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Electron rest mass and energy levels of atoms in the photonic crystal medium
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Photonic crystals are periodic systems that consist of dielectrics with different refractive indices. They are
designed to act on photons in contrast to semiconductor crystals whose periodicity affects the motion of electrons.
Here we consider the interaction of an atomic electron with its own radiation field in the case when the atom is
placed in air voids of a photonic crystal and is not in mechanical contact with the vibrational degrees of freedom
of the dielectric host. A strong modification of this interaction from that in free space is shown to change the
rest mass of the electron, and this has a significant effect on the shift of the atomic energy levels. This shift is
investigated by using the example of atomic hydrogen in a high-index-contrast photonic crystal. The found effect
may be of interest both from fundamental and practical points of view.
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I. INTRODUCTION

Since the pioneering works of Yablonovitch [1] and John [2]
photonic crystals (PCs) are a major field of research. The
variation of the photon density of states (DOS) being a result
of a modification of the electromagnetic fields in PCs leads
to quantum effects, including the coherent control of the
spontaneous emission [3], the appearance of photon-atom
bound states [4–7], the non-Markovian character of radiative
decay [8], enhanced quantum interference effects [9], and the
localization of superradiance near the photonic band edge [10].
It is important that the strong modification of the DOS in PCs
may provide new insight into the fundamental problems of
quantum electrodynamics (QED).

One of the most important effects of QED is the Lamb
shift that originally was defined as a splitting of 2P1/2 and
2S1/2 levels of atomic hydrogen. This motivated many efforts
devoted to the study of the Lamb shift in PCs [4,5,11–15].
It was found that the interaction of an atom with its own
radiation field can be significantly modified in the PC medium,
and as a result, can lead to very large values of the Lamb
shift, as compared to the case of vacuum [14,15]. The
effect was investigated by means of the standard methods
that were successfully employed for describing the Lamb
shift in vacuum. However, one has to keep in mind that
because of the ultraviolet (UV) divergences, in the theory
of QED the Hamiltonian (Lagrangian) is only of formal
importance, and knowing them is not sufficient to compute
results for physical quantities. In addition, one needs to choose
a renormalization scheme which regulates the integrals and
subtracts the infinities. One of the key elements of the scheme
is the procedure of the mass renormalization that prescribes to
subtract, in solving the bound-state problem, the self-energy
of a free electron from that of the bound electron on the basis
that the electromagnetic mass of the electron must be included
in its observable mass. Here we show that in the case when
we deal with atoms in PCs this renormalization procedure
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removes not only infinities appearing in the theory but also
observable contributions to physical quantities.

The origin of the problem is the fact that because of the
modification of the interaction of a charged particle in the PC
medium with its own radiation field, the electromagnetic mass
of an electron in the PC must differ from its electromagnetic
mass in vacuum, which is included into the observable mass
of the electron. This means that in the PC medium the rest
mass of the electron should change its value. We show that
this change is observable and gives rise to a significant shift of
the energy levels of an isolated atom in PCs provided it is not
in mechanical contact with the vibrational degrees of freedom
of the dielectric host. The effect is investigated by using the
example of atomic hydrogen in a high-index-contrast photonic
crystal.

II. INFLUENCE OF AN ENVIRONMENT ON THE
ELECTROMAGNETIC MASS OF THE ELECTRON

The electromagnetic mass of the electron is its self-energy
associated with the interaction of the electron with its own
radiation field. Because of the UV divergences, this correction
to the electron mass is infinite. The problem is solved by using
the renormalization theory that implies that from the very
beginning the theory is formulated in terms of the physical
charge and electron mass including all radiative corrections,
and correspondingly the infinite electron self-energy contri-
butions are subtracted in computing physical quantities such
as the Lamb shift in atoms. This renormalization procedure
proved to be very successful in computing the QED corrections
to the energy levels of isolated atoms. However, as we show
below, by using the example of the atomic hydrogen in the case
when atoms are removed from the vacuum and placed in an
environment in which the photonic density of states is different
from that of the vacuum, such a subtraction leads to missing an
observable correction to the electron rest mass. The dominant
contribution to the Lamb shift in hydrogenlike atoms is given
by the one-photon (one-loop) self-energy arising from the
processes in which a photon is emitted and then is reabsorbed
by a bound electron [these processes are described by the
diagram in Fig. 1(a)] and from the processes in which the
electron in its final state first appears out of vacuum together
with a photon and a positron which then annihilate along
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FIG. 1. The time-ordered diagrams describing the dominant
contribution to the Lamb shift. The thick line denotes the electron
(positron) propagating in the Coulomb field; the wavy line denotes
emission and reabsorption of a virtual photon.

with the initial electron [these processes are described by the
diagram in Fig. 1(b)].

In quantum electrodynamics the corresponding contribu-
tion to the Lamb shift is given by the term that appears in the
second-order perturbation theory, and in the Furry picture can
be written as

�En = 〈n|HI

1

E
(0)
n − HF

0

HI |n〉, (1)

where HF
0 is the unperturbed Dirac-Coulomb Hamiltonian in

the Furry picture (HF
0 |n〉 = E(0)

n |n〉), and HI = ∫
d3x HI (t =

0,x), with HI (t,x) being the interaction Hamiltonian density

HI (t,x) = e

2
Aμ(t,x)[�(t,x),γ μ�(t,x)].

It involves the quantized electromagnetic field Aμ(x) and
the quantized Dirac field �(x). The Furry picture is a
kind of interaction representation in which the unperturbed
Hamiltonian HF

0 is the sum of the true free Hamiltonian H0

and the interaction Hamiltonian describing the interaction with
an external field, and provides the most convenient way to solve
the bound-state problem in quantum electrodynamics.

Usually the self-energy correction to the energy levels of
hydrogenlike atoms is calculated by dividing the integral over
virtual photon energies, which is involved in (1), into a low-
energy range (k < �), within which one can treat the electron
nonrelativistically but must take into account effects to all
orders in the external field, and a high energy range (k > �),
within which the problem must be treated relativistically but
in the lowest order in the external field. The parameter � must
be chosen to be much larger than the atomic binding energies,
but much less than typical electron momenta (here and below
we use the unit system where h̄ = c = ε0 = 1)

(Zα)2me � � � (Zα)me. (2)

Thus, the self-energy shift is the sum of two terms, the
high-energy (HE) term �E>

n and the low-energy (LE) term
�E<

n . In the nonrelativistic approximation we may neglect the
contribution to the Lamb shift from the processes described by
the diagram depicted in Fig. 1(b), and as a consequence, for
�E<

n we get from Eq. (1) the following expression [16]:

�E<
n = 2πα

3m2
e

∫ �

0

d3k

2 |k| (2π )3

∑
m

|〈n| p |m〉|2
En − |k| − Em

, (3)

where α is the fine-structure constant. The above prescription
of the renormalization theory tells us that the self-energy of
a free electron must be subtracted from the self-energy of

the bound electron given by Eq. (3). The contribution to the
self-energy of the free electron comes from the processes in
which in time intervals between the emission and reabsorption
the electron is free and does not interact with the Coulomb
field. Since for a free electron only diagonal elements of the
operator p2 differ from zero, the contribution to �E<

n given
by Eq. (3) from such processes is

�E<
v,n = −�me

2m2
e

〈n| p2 |n〉 , (4)

where

�me = α

p2π2

2∑
λ=1

∫ �

0

d3k

2 |k|2 |p · ελ(k)|2. (5)

As follows from Eq. (4), �me should be regarded as a
contribution to the electromagnetic mass of the electron [17].
Thus, �me in Eq. (4) is the electromagnetic mass of the
electron and therefore must be subtracted because the mass
me which we deal with is the physical mass of the electron
including all the radiative corrections. This subtraction yields

�E<
n = α

6π2m2
e

∫ �

0

d3k

2 |k|2
∑
m

|〈n| p |m〉|2
En − |k| − Em

(En − Em) .

Adding the high-energy part �E>
n , which is calculated by

using the corresponding Feynman diagrams of quantum
electrodynamics, to this term, we arrive [16] at the ordinary
expression for the one-loop self-energy Lamb shift �En =
�E<

n + �E>
n in a hydrogenlike atom where the logarithmic

dependence of �E<
n on � is compensated by that of �E>

n .
In order to generalize the theory for describing the Lamb

shift in atomic hydrogen placed in PCs, one has to take into
account the influence of the PC medium on the propagation
of virtual photons that come into play in the process of the
self-interaction of the atomic electron. Correspondingly, in this
case the wavy lines in Fig. 1 should describe the propagation
of photons in the PC medium. Formally, carrying out the
mass renormalization for the electron in the PC medium
should result in the subtraction of the self-energy of the
free electron modified by this medium from the modified
self-energy of the bound electron, and this subtraction was
used [4,5,11–15] in the studies of the Lamb shift in atoms
placed in PCs. However, this way of solving the problem
leads to missing some important contributions to energy levels
from the self-interaction of atomic electrons. In fact, the
renormalization theory prescribes to also add the subtracted
term �me to the “bare” mass m0 of the electron in order to
arrive at its physical mass me = m0 + �me. Here we mean
one of the two approaches to renormalization. It has the merit
of a clear physical interpretation, but the second approach, the
method of counterterms, is the one normally used in quantum
field theory. In the second approach the electron mass me

in the original Lagrangian is regarded as the physical mass.
To cancel the contribution from the self-energy of the free
electron an extra term is added to the Lagrangian that is called
the mass-renormalization counterterm. The problem is that
the value of the electromagnetic mass of the electron in the PC
medium should differ from that in vacuum, and therefore the
result of adding this electromagnetic mass to its bare mass will
not be the physical mass. Obviously, the change of the value
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of the electron mass δmpc is the difference between the values
of the electromagnetic masses in the PC medium �mpc and
the electromagnetic mass �me in vacuum:

δmpc = �mpc − �me. (6)

Thus, the influence of the PC medium on the interaction
of an electron with its own radiation field results in the
change in its mass: me → mpc = me + δmpc. Actually the
above arguments are correct for any environment in which the
photonic density of states is different from that of the vacuum,
and allow one to conclude that the rest mass of the electron
placed in this environment should change its value.

III. PHOTONIC CRYSTAL MEDIUM CORRECTIONS
TO THE ELECTRON REST MASS

Let us consider the problem of the change in rest mass of an
electron in the PC medium in more detail. Since the behavior
of photons in the PC medium differs from that in vacuum only
in the optical range of frequencies, from Eq. (6) it follows
that only the low-energy part of the electron electromagnetic
mass is relevant for the problem. In this case the problem can
be solved nonrelativistically and it is convenient to choose
the Coulomb gauge that has the advantage that the radiation
is completely described by the vector potential A. In this
gauge the nonrelativistic Hamiltonian for an electron in an
electromagnetic field may be written in the form

Hel = 1

2me

[p − eA(r)]2, (7)

where r is the position of the electron. The one-loop LE
contribution �me to the electromagnetic mass of an electron
in the Coulomb gauge takes the form

�me = −2m2
e

p2

∑
p′

∑
kελ

〈p|HI |p′; k,ελ〉〈p′; k,ελ|HI |p〉
p2

2me
− p′2

2me
− |k|

, (8)

where HI = − e
me

p · A and |p; k,ελ〉 is a state with an electron
with momentum p and a photon with momentum k and
polarization vector ελ. Here and below, in order to deal with
states of norm 1, we discretize the continuum by enclosing the
particles in a cubic box of volume V , and by imposing periodic
boundary conditions to obtain states having the same spatial
dependence as the states |p〉. The final results for physical
quantities must not depend on V provided it is large enough.
Since in our investigations we deal with the electrodynamics
within a PC, it is natural to use its volume as the normalization
volume V .

Obviously, in describing the low-energy part of the electron
self-energy in the PC medium it is especially important to
take into account the Bloch structure of the photon states that
arises because of the periodicity of dielectric function ε(r).
This structure means that the photon states can be expanded
in a set of Bloch states |kn〉, which can be obtained by means
of the plane-wave expansion method [18]. By introducing
the operators â

†
kn and âkn that describe the creation and

annihilation of the photon in the state |kn〉, respectively
(â†

kn |0〉 = |kn〉 and âkn|kn〉 = |0〉), we can construct a modi-

fied “free” Hamiltonian H
f

0 = ∑
kn ωknâ

†
knâkn and a quantized

vector potential

Apc(r,t) =
∑
kn

[Akn(r)âkne
−iωknt + A∗

kn(r)â†
kne

iωknt ], (9)

where Akn(r) = √
1/V ωknEkn(r) with Ekn(r) being the Bloch

eigenfunctions satisfying the following orthonormality condi-
tion: ∫

V

d3r ε(r)Ekn(r)E∗
k′n′ (r) = V δkk′δnn′ . (10)

In this way we actually arrive at a modified Furry picture, in
which not only the interaction of an electron with the Coulomb
field but also the interaction of photons with the PC medium
is taken into account from the very beginning. Correspond-
ingly, in the interaction Hamiltonian (7) the quantized vector
potential describing the free electromagnetic field in the PC
medium should be replaced with Apc(r,t) defined by Eq. (9).
With the vector potential defined in this way the expression
for the Hamiltonian (7) is transformed to

H
pc

el = 1

2me

[p − eApc(r)]2. (11)

Correspondingly, the expression for the LE part of the
electromagnetic mass of the electron in the PC medium takes
the form

�mpc = −2m2
e

p2

∑
p′

ωkn<�∑
kn

〈p|Hpc

I |p′; k,n〉〈p′; k,n|Hpc

I |p〉
p2

2me
− p′2

2me
− ωkn

.

(12)
Taking into account that for the above reason only the LE parts
of �me and �mpc give a contribution to δmpc defined by Eq.
(6), from this equation we get

δmpc = −2m2
e

p2

⎛
⎝∑

p′

ωkn<�∑
kn

〈p|Hpc

I |p′; k,n〉〈p′; k,n|Hpc

I |p〉
p2

2me
− p′2

2me
− ωkn

−
∑

p′

|k|<�∑
kελ

〈p|HI |p′; k,ελ〉〈p′; k,ελ|HI |p〉
p2

2me
− p′2

2me
− |k|

⎞
⎠ . (13)

Here the cutoff � in expressions for �me and �mpc is removed
because virtual HE photons emitted by an electron in the PC
medium propagate as if they were in vacuum. For this reason
the contributions to the first and second terms on the right-hand
part of Eq. (13) that come from the self-interaction processes
involving high-energy virtual photons must compensate each
other. The matrix element 〈p′; k,n|Hpc

I |p〉 of the interaction
Hamiltonian H

pc

I = − e
me

p · Apc can be represented in the
form

〈p′; k,n|Hpc

I |p〉 = − e

me

∫
d3r �∗

p′(r) [−i∇rAkn(r)] �p(r)

= e

meV 3/2√ωkn

∫
d3r e−ip′r [i∇rEkn(r)] eipr,

with �p(r) being the normalized wave function of the electron
state �p(r) = 〈r | p〉. Here we have taken into account that
�p = eipr/

√
V for r ∈ V and �p = 0 for r /∈ V . Taking also
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into account that Ekn(r) can be expanded as

Ekn(r) =
∑

G

Ekn(G)ei(k+G)·r

with G being the reciprocal lattice vector of the photonic
crystal (G = N1b1 + N2b2 + N3b3, where bi are primitive
basis vectors of a reciprocal lattice), for 〈p′; k,n|Hpc

I |p〉 we
get

〈p′; k,n|Hpc

I |p〉 = − e

m

1√
V ωkn

∑
G

p · Ekn(G)δp,q,

with q = p′ + k + G. In the same way, for 〈p|Hpc

I |p′; k,n〉 we
find

〈p|Hpc

I |p′; k,n〉 = − e

me

1√
V ωkn

∑
G

p · E∗
kn(G)δp,q.

Correspondingly, for the matrix elements of the interaction
Hamiltonian in the free space, we have

〈p′; k,n|HI |p〉 = − e

me

1√
2V |k|

∑
λ

p · ελ(k)δp,q,

〈p|HI |p′; k,n〉 = − e

me

1√
2V |k|

∑
λ

p · ελ(k)δp,q,

with q = p′ + k. Substituting these matrix elements of inter-
action Hamiltonians H

pc

I and HI into Eq. (13) yields

δmpc = − 2e2

p2V

(∑
G

∑
kn

1

ωkn

|p · Ekn(G)|2
p2

2me
− (p−k−G)2

2me
− ωkn

−
∑

k

2∑
λ=1

1

2|k|
|p · ελ(k)|2

p2

2me
− (p−k−G)2

2me
− |k|

)
. (14)

Electrons in air voids of a PC mainly are atomic electrons.
In the case of atomic hydrogen the momentum of the atomic
electron is of order αme. In this case −ω is the predominant
term in the denominator of Eq. (14), and hence this equation
can be rewritten in the form

δmpc = 2e2

p2V

(∑
G

∑
kn

|p · Ekn(G)|2
ω2

kn

−
∑

k

2∑
λ=1

|p · ελ(k)|2
2k2

)
.

(15)
Now in the expression of δmpc we can replace the discrete sums
by integrals

∑
kn → V

(2π)3

∑
n

∫
d3k and

∑
k → V

(2π)3

∫
d3k.

In this way we get

δmpc = α

π2

[ ∑
n

∫
FBZ

d3k

ω2
kn

∑
G

|p̂ · Ekn(G)|2

−
∫

d3k

2k2

2∑
λ=1

|p̂ · ελ(k)|2
⎤
⎦ , (16)

with p̂ = p/ |p|. Thus, in contrast to the Lamb shift, the PC
medium correction to the electron mass does not depend on
the position of the electron in a PC’s air void. At the same time,
this correction depends on the direction unit vector p̂ = p/ |p|
of the electron momentum. In order to describe the “mean”

correction, we may average p̂ over all solid angles by assuming
that this vector is randomly orientated in space

δm�
pc ≡ 1

4π

∫
d� δmpc

= α

3π2

[∑
n

∫
FBZ

d3k

ω2
kn

∑
G

|Ekn(G)|2 −
∫

d3k

k2

]
. (17)

The fact that the PC medium correction to the electron mass
does not depend on the position of the electron in the PC’s air
void, allows us to represent the correction in the form

δm�
pc = 4α

3π

∫
dω

N (ω) − ω2

ω2
, (18)

where N (ω) = NDOS(ω)D(ω), NDOS(ω) is the photon density
of states

NDOS(ω) = 1

4π

∑
n

∫
FBZ

d3k δ(ω − ωkn),

and

D(ω) =
∑

G

|Ekn(G)|2| ωkn = ω.

The DOS describes the number of states per interval of energy
at each energy level that are available to be occupied, and in
vacuum is equal to ω2. In the limit ε(r) → 1 the right-hand
part of Eq. (18) must vanish. It is easy to show that this is
actually the case. In fact, since∑

G

|Ekn(G)|2 = 1

V

∫
V

d3r |Ekn(r)|2 , (19)

from Eq. (10) it follows that in the case when ε(r) approaches
1,

∑
G |Ekn(G)|2 approaches 1 as well. Because in this case

D(ω) ≈ 1 and hence N (ω) ≈ NDOS(ω), the right-hand part of
Eq. (18) becomes equal to zero. Among other things this serves
as evidence of the correctness of the orthonormality condition
for Ekn(r) that determine the electromagnetic field in a PC via
Eq. (9).

Equation (18) establishes the connection between the PC
medium correction to the electron mass and the DOS in a PC.
For a given PC the DOS as well as the function D(ω) can be
calculated numerically. However, in order to understand the
dependence of the shift of the rest mass of the electron on
the DOS in a PC, it is reasonable to use a model DOS which
could recapture the basic features of PCs. In Ref. [12], for
example, a model DOS was proposed which recaptures the
basic quantitative features of a pseudogap, and has the form

NDOS(ω) = ω2

[
1 − h exp

(
− (ω − ω0)2

σ 2

)]
.

However, as it is easy to see, the difference between the model
DOS and that in vacuum ω2 decreases exponentially as the
frequency ω increases or decreases from ω0. This means that
the behavior of photons in the medium of such a PC differs
from that in free space only in the frequency range around ω0

with the width of the order of σ . In an actual PC structure the
DOS differs from that in free space in a much wider frequency
region in which the PC medium may be approximately treated
[13] as an effective homogeneous medium with an average
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FIG. 2. The model N (ω) determined by Eq. (20) with neff = 3,
h = 0.96, σ = 0.07 eV, μ = 15 eV, τ = 0.01 eV, and ω0 = 1 eV. The
dashed line denotes the free-space DOS.

dielectric constant ε̄ = εf + (1 − f ), where ε is the dielectric
constant of the host material and f is the dielectric fraction in
the PC.

These features of the PC medium are recaptured, for
example, by the following model function N (ω):

N (ω) = ω2n3
eff

[
1 − h exp

(
− (ω − ω0)2

σ 2

)]
F (ω), (20)

where the factor F (ω) = n−3
eff + (1 − n−3

eff )/[exp{(ω −μ)/τ } +
1] with neff ≡ √

ε̄ allows one to take into account that at high
enough photon energies N (ω) must approach the free-space
DOS (Fig. 2).

The results of our calculations of δm�
pc displayed in

Figs. 3(a) and 3(b) show that the shift of the rest energy
of the electron in the PC medium is insensitive to the values of
the model parameters h and σ characterizing the pseudogap.
This means that in the one-loop approximation the contribution
to the rest electron mass that comes from the virtual photons
with frequencies contained within the pseudogap is negligible,
and the effect depends mainly on the behavior of the DOS at
much higher frequencies. For given values of the refractive
index of the host dielectric and the filling fraction f , this
behavior is mainly determined by the parameter μ, whose
value is chosen for the model DOS to approach the free-space
DOS at frequencies higher than the upper bound ωop of
the optical frequency region. For the parameters presented in
the caption to Figs. 3(a) and 3(b), our calculations have given
δm�

pc = 2.4 × 10−6me.
The change in the electron mass in a PC means that the

energy of the electron with the momentum p that in free space
is (in the nonrelativistic limit) Ep = me + p2

2me
is changed to

Ep = (me + δmpc) + p2

2(me + δmpc)
. (21)

As follows from Eq. (21), the mass correction δmpc depends
on the orientation of the electron momentum in a PC. Here
it should be noted that we have derived the mass correction
from the contribution to the electron self-energy of the form

FIG. 3. The dependence of the correction δmpc of the electron rest
mass in the PC medium on the values of the parameters (a) h and (b) σ

characterizing the pseudogap for neff = 3, μ = 15 eV, τ = 0.01 eV,
ω0 = 1 eV, h0 = 0.96, σ0 = 0.07 eV, δmpc(h0,σ0) = 2.4 · 10−6me.
Here δmpc is the mean value of the electron mass correction defined
by Eq. (17).

− δmpc

me

p2

2me
, while there is the contribution to the self-energy

that does not depend on the electron momentum and directly
determines the correction δmpc to the rest energy. The reason
for this is that in describing the LE part of the self-energy
we used the nonrelativistic Hamiltonian (11). The free part of
this Hamiltonian is p2

2me
, and the energy is understand as the

difference between the total energy and the rest energy εp =
Ep − me. Thus, the self-interaction correction to the electron
energy obtained in this way does not contain the correction to
the rest energy, and for εp in the PC medium we have εp =

p2

2(me+δmpc) . However, in order to determine the total energy we
must add the rest energy me supplemented by the correction
δmpc. In this way we arrive at Eq. (21). It should be noted that
the mass dependence on orientation of the electron momentum
in the PC is not surprising. It is a consequence of anisotropy
of the crystal. In solid-state physics, crystal anisotropies result
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in the fact that the effective mass of an electron depends on
direction of the electron momentum with respect to the crystal
axes.

Obviously the change in the electron mass gives rise to
the shift of the energy levels of atoms. Let us consider the
effect by using the example of the atomic hydrogen. In the
approximation where the nucleus is assumed to be a point
and infinitely massive the energy levels of atomic hydrogen in
the photonic crystal medium are given by the solution of the
Dirac equation for the energy eigenvalues. For the energy of
the atomic state |n,j,l,m〉, we have Enj = meRnj , with

Rnj =

⎡
⎢⎣1 +

⎛
⎝ α

n − (
j + 1 1

2

) +
√(

j + 1 1
2

)2 − α2

⎞
⎠

2
⎤
⎥⎦

−1/2

,

where the electron rest mass in vacuum is replaced by the mean
mass correction 〈δmpc〉 that is determined as

〈δmpc〉 =
∫

d3p �∗
njlm(p)δmpc(p̂)�njlm(p). (22)

Thus, the change in the rest mass of the electron in the hydrogen
atom placed in a PC gives rise to the following shift of the
energy levels:

δE
pc

nj = 〈δmpc〉Rnj .

Here we do not take into account the corrections that appear
because of the modification of the Lamb shift caused by the
change in the electron rest mass. In other words, the shift δEpc

nj

of an energy level of atomic hydrogen in the PC medium equals
its free-space value multiplied by the ratio 〈δmpc〉/me. And
in the approximation, where the atomic nucleus is assumed
to be infinity massive, this is the case for any atom. This is
because in this approximation there is only one energy scale
that is given by the electron mass, and as a consequence, the
energy of an atomic state is the electron mass multiplied by
some dimensionless factor.

The energy of the hydrogen state in free space |a〉 =
|n,j,l,m〉 may be written as Ea = me + εa with εa =
− 1

2
α2me

n2 + O(α4). Here the rest energy part of Ea is distin-
guished. The frequency ωab of the transition between the state
|a〉 and the state |b〉 = |n′,j ′,l′,m′〉 is given by

ωab = εa − εb. (23)

The transition frequency ωab is equal to εa − εb because the
rest energy contributions are the same for both the states. The
situation is dramatically changed in the case when the atom is
placed in the PC medium. As we have seen, in this case the rest
energy part of the total energy of the bound electron depends
on the orbital angular momentum and the angular momentum
z component m. As a result, the rest energy parts of the total
energies of the states |a〉 and |b〉 make a contribution to the
transition frequency

ω
pc

ab = 〈δmpc〉a − 〈δmpc〉b + εpc
a − ε

pc

b . (24)

Thus, in contrast to the free-space case, in the case of the PC
medium the rest energy parts of the total energies of the states
|a〉 and |b〉 make the contribution to the frequency of the tran-
sition between these states. Moreover, the difference between

〈δmpc〉a and 〈δmpc〉b makes a predominant contribution to the
PC correction δω

pc

ab to the transition frequency

δω
pc

ab = (〈δmpc〉a − 〈δmpc〉b)[1 + O(α4)]

provided la = lb and/or ma = mb. Such a surprising appear-
ance of the contribution from the electron rest energy to the
atom transition frequencies in the case when the atom is placed
in the PC medium gives rise to the fact that the corrections to
these frequencies can be very significant. For example, for all
S states, 〈δmpc〉nS coincide with δm�

pc, which is determined by
Eq. (18), and in our model is found to be 2.4 × 10−6me. The
value of the 〈δmpc〉 in P states should be different but of the
same order of magnitude. Thus, the PC medium correction to
the frequencies of the transitions between the S and P states
should be of order 10−6me.

IV. OUTLOOK

We have shown that in the photonic crystal medium a
quantum electrodynamical effect of a new type takes place.
The atoms placed in a photonic crystal may be regarded as
atoms in free space, and as a result, they must have the ordinary
line optical spectrum. Photonic crystal medium affects only
the self-radiation field of these atoms. Unlike the free-space
case in the photonic crystal medium the interaction of an
atomic electron with its own radiation field that contributes
to the mass manifests itself explicitly and this gives rise to the
change in its mass. We have derived Eq. (16) that allows one to
calculate the mass correction δmpc for a given PC. From this
equation it follows that δmpc is independent of the position of
the electron in the PC voids but depends on the direction of
the electron momentum with respect to the photonic crystal
axes. This mass dependence on direction has a significant
effect on the structure of the atomic energy levels because
it give rise to the fact that the mean PC medium correction
δmpc in states with different orbital angular momenta and/or
angular momentum z components are different. This in turn
results in the appearance of the term 〈δmpc〉a − 〈δmpc〉b in
the expression (24) for the atomic transition frequency ωab.
Thus, despite that the modification of the interaction of the
electron with its own radiation field in the PC medium gives
rise to relatively small corrections to the rest electron mass
(in our model they are of order 10−6me), it results in the
appearance of the term in the expressions for atomic transition
frequencies that is absent in the free-space case. This terms
makes the contribution to ωab of order 10−6me, while the
transition frequency in free space determined by Eq. (23) is
given by ωab = α2

2 me( 1
n2

b

− 1
n2

a
) + O(α4). Thus, the shifts of

the energy levels of the atom in the PC medium actually may
be comparable to the atomic transition frequency in free space,
and for this the modification of the electromagnetic field in this
medium need not to be extraordinary. This provides a way to
drive the structure of the atomic energy levels. In this way,
in particular, light sources with the line spectrum of a new
type could be developed. Every spectral line of such sources
could be shifted in a wide range by changing properties of a
photonic crystal. The change in the rest mass of an electron in
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the PC medium gives rise also to the change of its magnetic
properties. The magnetic moment μ of an electron changes its
value in the PC medium on the value δμpc = −μδmpc/me,
where μ is the electron magnetic moment in vacuum. This
is important in view of the observation of the effect under
study as well as its applications. It is also important that the
mass correction δmpc carries valuable information about the
electron self-interaction that in solving other QED problems
is hidden in the regularization and renormalization procedure.
This gives us the hope that experimental investigations of the

predicted effect might have seen beyond the physics that is
described by the QED renormalization theory.
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