for ω = ω0), 	 and
ψ can be taken to be real valued, and Eqs. (15) are analogous
to the Lorenz model, developed for convective instabilities
in hydrodynamics [1,2]. In the following, we will mainly
consider the limit � = 0. In this case, the laser threshold is
attained for 2C > 1, at which the nonlasing trivial solution
(ψ = 0,	 = 0,n = 1) to Eqs. (15) becomes unstable. Above
the threshold, the laser equations admit of a steady-state
solution, with two possible phases for ψ and 	 (0 and π ),
namely

ψ± = ±√
2C − 1, 	± = ∓ 1

2C

√
2C − 1, n± = 1

2C
.

(17)

Such solutions may undergo a subcritical Hopf instability in
the bad cavity limit (κ > γ‖ + γ⊥) and for large small-signal
gains [1,2]. In such a regime chaotic self-pulsations can be
observed. Here, the point (ψ(t), 	(t), n(t)) in phase space
never settles down but continually makes excursions about one
of the two laser solutions (17) with what appear to be random
jumps from circling one fixed point to circling the other. The
strange set is known as the Lorenz attractor, and the output
laser field E(t) � √

T ψ(t) turns out to be strongly sensitive
to the initial conditions [1,2]. As an example, in Fig. 2(a)
we show the evolution of the intracavity laser field ψ(t) as
obtained by numerical solution of the Lorenz-Haken equations
(15) for parameter values κ/γ⊥ = 4, γ‖/γ⊥ = 0.5, 2C = 40,
� = 0 and for the initial condition ψ(0) = 0.001, 	(0) = 0,
n(0) = 1. The corresponding projection of the phase-space
trajectory in the (ψ,n) plane is depicted in Fig. 2(b), which
shows the characteristic Lorenz attractor of the laser dynamics
in the chaotic regime. It should be noted that in such a regime
the established intracavity laser field (and, hence, the laser
output field) is strongly sensitive to the initial conditions. For
example, the dotted curve in Fig. 2(a) shows the intracavity
field that one would observe for the slightly changed initial
conditions ψ(0) = 0.0011, 	(0) = 0, n(0) = 1.

normalized time 
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po
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FIG. 2. (Color online) (a) Evolution of the intracavity field ψ(t)
in the laser system S as obtained by numerical solution of the Lorenz-
Haken equations (15) for the initial condition [ψ(0) = 0.001,	(0) =
0,n(0) = 1] (solid curve), and (b) corresponding projection of the
phase-space trajectory in the (ψ,n) plane. Parameter values are
κ/γ⊥ = 4, γ‖/γ⊥ = 0.5, 2C = 40, and � = 0. In (a) the dotted
curve shows the evolution of ψ(t) as obtained by the slightly
different initial condition [ψ(0) = 0.0011,	(0) = 0,n(0) = 1]. Note
the strong sensitivity on the initial condition, which is a rather general
feature of a chaotic attractor. In (c) we show the numerically computed
evolution of the output field E1(t), normalized to

√
T [i.e., the

behavior of ψ1(t) − ψ(t)], in the CPA system S ′ with an injected
field f1(t) and attenuator transmittance Ta satisfying Eqs. (6) and
(7), for the initial conditions [ψ1(0) = 0.0001,	1(0) = 0,n1(0) = 1]
(curve 1) and [ψ1(0) = 0.005,	1(0) = 0,n1(0) = 1] (curve 2). The
dotted curve in (c) shows, for comparison, the behavior of the
injected field f1(t), normalized to

√
T [i.e., the behavior of ψ(t)].

(d) Same as in (c) but for a large deviation of initial conditions
[ψ1(0) = 5,	1(0) = 0,n1(0) = 1].

Let us now consider the CPA device S ′ associated to S,
as discussed in Sec. II. In this case, in the single-longitudinal
mode and mean-field approximations, the dynamical evolution
of the intracavity field ψ1(t) is governed by a set of coupled
equations similar to Eqs. (15), in which the first equation is
modified to take into account the effects of the injected field
f1(t) and of the intracavity absorber with transmittance Ta .
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One obtains (see the appendix for technical details)

dψ1

dt
= −κ(ψ1 + 2C	1) − κ1ψ1 + κ

2f1(t)√
T

d	1

dt
= −γ⊥[(1 + i�)	1 + ψ1n1)

dn

dt
= −γ‖

[
n − 1 − 1

2
(ψ	∗ + ψ∗	)

]
, (18)

where

κ1 = c(1 − √
Ta)

L = 2
(1 − √

Ta)

T
κ. (19)

The output field E1(t) from the CPA device is then given
by Eq. (11). According to the general analysis presented in
Sec. II, if the injected field is chosen to satisfy the condition
(13), it can be readily shown that the solution to Eqs. (18) is
given by ψ1(t) = ψ(t), 	1(t) = 	(t), n1(t) = n(t) provided
that the same initial conditions ψ1(0) = ψ(0), 	1(0) = 	(0),
n1(0) = n(0) are assumed for the field and atomic variables in
the two systems S and S ′. Furthermore, if the transmittance
Ta of the absorber in S ′ is tuned to satisfy the condition (6),
the output field E1(t) emitted by S ′ vanishes, i.e., S ′ behaves
as a perfect CPA for the chaotic optical field ψ(t). Note that
for the perfect CPA device one has κ1 = 2κ and the dynamical
system (18) reads

dψ1

dt
= −κ(ψ1 + 2C	1) − 2κ[ψ1 − ψ(t)]

d	1

dt
= −γ⊥[(1 + i�)	1 + ψ1n1)

dn1

dt
= −γ‖

[
n1 − 1 − 1

2
(ψ1	

∗
1 + ψ∗

1 	1)

]
, (20)

where ψ(t) is the solution to Eqs. (15) with the assigned initial
conditions.

It should be noted that, in a practical case, the laser system
S and the CPA system S ′ cannot be exactly prepared in the
same state. In this case, the solution (ψ1,	1, n1) to Eqs. (20)
deviates from the solution (ψ,	, n) of Eqs. (15), just because
the initial conditions of field and/or atomic variables differ.
Correspondingly, the output field E1(t) emitted by the CPA
device, given by

E1(t) =
√

T

R
[ψ1(t) − ψ(t)] �

√
T [ψ1(t) − ψ(t)], (21)

would not vanish, i.e., perfect absorption would be lost. Such
a circumstance raises the question whether the CPA idea
presented in Sec. II is actually of physical relevance. This
objection is especially serious whenever the system dynamics
is strongly sensitive to the initial conditions, such as for a
chaotic laser, or if the system S ′ with injected signal may show
two (or more) stable attractors, i.e., in the presence of bista-
bility or multistability [23]. In this case, an initial condition
of S ′ sufficiently far from that of S can bring the dynamical
system (20) into a different attractor than (ψ(t),	(t),n(t))
[23]. Strong deviations of the initial conditions may occur,
for example, whenever the pump parameter 2C is larger than
3 and system S ′ thus self-oscillates, i.e., it is above laser

threshold (in the absence of the injected signal) in spite of the
attenuator put in the cavity. However, provided that the basin
of attraction of (ψ(t),	(t), n(t)) for S ′ is sufficiently wide, a
large perturbation can switch the path of the dynamical system
toward the “right” CPA attractor (ψ(t),	(t), n(t)). Of course,
the basin of attraction of (ψ(t),	(t), n(t)) for S ′, as well as
the kind and strength of the large perturbations requested to
switch the nonlinear dynamics of Eqs. (20) from one attractor
to another, should be considered on a case-by-case basis. Let
us focus here our attention to the Lorenz-Haken model of laser
chaos. In this regime, it is known that even a small change in
the value of ψ(0) may deeply modify the output waveform, as
shown in Fig. 2(a). However, numerical results show that the
basin of attraction of (ψ(t),	(t),n(t)) for Eqs. (20) is quite
broad, i.e., asymptotically one has ψ1(t) → ψ(t) for a quite
broad range of initial conditions (ψ1(0),	1(0), n1(0)) around
(ψ(0),	(0), n(0)). The reason is that the dynamical system
(20) [contrary to the Lorenz-Haken dynamical system (15)] is
driven by the external field ψ(t), which forces ψ1(t) toward
ψ(t) after an initial transient. This is clearly shown in Fig. 2(c),
which depicts the output field E1(t), normalized to

√
T [i.e.,

the difference ψ1(t) − ψ(t); see Eqs. (21)] emitted by the CPA
device S ′, as obtained by numerical integration of Eqs. (20),
for the two initial conditions (ψ1(0) = 0.0001,	1(0) = 0,
n1(0) = 1) [curve 1 in Fig. 2(c)] and (ψ1(0) = 0.005,	1(0) =
0, n1(0) = 1) [curve 2 in Fig. 2(c)], which appreciably differ
from ψ(0) = 0.001,	(0) = 0, n(0) = 1. For comparison, in
the figure we show (but on a different scale) the field f1(t) =√

T ψ(t) injected into the cavity, normalized to
√

T [i.e., the
behavior of ψ(t)], where ψ(t) is the field of S for the initial
condition (ψ(0) = 0.001,	(0) = 0, n(0) = 1) [i.e., the solid
curve in Fig. 2(a)]. Note that, since the initial conditions in S ′
and S differ, the CPA output field does not exactly vanish in
an initial transient [see curves 1 and 2 in Fig. 2(c)]; however, it
remains much smaller than the injected field even though the
initial conditions in the two systems appreciably differ. Most
importantly, after an initial transient, the output field vanishes,
and perfect absorption is attained. Such a behavior is observed
even for large deviations of initial conditions, as shown in
Fig. 2(d) as an example.

B. CPA for a frequency-modulated optical field

As a second example, we discuss the realization of a CPA
device for an optical frequency-modulated signal E(t), i.e., an
optical field with a constant intensity but with a sinusoidally
modulated optical phase. A coherent FM optical signal E(t)
is approximately generated by placing a phase modulator
inside a laser device and sinusoidally driving it asynchronously
as compared to the cavity round-trip time. In this way the
laser operates in the so-called frequency-modulation (FM)
regime [3,21,22]. The FM regime is a multimode regime in
which several cavity axial modes are excited out of resonance
with steady-state amplitudes but with time-varying phases,
resulting in a constant intensity laser field but with a carrier
laser frequency which is sinusoidally swept at the frequency
impressed by the phase modulator [3]. As shown in Ref. [22],
a pure FM signal at optical carrier can be generated provided
that the phase modulation is sufficiently asynchronous such
that the bandwidth of the FM signal is much smaller that
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FIG. 3. (Color online) Schematic of (a) a FM-operated laser S,
made of a ring-cavity containing a gain medium (gain coefficient g)
and a phase modulator, driven at a frequency ωm detuned from
the frequency separation ωax of cavity axial modes, and (b) the
corresponding CPA system S ′, which is obtained from S by replacing
the gain medium with an absorber with absorption coefficient −g.

the gain bandwidth of the active medium. A schematic of a
FM-operated laser is shown in Fig. 3(a). The optical cavity
contains a gain medium and a phase modulator, which is
sinusoidally driven at a frequency ωm which is detuned enough
from the cavity axial mode separation ωax = 2π/TR , where TR

is the cavity photon transit time [3]. For a slow gain medium
and neglecting dispersive and finite gain bandwidth effects,
the cavity round-trip operator reads [22]

P̂ (t,ψ) = exp(g) exp[i� cos(ωmt)]ψ(t − TR), (22)

where g is the single-pass saturated gain in the active medium
and � is the modulation depth impressed by the phase
modulator. The self-consistent equation for the field ψ(t)
Eq. (3) then reads

ψ(t) = exp[g − γ + i� cos(ωmt)]ψ(t − TR), (23)

where γ = −ln
√

R is the logarithmic loss of the cavity due to
the output coupling. Equation (23) should be supplemented
with a rate equation for the saturated gain g (see, for
instance, Ref. [24]). After an initial transient, a steady-state
operation is achieved, in which the saturated gain settles
down to the stationary value g = γ [24]. Correspondingly,
the intracavity field ψ(t) is given by one of the “modes” of
the phase-modulated cavity (generally the one with the carrier
fequency closest to the center of the gainline). Such modes
are simply obtained as eigenfunctions of Eq. (23) and read

explicitly [22,24]

ψ(t) = exp[i� cos(ωmt + ϕ) + ilωaxt]. (24)

In Eq. (24), l = 0, ± 1, ± 2, . . . is the mode index, � is the
effective modulation index, and ϕ a phase offset. The values of
� and ϕ are obtained after substitution of the ansatz (24) into
Eq. (23) and equating the imaginary terms in the exponentials
on the left- and right-hand sides of the equation so obtained.
This yields

� = �

2 sin(πωm/ωax)
, (25)

cos ϕ = �

2�
. (26)

The output field, ∼ψ(t)eiωt , is thus a pure FM signal, i.e.,
a frequency comb, with spectral lines at frequencies nωm

(n = 0, ± 1, ± 2, . . .) around the carrier frequency ω + lωax

of amplitudes ∼Jn(�), where Jn is the Bessel function of the
first kind and of order n and ω is a reference cavity resonance
frequency. According to Eq. (25), the effective modulation
index � increases and diverges as the synchronous modulation
condition ωm = ωax is attained. Indeed, in practical FM-
operated lasers large modulation indices are usually obtained
by tuning the modulation frequency ωm close to the cavity
axial mode spacing ωax (see, for instance, Refs. [21,25]).
However, the solution (24) provides an accurate approximation
to the output field of the FM-operated laser provided that
the modulation frequency ωm remains sufficiently detuned far
apart from ωax in such a way that the spectral extent ∼2�ωm

of the FM signal ψ(t) is much smaller than the gain linewidth
ωg , i.e., provided that the following condition

|ωm − ωax| � ωaxωm�

πωg

(27)

is satisfied.
Indeed, as the synchronous modulation condition ωm = ωax

is approached, laser operation switches into a pulsed regime
(FM mode-locking), with the generation of a periodic train of
short optical pulses [3,26].

Let us now discuss the possibility of perfectly absorbing
the FM signal emitted by laser S. According to the analysis of
Sec. II, a CPA system S ′ that perfectly absorbs the FM signal
can be obtained from laser S by placing a linear absorber with a
transmittance Ta = R2 inside the cavity. Note that, as g = γ =
−ln

√
R and since we neglected gain bandwidth and dispersion

effects, the combined effect of the gain and absorber media in
laser S ′ is equivalent to that of a single linear absorber placed
in the cavity with an absorption coefficient −g, as shown in
Fig. 3(b). In other words, for this special example we retrieve
the simple rule of Ref. [5] that the CPA system is obtained
from the lasing system by replacing the gain medium with
an absorber with an amount of dissipation exactly opposite
to the amplification factor in the lasing medium at threshold.
We stress, however, that the CPA system S ′ that realizes the
time reverse of the lasing system S, obtained by the general
procedure outlined in Sec. II, does not generally correspond
to the replacement of the gain medium with an absorber, as
discussed for instance in the example of Sec. III A.
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IV. CONCLUSION

In conclusion, in this work we have extended the concepts of
time reversal of lasing and CPA, recently introduced in Ref. [5],
to the case of optical radiation emitted by a laser operated
in an arbitrary regime, i.e., for transient, chaotic, or periodic
coherent optical fields. We have proven rather generally that
any electromagnetic signal E(t) generated by a laser system
S operated in an arbitrary (and generally highly nonlinear)
regime can be perfectly absorbed by a CPA device S ′ which is
simply realized by placing inside S a broadband linear absorber
(attenuator) of appropriate transmittance. As examples, we
discussed CPA devices that perfectly absorb a chaotic laser
signal and a frequency-modulated optical wave.
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APPENDIX: CPA FOR CHAOTIC OPTICAL FIELDS:
DERIVATION OF THE MEAN-FIELD EQUATIONS

In this section we briefly derive the mean-field equations
(15) and (18) given in the text from the general maps (5) and
(12) in case where the functional P̂ describes field propagation
in a homogeneously broadened two-level medium of length l.
We will perform such a derivation for the more general case
of the system S ′ of Fig. 1(b) with arbitrary injected signal
f1(t) and transmittance Ta of the absorber; the laser system
S of Fig. 1(a) is simply obtained after setting f1 = 0, Ta = 0.
Field propagation inside the ring cavity is described by the
Maxwell-Bloch equations (see Sec. 4.3 of Ref. [2]; see also
Ref. [12])

∂A1

∂z
= −1

c

∂A1

∂t
− g	1

∂	1

∂t
= −γ⊥ [(1 + i�)	1 + n1A1]

∂n1

∂t
= −γ‖

[
n1 − 1 − 1

2
(A∗

1	1 + A1	
∗
1)

]
, (A1)

where A1(z,t), 	1(z,t), n1(z,t) are the intracavity electric field
envelope, polarization envelope, and population inversion,
respectively, normalized as in Refs. [2,12]; γ‖ and γ⊥ are
the population and dipole decay rates, respectively; g is
the small-signal gain per unit length in the active medium;
and � = (ω0 − ω)/γ⊥ is the normalized detuning parameter
between the cavity resonance frequency ω and the atomic
transition frequency ω0. For the sake of definiteness, the gain
medium (of length l) is placed at 0 < z < l; similarly, we
assume that the attenuator Ta is a thin plate placed close
to the beam splitter BS [see Fig. 1(b)]. In this way field
attenuation after passage across the absorber can be included
in the scattering matrix of the beam splitter BS. This yields the
following ring-cavity boundary condition for the field A1(z,t)

at the planes z = 0+ and z = L−,

A1(0+,t) =
√

T f1(t) +
√

RTaA1(L−,t). (A2)

The output field E1(t) escaping from the cavity through the
beam splitter BS is then given by

E1(t) =
√

T

R
A1(0+,t) − f1(t)√

R
. (A3)

Obviously, n1 and 	1 in Eqs. (A1) are defined in the range 0 <

z < l, and for z > l (i.e., in the empty cavity region) the first
equation of (A1) is still valid provided that we assume g = 0.
The field A1(L−,t) at z = L− and time t entering in Eq. (A2)
can be computed as a functional of the field A1(0+,t − TR) at
plane z = 0+ and time t − TR , where TR = L/c is the cavity
transit time. In fact, after introduction of the new variables

ξ = z, η = t − z/c (A4)

Eqs. (A1) take the form

∂A1

∂ξ
= −g	1

∂	1

∂η
= −γ⊥[(1 + i�)	1 + n1A1]

∂n1

∂η
= −γ‖

[
n1 − 1 − 1

2
(A∗

1	1 + A1	
∗
1)

]
. (A5)

Equations (A5) can be integrated in the interval 0 < ξ < l and
for 0 < η < TR once the initial conditions A1(ξ = 0+,η) and
	1(ξ,η = 0), n1(ξ,η = 0) are assigned [initial-boundary value
(Goursat) problem [17]]. Typically, for a medium initially at
equilibrium in the absence of the field, one can take 	1(ξ,η =
0) = 0 and n1(ξ,η = 0) = 1. In this way, one can compute
A(ξ = L−,η) = A(ξ = l,η) for 0 < η < TR . In the physical
space-time variables (z,t), this means that we know the value
of A1(L−,t) in the time interval TR < t < 2TR . With such
a solution, from Eq. (A2) one can then calculate A1(0+,t)
is the time interval TR < t < 2TR , which serves as an initial
condition to integrate Eqs. (A5) in the interval 0 < ξ < l and
for TR < η < 2TR (second round trip) with the appropriate
initial values of 	1(ξ,η = TR) and n1(ξ,η = TR) computed at
the previous step. Iteration of such a procedure enables one to
calculate A1(0+,t) = ψ1(t) at any time t > 0, and, thus, the
output field E1(t) according to Eq. (A3).

An important case is the one obtained by taking the limit
gl → 0. In this case, from Eqs. (A5) it follows that the
variables A1, 	1, and n1 are almost constant functions with
respect to the ξ variable, i.e., A1(ξ,η) ∼ A1(0,η), 	1(ξ,η) ∼
	1(0,η), and n1(ξ,η) ∼ n1(0,η). The small change A1(ξ =
L−,η) − A1(ξ = 0+,η) can be computed from the first of
Eqs. (A5) as A1(ξ = L−,η) − A1(ξ = 0+,η) � −gl	1(ξ =
0,η), which in terms of the space-time physical variables (z,t)
reads

A1(L−,t + TR) � A1(0+,t) − gl	1(0,t). (A6)

Indicating by ψ1(t) = A1(z = 0+,t), 	1(t) = 	1(z = 0,t),
and n1(t) = n1(z = 0,t), from Eqs. (A2) and (A6) it follows
that ψ1(t) satisfies the delayed equation

ψ1(t + TR) =
√

T f1(t + TR) +
√

RTa[ψ1(t) − gl	1(t)],

(A7)
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which should be associated to the differential equations for
	1(t) and n1(t)

d	1

dt
= −γ⊥[(1 + i�)	1 + n1ψ1]

dn1

dt
= −γ‖

[
n1 − 1 − 1

2
(ψ∗

1 	1 + ψ1	
∗
1)

]
. (A8)

In their present form, Eqs. (A7) and (A8) represent a system
of coupled differential-delayed equations that should be
integrated with the initial conditions n1(0), 	1(0), and ψ1(t) for
0 < t < TR . The common mean-field and single-mode laser
model [1,2] is obtained from Eqs. (A7) and (A8) by taking
the further limits T = 1 − R → 0, Ta → 1, with C ≡ gl/T

finite, and assuming that the injected and intracavity fields
f1(t) and ψ1(t) vary slowly with respect to time over one
cavity transit time TR . Under such assumptions, the delayed

equation (A7) can be replaced by the following differential
equation:

ψ1(t) + TR

dψ1

dt
�

√
T f1(t) +

√
Taψ1(t) − T

2
ψ1(t) − gl	1(t)

(A9)

i.e.,

dψ1

dt
� −κ[ψ1(t) + 2C	1(t)] − κ1ψ1(t) + κ

2f1(t)√
T

, (A10)

where κ and κ1 are defined by Eqs. (16) and (19) given in the
text. The system of coupled differential equations (A8) and
(A10) is precisely the modified single-mode Lorenz-Haken
laser model (18) given in the text. Note that the usual Lorenz-
Haken laser model (15) is simply obtained after setting f1 = 0
and Ta = 1 (i.e., κ1 = 0).
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