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Wave-vector mismatch effects in electromagnetically induced transparency in Y-type systems
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We study electromagnetically induced transparency (EIT) of a probe field in a four-level Y-type atomic system
driven by two strong laser (coupling) fields. Both homogeneously (radiative) and Doppler broadened systems are
considered. The effect of residual Doppler broadening on EIT is demonstrated for various wave-vector mismatches
occurring when the frequency of coupling fields is equal (kc = kp), higher (kc > kp), or lesser (kc < kp) than
that of the probe field frequency. Contrary to usual belief it is found that for the kc > kp wave-vector mismatch
case, the probe absorption profile displays very wide and almost complete single or double EIT windows whose
width, depth, and location depend upon the wave-vector mismatch, Rabi frequencies, and atom field detuning of
the coupling fields. Analytical results are also obtained to explain these interesting features.
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I. INTRODUCTION

Electromagnetically induced transparency (EIT) [1] is one
of the many unusual and interesting phenomena produced
by atomic coherence and interference effects that enable
propagation (without significant attenuation) of light through
an otherwise opaque atomic medium. EIT is of tremendous
interest due to possibility of wide applications in optical
switching via light velocity control [2], quantum informa-
tion [3], and nonlinear optics [4].

Initial works on EIT primarily focused on one-photon
transitions between states of opposite parity in simple three-
level �, V , and cascade (ladder) systems [1–4]. However,
currently there is considerable interest in the study of EIT and
its effect on nonlinear optical interactions in four-level systems
of various configurations. Pertinent to the present work is
a four-level Y-type system interacting with two strong laser
(coupling) fields and a low-intensity probe field.

Agarwal and Harshawardhan [5] predicted theoretically
that a Y-type atomic system under one strong-field and two
weak-field excitations can give rise to interesting effects such
as inhibition and enhancement of the two-photon absorption.
This effect was first experimentally observed by Gao et al.
in sodium atoms [6] and subsequently electromagnetically
induced two-photon transparency was experimentally ob-
served in both 85Rb and 87Rb atomic vapors [7]. In a similar
model, the resonance fluorescence [8] and vacuum-induced
interference effects [9] were also investigated theoretically.
Experimental observation of competing four-wave mixing
(FWM) and six-wave mixing (SWM) processes [10] and
two FWM processes [11] due to atomic coherence and
interference in the four-level Y-type atomic systems were also
reported. These experiments utilized two-photon Doppler-free
configurations for propagation of the (pump, coupling, and
probe) laser beams in an atomic Rb vapor cell. More recently
a theoretical study of dynamical control of soliton formation
and propagation [12] in a four-level Y-type homogeneously
broadened system interacting with two strong laser fields and
a low-intensity probe field was reported.

*suneelsp@uohyd.ernet.in

In atomic vapors the probe transparency (or absorption)
characteristics are governed by the nature of the residual (two-
photon) Doppler broadening originating from the thermal mo-
tion of the atoms and mismatch kp − kc, of applied probe and
coupling field wave vectors kp and kc, respectively [13–15]. It
is the usual belief that a Doppler-free medium is essential for
observing reduced probe absorption at much lower coupling
(or pump) laser power. Hence most experiments tend to utilize
a two-photon Doppler-free geometry where the coupling
and probe beams are counterpropagating and have similar
frequencies so that kp = kc and the residual Doppler width
vanishes. Realizing perfect Doppler-free two-photon transition
in real atomic systems is not feasible due to a rather large
dissimilarity between the wavelengths (or wave vectors) of
the (upper) transition driven by coupling field(s) and the
lower transition connected by the probe field. Even the often-
utilized nearly-Doppler-free two-photon process involving the
5 s1/2 → 5 p3/2 → 5 d5/2 (or 5 d3/2) transition in Rb [10,11]
has a nonzero (kp < kc) residual width of 1.6 MHz [14], which
is much larger than the dephasing rate (0.4 MHz) of the two-
photon transition and thus can significantly affect the probe
transparency. On the other hand it was found that the kp < kc

case is actually conducive to the observation of reduced probe
absorption [13,15]. However, in the opposite kp > kc (fre-
quency upconversion) case, where no transparency can occur
for a single coupling field, Silva et al. [16] demonstrated that
using a standing-wave configuration of counterpropagating
coupling fields, it is possible to induce a large transparency in a
three-level cascade system whenever the ratio of probe to drive
field frequency is close to half integer values. It therefore would
be of interest to assess the influence of the various broadening
mechanisms and different regimes of wave-vector mismatches
in the inhomogeneous broadening case (particularly when
kp < kc) on probe transparency (absorption) characteristics
in a Y-type four-level system.

In this work we study the transparency of a weak probe field
in a Doppler broadened four-level Y-type system interacting
with two strong laser (coupling) fields. To compare and con-
trast, an analysis of a homogeneously (radiatively) broadened
four-level Y-type system is also presented. The organization
of the paper is as follows: Sec. II (which also contains
several subsections) deals with density-matrix formulation.
We solve for the steady-state density-matrix equations for
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the Y-type system to first order in amplitude of a (weak)
probe field. Expressions are derived for one-photon (probe)
coherence, susceptibility, and absorption coefficients from
which absorption and dispersion characteristics of the probe
field can be determined. Analytical results are derived so as
to explain the influence of various broadening mechanisms as
well the velocity selective nature of the probe transparency in
different regimes of wave-vector mismatch. It is shown that
depending on the amplitude and the detuning of the coupling
lasers, the absorption profile of a weak probe field shows single
or double EIT windows whose location, width, and depth can
be controlled by manipulating the parameters of the coupling
fields. In Sec. III numerical results are presented for probe
absorption and dispersion considering the transitions 3 S1/2 →
3 P3/2 → 4 D3/2 (3 S1/2 → 3 P3/2 → 4 D5/2) in a sodium
atom. These are compared with the analytical results derived
in the previous section and good agreement is obtained. A brief
summary and conclusions are presented in Sec. IV.

II. THEORY FOR THE Y SYSTEM

A. Formulation

We consider a dual ladder Y-type four-level atomic

system interacting with three laser fields
⇀

Ep,
⇀

Ec1, and
⇀

Ec2 as shown in Fig. 1. The spontaneous emission rates
from the two nearly degenerate upper states |4〉 and |3〉,
respectively, to intermediate level |2〉 are 2γ42 and 2γ32,
and that from level |2〉 to ground level |1〉 is 2γ21. The

three laser fields are given by
⇀

Ep = ⇀
εp exp[i(

⇀

kp · ⇀

r − ωpt)] +
c.c.,

⇀

Ec1 = ⇀
εc1 exp[i(

⇀

kc1 · ⇀

r − ωc1t)] + c.c., and
⇀

Ec2 =
⇀
εc2 exp[i(

⇀

kc2 · ⇀

r − ωc2t)] + c.c.. The weak probe laser field

FIG. 1. EIT scheme in a four-level Y-type atomic system with
dual ladder-type EIT. Here �p is the Rabi frequency of the (weak)
probe and �c1, and �c2 are the (strong) coupling field Rabi
frequencies. The detunings of the probe and coupling fields from their
respective atomic transitions are �21 = ω21 − ωp , �32 = ω32 − ωc1,
and �42 = ω42 − ωc2, respectively.

⇀

Ep of frequency ωp, wave vector
⇀

kp, and Rabi frequency
�p = (⇀

μ21 · ⇀
εp)/h̄ is applied to the |1〉 → |2〉 transition.

The transition |2〉 → |3〉 (|2〉 → |4〉) is being driven by the

coupling laser field
⇀

Ec1 (
⇀

Ec2) of frequency ωc1 (ωc2), the

wave vector
⇀

kc1 (
⇀

kc2), and the Rabi frequency �c1 = (⇀
μ32 ·

⇀
εc1)/h̄ [�c2 = (⇀

μ42 · ⇀
εc2)/h̄]. Here ⇀

μ21, ⇀
μ32, and ⇀

μ42 are
dipole moments of the |2〉 → |1〉, |3〉 → |2〉, and |4〉 → |2〉
transitions, respectively.

The interaction Hamiltonian in the interaction picture under
resonant interaction condition and rotating wave approxima-
tion is obtained as

V int = −h̄[�pei(�kp ·�r+�21t)|2〉〈1| + �c1e
i(�kc1·�r+�32t)|3〉〈2|

+�c2e
i(�kc2·�r+�42t)|4〉〈2| + H.c.], (2.1)

where �21 = ω21 − ωp, �32 = ω32 − ωc1, and �42 = ω42 −
ωc2 denote the detuning of probe and coupling field frequencies
from the atomic resonance frequencies ω21, ω32, and ω42,
respectively, and |i〉〈j | (i, j = 1,2,3,4) are the atomic raising
or lowering operators.

B. Density-matrix equations of motion

The time evolution of the density matrix of the system in
the interaction picture is

ρ̇jk = i

h̄

∑
m

(
ρjmV int

mk − V int
jmρmk

) + (ρ̇jk)relax,

(2.2)
(j,k,m = 1,2,3,4),

where the elements of the density matrix and interaction
Hamiltonian

ρjk = 〈j |ρ|k〉 and V int
mn = 〈m|vint|n〉

(2.3)
(j,k,m,n = 1,2,3,4),

can be calculated using the interaction Hamiltonian V int

given by Eq. (2.1). The second term in Eq. (2.2) includes
phenomenologically, the effect of relaxation processes such as
spontaneous emission 2γjk (j , k = 1,2,3,4) in the system. The
Doppler shift of atomic resonances due to the thermal motion
of the atoms in the medium gives rise to inhomogeneous
broadening. To incorporate atomic motion, the derivative ρ̇jk

on the left-hand side of Eq. (2.2) can be replaced by

ρ̇jk →
{(

∂

∂t

)
+ �v · �∇

}
ρjk, (2.4)

where �v is the atomic velocity. Time evolution of the density-
matrix elements ρjk can be determined, using Eqs. (2.1), (2.3),
and (2.4) in Eq. (2.2), from which using appropriate transfor-
mations to eliminate fast oscillating (exponential) terms, the
equation of motion for the slowly varying components ρ̃jk of
density-matrix elements can be obtained.

The resulting density-matrix equations for ρ̃jk are solved
in the usual limits of a weak probe and arbitrarily strong
coupling fields using the following approach. Initially all of the
population is in the ground level |1〉 with a Maxwellian velocity
distribution. We assume the probe to be sufficiently weak so
as not to induce any population transfer to the upper levels.
Thus the zeroth-order solution of the density-matrix elements
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obtained in the absence of probe (i.e., setting �p = 0) is

ρ0
11 = M(v), (2.5)

where

M(v) = (ln 2/v̄2π )3/2 exp

(− ln 2�v · �v
v̄2

)
(2.6)

is the Maxwellian velocity distribution of atoms with v̄ = √
ln 2vth and vth = √

2kBT /.ma is the most probable thermal velocity
at a temperature T of an atom of mass ma . All other zeroth-order matrix elements vanish. The relevant first-order (i.e., to leading
order in probe amplitude) density-matrix equations are found as

˙̃ρ(1)
21 = −[i(�21 + �kp · �v) + γ21]ρ̃21 + i�pM(v) + i�∗

c1ρ̃
(1)
31 + i�∗

c2ρ̃
(1)
41 , (2.7a)

˙̃ρ(1)
31 = −{i[(�21 + �32) + (�kp + �kc1) · �v] + γ32}ρ̃31 + i�c1ρ̃

(1)
21 , (2.7b)

˙̃ρ(1)
41 = −{i[(�21 + �42) + (�kp + �kc2) · �v] + γ42}ρ̃41 + i�c2ρ̃

(1)
21 . (2.7c)

The steady-state solution obtained by setting the time derivatives to zero on the left-hand side of Eq. (2.7) yields the velocity
averaged one-photon coherence as

I
(1)
21 =

∫
ρ̃

(1)
21 (v)dv3 = i�p

∫
dv3 M(v)

A31(v)A41(v)

A21(v)A31(v)A41(v) + A31(v)|�c2|2 + A41(v)|�c1|2 , (2.8)

where

A21(v) = i(�21 + �kp · �v) + γ21, (2.9a)

A31(v) = i[(�21 + �32) + (�kp + �kc1) · �v] + γ32, (2.9b)

A41(v) = i[(�21 + �42) + (�kp + �kc2) · �v] + γ42. (2.9c)

In experimental situations typically one considers an
arrangement of probe and coupler fields counterpropagating
along the z axis. For this experimental configuration we can
henceforth set the terms (�kp + �kcj ) · �v = (kp − kcj )vz, (j =
1,2) and �kp · �v = kpvz in Eqs. (2.9), and consequently the
velocity integration in Eq. (2.8) reduces to a one-dimensional
integral over velocity vz.

C. Susceptibility and absorption coefficient

The susceptibility of the medium is related to the velocity
averaged one-photon coherence as follows:

χ = N
|μ21|2
h̄γD

(
I

(1)
21

�p/γD

)
, (2.10)

where N is the atomic density of the vapor and γD(=kpv̄)
is the Doppler width in the system. As is well known, the
imaginary [Im(χ )] and real [Re(χ )] parts, respectively, of the
susceptibility χ give the absorption and dispersion of the probe
field. Transmission of the probe beam through a vapor cell of
length L is governed by

Ip(L)/Ip(0) = exp(αpL), (2.11a)

where I (L) and I (0), respectively, are the output (at z = L)
and input (at z = 0) probe beam intensities, and the probe
absorption coefficient is given by

αp = −8π2

λp

Im(χ ). (2.11b)

D. Analytical results

For the sake of clarity and to facilitate comparison, we
first analyze probe absorption (transparency) characteristics to
arrive at conditions for EIT in a radiatively (homogeneously)
broadened medium. The result for this case can be derived
from Eq. (2.10) by dropping velocity-dependent terms and
performing the velocity integration using Eq. (2.6) as follows:

I
(1)
21

�p

= i

γ21 + i�21 + |�c1|2
γ32+i(�21+�32) + |�c2|2

γ42+i(�21+�42)

. (2.12)

The above expression reveals the existence of two two-
photon resonances in a probe absorption profile as a function
of probe detuning. Evidently the one occurring at �21 = −�32

corresponds to the transition ||1〉 → |2〉 → |3〉, whereas the
other occurring at �21 = −�42 corresponds to the |1〉 →
|2〉 → |4〉 transition of the four-level Y system. Thus the
four-level Y system derives contributions from two distinct
three-level cascade subsystems, which can be strongly coupled
or decoupled by manipulating the coupling field detunings or
Rabi frequencies.

For instance, let us consider the case in which both the
coupling fields have the same detuning given by �(=�32 =
�42). In this case a single two-photon resonance that occurs at
�21 = −� has contributions from both subsystems. For this
case it is also clear from expression (2.12) that if the Rabi
frequencies of the coupling fields are sufficiently large, so that
the following criterion is met:

γ21 	 |�c1|2
γ32

+ |�c2|2
γ42

, (2.13)

the probe absorption is considerably reduced at the position
of the two-photon resonance �21 = −�. Furthermore, in the
exact resonance case; that is, when the coupling fields are
tuned to exact resonance �32 = �42 = 0, the EIT resonance is
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centered around the probe detuning �21 = 0. Implementation
of the criterion specified in Eq. (2.13) would require choosing
either very large |�c2|2 and |�c1|2 or very small γ32 and
γ42. Since at higher powers of the coupling fields, resolution
of the Autler-Townes (AT) doublet [16], which arises from
splitting of the intermediate level |2〉, tends to obfuscate the
EIT effects, it is essential to choose systems in which two
photon dephasing parameters γ32 and γ42 are very small in
order to enable observation of EIT.

On the other hand when detuning of both the coupling
fields is different, �32 
= �42, the two subsystems are decou-
pled [5,10,11] because tuning the probe frequency detuning

to a particular two-photon resonance will render the other
nonresonant with a large detuning. Equation (2.12) shows
that then the contribution from the nonresonant term can be
ignored and consequently the Y system reduces to a single
three-level cascade system with absorption and dispersion
properties governed by the Rabi frequency and the two-photon
dephasing rate in that system.

When the medium is Doppler broadened the two-photon
detuning is affected by residual Doppler broadening. The result
for a Doppler broadened Y system is obtained from Eqs. (2.8)
and (2.9) for counterpropagating (along the z axis) coupling
and probe fields configuration as

I
(1)
21

�p

=
∫

dvz M(vz)
i

γ21 + i(�21 + kpvz) + |�c2|2
γ32+i(�21+�32)+i(kp−kc1)vz

+ |�c1|2
γ42+i(�21+�42)+i(kp−kc2)vz

. (2.14)

Comparing the above result with that of a radiatively
broadened case given by Eq. (2.12), we can draw the following
inferences:

(i) For the case of perfect wave-vector matching, the
two-photon resonances are Doppler free, (kp − kc1)vz =
(kp − kc2)vz = 0. The criterion for observing the probe trans-
parency at the location of two-photon resonance is still given
by Eq. (2.13) but with the radiative width γ21 replaced by the
Doppler width γD , i.e.,

γD 	 |�c1|2
γ32

+ |�c2|2
γ42

. (2.15)

(ii) When the detuning of both the coupling fields is different,
�32 
= �42, the two subsystems are decoupled. The probe
absorption profile then displays two distinct two-photon
resonances corresponding to the individual cascade systems.

It, however, remains to be seen what happens when the
probe and coupling wave vectors differ from each other. An
inspection of Eq. (2.14) shows that if we consider a system in
which the upper levels |3〉 and |4〉 are very close with similar
decay rates, we can approximately write �c(=�32

∼= �42),
kc(=kc1

∼= kc2), and γc(=γ32
∼= γ42). By using these facts in

Eqs. (2.9) and through Eq. (2.8) we obtain

I
(1)
21

�p

=
∫

dvz M(vz)
i[γc + i(�21 + �c) + i(kp − kc)vz]

[γ21 + i(�21 + kpvz)][γc + i(�21 + �c) + i(kp − kc)vz)] + |�c1|2 + |�c2|2 . (2.16)

Equation (2.16) resembles the typical result for a three-level cascade system [13] whose upper transition is driven by a coupling
field of effective Rabi frequency �c =

√
|�c1|2 + |�c2|2. To understand the effect of velocity on probe transparency (absorption)

around two-photon resonance we rewrite, by factorizing, the denominator of Eq. (2.16) in the following form:

I
(1)
21

�p

=
∫

dvz M(vz)
(�21 + �c) + (kp − kc)vz − iγc[

(�21 + �c) + (kp − kc)vz − iγc − {�c−kcvz+i(γ21−γc)}
2

]2 − [√|�c1|2 + |�c2|2 + {�c−kcvz+i(γ21−γc)}
4

2]2
.

(2.17)

Let us first analyze the above result for the matched wave
vectors kc = kp case. For this case it is easily seen that at
the location of exact two-photon resonance when �21 = −�c

is very close to zero, the remaining velocity and radiative
width-dependent (curly brackets) terms contained in the first
square bracket cancel out similar (curly brackets) terms of the
second square bracket of the denominator (assuming negligible
γc). Thus a narrow two-photon Doppler-free transparency
resonance is formed around �21 + �c = 0. This cancellation
can no longer occur when the (nonzero) probe frequency
detuning �21 is tuned away from the two-photon resonance.

The residual Doppler broadening terms can then cause probe
detuning �21 to shift into resonance with the absorbing AT
doublet [15,17] components arising from the terms (within
the second square brackets) of the denominator. Consequently
in the matched wave-vector case, except in a narrow region
around the two-photon resonance �21 + �c = 0, at other
frequencies within the region between the AT doublet, the
probe is absorbed due to velocity shifting into absorbing AT
doublet components.

On the other hand it is evident that if kp < kc the residual
broadening terms within the first square brackets in the
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denominator tend to cancel out and thus eliminate the velocity
shift of probe frequencies into absorbing AT peaks. In the
extreme case of kc = 2 kp (which is feasible in atomic systems),
the first (square brackets) term in the denominator becomes
Doppler free. In other words as the probe detuning is varied the
probe does not experience any (velocity-dependent) absorption
for all frequencies in the entire region enclosed between the
AT doublet. The frequency range over which the probe is
transparent thus can be determined from the location of the AT
doublet which occurs at (for the particular case when kc = 2 kp)

�21 = −�c

2
±

√
|�c1|2 + |�c2|2 + {�c − kcvz}

4

2

. (2.18)

Thus we further observe that if the coupling fields are tuned
to exact resonance �c = 0, the location of the two AT peaks
is symmetric on either side of the probe resonance �21 = 0.
Nonzero pump detuning causes asymmetry in the AT peak
positions. As is well known when the coupling fields are large
compared with the Doppler width, the AT doublet will be
fully resolved. This is the usual AT regime. In the typical
EIT regime however, the coupling Rabi frequencies are much
small compared with the Doppler width and hence the AT
doublet is not resolved. Consequently the probe absorption
profile should display a very broad resonance. Yet the above
discussion leading to Eq. (2.18) shows that for kp < kc it is

possible to observe a wide transparency window even in the
otherwise absorbing region between the AT peaks.

The foregoing explanation provides only a qualitative
analysis in terms of the velocity selectivity of the EIT process
associated with various wave-vector mismatch cases. We now
present an analysis to obtain quantitative information regarding
the nature of the width and depth of the transparency resonance
and the parameter dependence of the EIT process. For this
purpose the denominator of Eq. (2.16) can be factorized for
velocity as

kpvz = −(η + ξ )/2 ±
√

[η − ξ ]2/4 + [|�c1|2 + |�c2|2]/α,

(2.19)

where

ξ = �21 − iγ21, (2.20a)

η = (�21 + �c − iγc)/α, (2.20b)

α = (kp − kc)/kp 
= 0. (2.20c)

For the particular case of kp < kc wave-vector mismatch,
the sign of the residual Doppler width (kp − kc)v̄ is negative.
For this case we denote

� = |kp − kc|/kp = −α. (2.21)

Using Eq. (2.19) along with Eq. (2.21) in Eq. (2.16) we
obtain

I
(1)
21

�p

=
∫ [

dvz M(vz)

[�21 + kpvz − iγ21]

]⎡
⎣1 − [|�c1|2 + |�c2|2]/�{

kpvz + (η+ξ )
2 + i

√
[|�c1|2+|�c2|2]

�
− [η−ξ ]2

4

}{
kpvz + (η+ξ )

2 − i

√
[|�c1|2+|�c2|2]

�
− [η−ξ ]2

4

}
⎤
⎦ .

(2.22)

In this case it can be seen from the second term in the brackets that two poles exist: one each in the upper and lower complex
(velocity) planes as long as the condition

Re[η − ξ ]2/4 < [|�c1|2 + |�c2|2]/� (2.23a)

is fulfilled together with

γ21/2,γc/2� <
√

[|�c1|2 + |�c2|2]/�. (2.23b)

Another pole exists in the upper half plane (from the term outside the brackets). Furthermore if all the parameters are so chosen
as to be much smaller compared with the Doppler width γD , we can approximate, M(v) ≈

√
ln 2/πv̄2 in Eq. (2.22), which can

then be evaluated using the method of contour integration to obtain the result

I
(1)
21

�p/γD

= i
√

π ln 2

[
1 + 4�[|�c1|2 + |�c2|2]/{

√
4�[|�c1|2 + |�c2|2] − [(η − ξ )�]2}

{i(η − ξ )� −
√

4�[|�c1|2 + |�c2|2] − [(η − ξ )�]2}

]
. (2.24)

Furthermore, using the condition (2.23b) to ignore γc, �γ21 in η and ξ [defined in Eqs. (2.20)] the above result, Eq. (2.24), is
recast in terms of real and imaginary parts as

I
(1)
21

�p/γD

= i
√

π ln 2

[
1 + i(�21 + �c + �21�) −

√
4�[|�c1|2 + |�c2|2] − [�21 + �c + �21�]2√

4�[|�c1|2 + |�c2|2] − [�21 + �c + �21�]2

]
. (2.25)

The above result shows that the probe absorption described by the imaginary part of Eq. (2.25) is zero as long as the condition
(�21 + �c + �21�) <

√
4�[|�c1|2 + |�c2|2] [stipulated by Eq. (2.23a)] is fulfilled. Clearly the full width of this transparency

region is given by

γt = 2
√

4�[|�c1|2 + |�c2|2]. (2.26)
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It is interesting to note that the width of the transparency
region depends upon the wave-vector mismatch and increases
as

√
� for given coupling field powers. Thus if � = 1, which

corresponds to the wave-vector mismatch situation of kc =
2 kp, almost an entire region between the AT doublet can
be rendered transparent [see also the discussion preceding
Eq. (2.18)]. Eqs. (2.26) and (2.24) are the main new results
of the present work which allow us to estimate the depth
and width of the transparency windows for a cascade-type
three-level system in which kc > kp.

III. NUMERICAL RESULTS AND DISCUSSIONS

We now present the numerical results for EIT by applying
the theory to a typical experimental situation in which probe
and coupler fields counterpropagating along the z axis are
incident on a cell containing atomic vapor. For this configu-
ration the numerical results are obtained by performing one-
dimensional velocity integration of Eq. (2.8) using Eqs. (2.9)
and (2.6), and subsequently using Eqs. (2.10) and (2.11) to
obtain, respectively, the susceptibility and transmission of the
probe. As mentioned earlier for counterpropagating probe and
coupling waves, the nature of EIT in a three-level cascade
system depends critically on the relative sign of the residual
Doppler width (kp − kc)v̄ which, depending on the probe
and coupling field wave-vector mismatch, can be positive
(kp > kc) or negative (kp < kc) and is markedly dissimilar
from each other. If the wave vectors kp and kc are the same
in magnitude (kp = kc), the residual Doppler width vanishes,
and usually the medium is considered to be Doppler free.

Keeping in mind the essential criterion (2.15) for the
observation of EIT as well as the wave-vector mismatch
condition (2.21), for our numerical calculations we have
chosen an atomic system in which kp < kci (or λp > λci)
(where ci = c1, c2), so the sign of the residual Doppler
width is negative. This situation can be realized, for example,
considering the transitions 3 S1/2 → 3 P3/2 → 4 D3/2 (3
S1/2 → 3 P3/2 → 4 D5/2) in a sodium atom. These transitions
form a four-level dual cascade (Y-type) EIT configuration with
one stable ground state 3 S1/2, an intermediate level 3 P3/2,
and two nearly degenerate upper states 4 D3/2 and 4 D5/2.

The level separation wavelength of the lower and intermediate
levels is λp = 5890 Å (D2 transition) and those of the
intermediate and upper transitions are λc1

∼= λc2 = 5688 Å. The
large wavelength mismatch between the counterpropagating
coupling and probe fields in this dual ladder EIT system
introduces a residual Doppler width (kp − kc)v̄/kpv̄  −0.04.
For comparison purposes the other case of matched (kp =
kc) [and positive (kp > kc)] wave-vector mismatch is also
considered hypothetically for this four-level Y-type atomic
system. In our numerical calculation all parameters are
expressed in units of Doppler width γD/2π = 1 GHz, i.e.,
2γ21/γD = 0.01, 2γ32/γD = 0.0003, and 2γ42/γD = 0.0019.

In Fig. 2(i) probe absorption [Im (I (1)
21 γD/�p)] and

dispersion [Re (I (1)
21 γD/�p)] profiles are shown as a function of

the probe detuning for various cases of coupling and probe field
wave-vector mismatches. The coupling fields are on resonance
(�32 = �32 = 0) and the Rabi frequencies are chosen equal

FIG. 2. (i) Probe absorption (curves a, b) and dispersion
(curves c, d) in arbitrary units (a.u.) as a function of probe field
detuning (ωp − ω21)/γD with coupling field Rabi frequencies �c1 =
�c2 = 10 (2π × MHz) and for various wave-vector mismatch cases
for kp − kc = −0.04 kp (curves a and c) and kp = kc (curves b and
d). The coupling fields are on resonance (�32 = �42 = 0). (ii) Probe
transmission [Ip(L)/Ip(0)] as a function of the probe detuning for
wave-vector mismatch kp − kc = −0.04 kp (curve a) and kp = kc

(curve b). Thus the values of unity and zero on the y axis (in this
and subsequent figures) correspond, respectively, to the maximum
[Ip(L) = Ip(0)] and minimum [Ip(L) = 0] transmission of probe
intensity. The density-length product [used in Eqs. (2.11)] is NL =
2 × 10 11 atoms/cm 2 and other parameters are the same as in (i).

(�c1 = �c2) and of the same magnitude as the spontaneous
emission rate of the probe transition 2γ21(=2π × 10 MHz).
No transparency is found to exist for the kp > kc wave-vector
mismatch case (hence results are not shown). There is no
perfect EIT even in the exact wave-vector matching (kp = kc)

FIG. 3. (i) Probe absorption (a.u.) as a function of the probe field
detuning (ωp − ω21)/γD for the coupling field Rabi frequencies �c1 =
�c2 = 10 (2π × MHz) and various wave-vector mismatch cases, kp

− kc = −0.04 kp (dashed line) and kp = kc (solid line). The coupling
fields detuning chosen are �42 = −�32 =10 (2π × MHz). (b) Probe
transmission [Ip(L)/Ip(0)] as a function of the probe detuning for
density-length product, NL = 2 × 10 11 atoms/cm 2, and the same
parameters as in (i).
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FIG. 4. Probe (i) absorption and (ii) dispersion (a.u.) as a function
of the probe field detuning (ωp − ω21)/γD for strong coupling field
Rabi frequencies �c1 = �c2 = 50 (2π × MHz) and various wave-
vector mismatch cases, kp − kc = −0.04 kp (dashed line) and kp = kc

(solid line). Also shown is the case when kc = 2 kp (dashed-dot-dot
line).

case (curves b and d). It should be noted that for these values
(2π × 10 MHz) of the coupling field Rabi frequencies the
criterion for observing the EIT specified by Eq. (2.15) is not
fulfilled. Yet a very wide and almost complete transparency
window appears in the case when kp < kc (curves a and c).
The width of this resonance is in good agreement with the
analytical result given by Eq. (2.26). The EIT resonance and the
dispersion curves for the kp = kc case are narrower than those
observed for kp < kc since in the former case it is governed
mainly by the two-photon dephasing rate alone for small values
of coupling Rabi frequencies, whereas in the latter case it
depends [see Eq. (2.26)] on the mismatch factor kp − kc and
the Rabi frequency of the coupling fields. Figure 2(ii) shows
the probe transmission [using Eqs. (2.11)] as a function of the
probe detuning for the same parameters as in Fig. 2(i). The
density-length product used is NL = 2 × 10 11 atoms/cm 2.
The transmission at line center for kp < kc (curve a) is very
high as compared with the matched kp = kc case (curve b).

We now consider the finite detuning case when the coupling
fields are detuned on either side of the intermediate level.
Figure 3(i) shows the probe absorption [Im (I (1)

21 γD/�p)]
and dispersion [Re (I (1)

21 γD/�p)] variation as the probe
frequency is tuned through the coupling field detuning. The
probe absorption profile for this case splits into two distinct
transparency windows corresponding to two distinct cascade
subsystems. The transparency window occurring at the two-
photon resonance �21 + �32 = 0 corresponds to the 3 S1/2 →

3 P3/2 → 4 D3/2 transition, whereas the other occurring at
�21 + �42 = 0 corresponds to the 3 S1/2 → 3 P3/2 → 4 D5/2

transition. Since these two cascade subsystems are decoupled,
the depth and width of each transparency window is now
governed by the two-photon dephasing rate parameter and the
coupling field Rabi frequency in that particular subsystem. The
asymmetry in the depth of the transparency in the two windows
occurs as the two-photon decay rates in the two subsystems
are dissimilar in the present Y system. The probe transmission
shown in Fig. 3(ii) also displays similar features.

Finally in Fig. 4 we show the probe absorption and
dispersion profile choosing values of the coupling field Rabi
frequencies �c1 = �c2 = 50 (2π × MHz) which fulfill the
criterion (2.15) for observing large absorption reduction at line
center. The coupling fields are on resonance (�32 = �32 = 0).
As usual in the matched wave-vector (kc = kp) case we
observe a narrow resonance and complete transparency at the
probe line center. For illustration purposes also shown is the
result when kc = 2kp (hypothetical case). In this case it is
evident that the width of the transparency window [as predicted
by Eq. (2.25)] is the same as the separation between the AT
peaks and hence the entire region between the AT doublet is
rendered transparent.

IV. CONCLUSION

We have studied the EIT of a probe field in both ho-
mogeneously (radiative) and Doppler broadened four-level
Y-type atomic systems driven by two strong laser (coupling)
fields. The influence of residual Doppler broadening on
two-photon resonances was assessed for various wave-vector
mismatches occurring when the frequency of coupling fields
is higher (kc > kp), equal (kc = kp), or lesser (kc < kp)
than that of the probe field frequency. Contrary to the usual
belief, it is found that in the kc > kp wave-vector mismatch
case the residual Doppler broadening is actually conducive
for the observation of transparency in Doppler broadened
four-level Y-type atomic systems. In this case, the probe
absorption profile displays very wide and almost completely
transparent single or double EIT windows whose width, depth,
and location depend on the wave-vector mismatch, Rabi
frequencies, and atom field detuning of the coupling fields.
Thus it is possible to attain almost complete transparency over
a broad range of frequencies which may be essential for prop-
agation of very short light pulses through an inhomogeneously
broadened medium. Analytical results derived to explain the
velocity selective nature of transparency (absorption) and the
width of resonances are in good agreement with computed
results.
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