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The Husimi distribution is proposed for a phase-space analysis of quantum phase transitions in the Dicke
model of spin-boson interactions. We show that the inverse participation ratio and Wehrl entropy of the Husimi
distribution give sharp signatures of the quantum phase transition. The analysis is done using two frameworks:
a numerical treatment and an analytical variational approximation. Additionally, we propose a characterization
of the Dicke model quantum phase transition by means of the zeros of the Husimi distribution in the variational
approach.
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I. INTRODUCTION

Understanding quantum phase transitions (QPTs) is a
relevant fact in quantum many-body problems [1]. QPTs
usually occur in a system described by a Hamiltonian of
the form H = H0 + λH1, where H0 is exactly solvable, H1

is an interaction term, and λ is the corresponding control
interaction-strength parameter. The QPT occurs when λ

reaches some critical value λc in which the symmetries (and
consequently the properties) of the system change drastically.
This is the case of an ensemble of atoms interacting with a
single bosonic field mode described by the Dicke Hamiltonian.

Quantum mechanics offers different distributions to charac-
terize phase-space properties [2]. One is the Wigner function,
widely used in quantum optics, and another is the Husimi
distribution, which is given by the overlap between a minimal
uncertainty (coherent) state and the wave function. This
distribution is sometimes more convenient because, unlike
Wigner distribution, it is nonnegative. Husimi distribution
has been found useful for a phase-space visualization of a
metal-insulator transition [3], to analyze quantum chaos in
atomic physics [4] or to analyze models in condensed matter
physics [5]. In addition, we would like to point out that the
zeros of the Husimi distribution have essential information;
in particular, the quantum state can be described by its
distribution of zeros [6]. They are simply the least probable
points in phase space and they have been considered as a
quantum indicator of classical and quantum chaos [7,8].

The Husimi distribution has a great amount of information
and can be useful to consider informational measures such
as the so-called inverse participation ratio and Wehrl entropy
[9]. Recently, an analysis of QPTs in the Dicke model by
means of information measures [10–14] has been done in
position and momentum spaces, separately. Here, we present
an informational description of the Dicke model QPT in
phase space in terms of the inverse participation ratio (and
higher moments) and the Wehrl entropy of the Husimi
distribution and its marginals. Additionally, we will investigate

the visualization of the Dicke model QPT through the zeros of
the Husimi distribution.

This article is organized as follows: In Sec. II we briefly
remind the reader of the Dicke Hamiltonian, introduce co-
herent states and the Husimi distribution of the ground state,
define moments, Rénnyi-Wehrl entropies, and marginals of the
Husimi distribution, and present numerical results. In Sec. III
we study a variational approximation to the ground-state wave
function in terms of symmetry-adapted coherent states and
analyze the information measures in the thermodynamic limit.
Zeros of the Husimi (ansatz) distribution are also computed
and graphically represented in order to characterize the QPT.

II. DICKE HAMILTONIAN AND HUSIMI DISTRIBUTION

The single-mode Dicke model is a well-studied object in
the field of QPTs [15–17]. In this case the Hamiltonian is given
by

H = ω0Jz + ωa†a + λ√
2j

(a† + a)(J+ + J−), (1)

describing an ensemble of N two-level atoms with level
splitting ω0, where Jz, J± are the angular momentum operators
for a pseudospin of length j = N/2, and a and a† are
the bosonic operators of the field with frequency ω. It is
well known that there is a QPT at the critical value of the
coupling parameter λ = λc = √

ωω0/2 from the so-called
normal phase (λ < λc) to the superradiant phase (λ > λc).
At this point, it should be mentioned that there are studies
indicating that the phase transition in spin-boson systems
seems to be an artifact of the dipole approximation (weak
field intensities), which neglects the A2 term from the original
minimal coupling in the model Hamiltonian. In fact, there
are “no-go” theorems for observing the QPT in spin-boson
systems, and also claims about field-induced instabilities,
which have stimulated much discussion [28–31]. However,
some recent experiments provide a direct implementation of
the Dicke model (see, e.g., [32–34]) and this fact somehow
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circumvents the above-mentioned no-go theorems, at least in
these regimes.

Let us consider a basis set {|n; j,m〉 ≡ |n〉 ⊗ |j,m〉} of the
Hilbert space, with {|n〉}∞n=0 the number states of the field and
{|j,m〉}jm=−j the so-called Dicke states of the atomic sector.
The matrix elements of the Hamiltonian in this basis are

〈n′; j ′,m′|H |n; j,m〉
= (nω + mω0)δn′,nδm′,m

+ λ√
2j

(
√

n + 1δn′,n+1 + √
nδn′,n−1)

×(
√

j (j + 1) − m(m + 1)δm′,m+1

+
√

j (j + 1) − m(m − 1)δm′,m−1). (2)

At this point it is important to note that time evolution preserves
the parity eiπ(n+m+j ) of a given state |n; j,m〉. That is, the
parity operator �̂ = eiπ(a†a+Jz+j ) commutes with H and both
operators can then be jointly diagonalized. In particular, the
ground state must be even [see Eq. (28), below].

A. Coherent states and Husimi distribution

Let us denote by

|α〉 = e−|α|2/2eαa† |0〉 = e−|α|2/2
∞∑

n=0

αn

√
n!

|n〉,

|z〉 = (1 + |z|2)−j ezJ+ |j, − j 〉 (3)

= (1 + |z|2)−j

j∑
m=−j

(
2j

j + m

)1/2

zj+m|j,m〉

(with α, z ∈ C) the standard (canonical or Glauber) and spin-j
coherent states (CSs) for the photon and the particle sectors,
respectively. It is well known (see, e.g., [18]) that coherent
states form an overcomplete set of the corresponding Hilbert
space and fulfill the closure relations or resolutions of the
identity:

1 = 1

π

∫
R2

|α〉〈α|d2α,

1 = 2j + 1

π

∫
R2

|z〉〈z| d2z

(1 + |z|2)2
, (4)

with d2w = dRe(w) = dIm(w) being the Lebesgue measure
on R2 or C. It is straightforward to see that the probability
amplitude of detecting n photons and j + m excited atoms in
|α,z〉 ≡ |α〉 ⊗ |z〉 is given by

ϕ(j )
n,m(α,z) = 〈n|α〉〈j,m|z〉 = e−|α|2/2αn

√
n!

√( 2j

j+m

)
zj+m

(1 + |z|2)j
. (5)

The ground-state vector ψ will be given as an expansion

|ψ〉 =
nc∑

n=0

j∑
m=−j

c(j )
nm|n; j,m〉, (6)

where the coefficients c
(j )
nm are calculated by numerical diago-

nalization of (2) with a given cutoff nc. The Husimi distribution

of ψ is then given by


(α,z) = |〈α,z|ψ〉|2

=
nc∑

n,n′=0

j∑
m,m′=−j

c(j )
nmc̄

(j )
n′m′ϕ

(j )
n,m(α,z)ϕ(j )

n,m(ᾱ,z̄) (7)

and normalized according to

2j + 1

π2

∫
R4


(α,z)d2α
d2z

(1 + |z|2)2
= 1. (8)

Before discussing marginals of the Husimi distribution and
their properties, let us introduce an important approximation
which will simplify things greatly.

B. Holstein-Primakoff representation and large pseudospin

We shall make use of the Holstein-Primakoff representation
[19] of the angular momentum operators J±,Jz in terms of the
bosonic operators, [b,b†] = 1, given by

J+ = b†
√

2j − b†b,

J− =
√

2j − b†b b (9)

Jz = (b†b − j ).

For high values of j (and fixed b†b), we can approximate
J+ 
 √

2jb† and J− 
 √
2jb, so that the atomic sector can be

practically described by a harmonic oscillator, just like the field
sector. Introducing then position and momentum operators for
the two bosonic modes as usual:

X = 1√
2ω

(a† + a), PX = i

√
ω

2
(a† − a),

Y = 1√
2ω0

(b† + b),PY = i

√
ω0

2
(b† + b), (10)

the wave function position representation is formally equiva-
lent to that of a set of two coupled harmonic oscillators and
can be written as [20]

ψ(x,y) = √
ωω0 exp

[
−1

2
(ωx2 + ω0y

2)

]

×
nc∑

n=0

j∑
m=−j

c(j )
nm

Hn(
√

ωx)Hj+m(
√

ω0y)

2(n+m+j )/2
√

n!(j + m)!
, (11)

where we have made use of the definition of

〈x|n〉 = √
ωe− 1

2 ωx2 Hn(
√

ωx)√
2nn!

√
π

,

〈y|j,m〉 = √
ω0e

− 1
2 ω0y

2 Hj+m(
√

ω0y)√
2(j+m)(j + m)!

√
π

(12)

(the Hermite polynomials of degree n and j + m, respec-
tively), and we have truncated the Hilbert space of the field
sector to dimension nc looking for the numerical solution
and convergence of the eigenproblem [21]. This is a very
convenient representation that has already been used in
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Ref. [20]. Analogously, in momentum space

ψ̃(px,py)

= 1√
ωω0

exp

[
−1

2

(
p2

x

ω
+ p2

y

ω0

)]

×
nc∑

n=0

j∑
m=−j

(−i)n+m+j c(j )
nm

Hn(px/
√

ω)Hj+m(py/
√

ω0)

2(n+m+j )/2
√

n!(j + m)!
.

(13)

Moreover, redefining

β ≡
√

2jz, (14)

in (4), it can be seen (see, e.g., Refs. [18,22]) that spin-j
coherent states |z〉 go over to ordinary coherent states |β〉 ≡
e−|β|2/2eβb† |0〉 for j � 1 (when identifying |j, − j 〉 ≡ |0〉 and
|j,m〉 ≡ |m + j 〉). Thus, we shall assume the approximation

|z〉 
 |β〉, (15)

which turns out to be a quite good estimate, even for relatively
small values of j , for |z| in a neighborhood of the equilibrium
value |ze| < 1 in (27). With this approximation, the Husimi
distribution (7) becomes

�(α,β) = |〈α,β|ψ〉|2

=
nc∑

n,n′=0

j∑
m,m′=−j

c(j )
nmc̄

(j )
n′m′φ

(j )
n,m(α,β)φ(j )

n′,m′ (ᾱ,β̄), (16)

where now

φ(j )
n,m(α,β) = 〈n|α〉〈j + m|β〉 = e−|α|2/2αn

√
n!

e−|β|2/2βm+j

√
(m + j )!

,

(17)
with the new normalization∫

R4
�(α,β)

d2αd2β

π2
= 1. (18)

C. Moments, Rényi-Wehrl entropy, and marginals
of Husimi distribution

Important quantities to visualize the QPT in the Dicke
model across the critical point λc will be the νth moments
of the Husimi distribution (16):

Mj,ν(λ) =
∫
R4

d2αd2β

π2
(�(α,β))ν . (19)

Note that Mj,1 = 1 since � is normalized (18). Among all
moments we shall single out the so-called “inverse partici-
pation ratio” Pj (λ) = Mj,2(λ) which somehow measures the
(de)localization of � across the phase transition. The definition
of the moments Mj,ν is not restricted to integer values of
ν. Once Mj,ν are known for all integer ν, there is a unique
analytic extension to complex (and therefore real) ν, as integers
are dense at infinity. The “classical” (versus quantum von
Neumann) Rényi-Wehrl entropy is then defined as

Wj,ν(λ) = 1

1 − ν
ln(Mj,ν(λ)), (20)

which tends to the Wehrl entropy

Wj (λ) = −
∫
R4

d2αd2β

π2
�(α,β) ln �(α,β) (21)

when ν → 1.
In order to differentiate between position and momentum

behaviors, we shall study the marginals of the Husimi
distribution in each space:

�1(α1,β1) =
∫
R2

dα2dβ2

π
�(α1 + iα2,β1 + iβ2),

�2(α2,β2) =
∫
R2

dα1dβ1

π
�(α1 + iα2; β1 + iβ2), (22)

so that ∫
R2

dακdβκ

π
�κ (ακ,βκ ) = 1, κ = 1,2. (23)

We shall also be interested in the moments of marginal
distributions

M
(κ)
j,ν(λ) =

∫
R2

dακdβκ

π
(�κ (ακ,βκ ))ν , κ = 1,2, (24)

especially the marginal inverse participation ratios P
(κ)
j (λ) =

M
(κ)
j,2 and marginal Wehrl entropies

W
(κ)
j (λ) = −

∫
R2

dακdβκ

π
�κ (ακ,βκ ) ln �κ (ακ,βκ ) (25)

in position (κ = 1) and momentum (κ = 2) spaces as a
function of the control parameter λ. In general, Pj (λ) 
=
P

(1)
j (λ)P (2)

j (λ) and Wj (λ) 
= W
(1)
j (λ) + W

(2)
j (λ), but these

quantities are approximately equal for high j except in a close
neighborhood of λc [3].

In Appendix A we provide a connection with other phase-
space formulas for marginal distributions in position and
momentum coordinates (10). This approach has been used
in [3] to visualize the metal-insulator QPT described by the
Aubry-André model. We also make use of this representation
to make numerical calculations more maneuverable.

D. Numerical results

First, we calculated the participation ratio Pj (λ) and the
Wehrl entropy Wj (λ) for different values of λ. The computed
results are given in Fig. 1 where we present Pj (λ) and Wj (λ)
for j = 2, 5, 10 and for ω = ω0 = 1 (for which λc = 0.5).
Notice that the inverse participation ratio (top panel) is around
1/4 in the normal phase decreasing around the critical point
to reach the value 1/8 in the superradiant phase. We can see
that the change in the participation ratio is more sudden as j

increases. The Wehrl entropy (bottom panel) is approximately
2 in the normal phase and around 2 + ln 2 in the superradiant
phase changing suddenly (more sudden as j increases) around
the critical point. For completeness we have represented the
computed marginal quantities in Fig. 2.

III. VARIATIONAL APPROXIMATION
AND THERMODYNAMIC LIMIT

Now we present analytical expressions for Husimi’s dis-
tribution, its marginals, moments, and entropies using trial
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FIG. 1. (Color online) Inverse participation ratio Pj (λ) and
entropy in phase space Wj (λ) for j = 5 and j = 10 and ω0 = ω = 1
as a function of λ. All values are in atomic units.

states expressed in terms of “parity-symmetry-adapted” CSs
introduced by Castaños et al. [23,24], which turn out to be an
excellent approximation to the exact quantum solution of the
ground- (+) and first-excited (–) states of the Dicke model.

A. Symmetry-adapted coherent states and
their Husimi distribution

Using the direct product |α,z〉 ≡ |α〉 ⊗ |z〉 as a ground-state
ansatz, one can easily compute the mean energy:

H(α,z) = 〈α,z|H |α,z〉
= ω|α|2 + jω0

|z|2 − 1

|z|2 + 1
+ λ

√
2j (α + ᾱ)

z̄ + z

|z|2 + 1
,

(26)

which defines a four-dimensional “energy surface.” Minimiz-
ing with respect to these four coordinates gives the equilibrium
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FIG. 2. (Color online) Marginal inverse participation ratio P
(i)
j (λ)

and entropy in phase space W
(i)
j (λ) for j = 5 and j = 10, i = 1, 2

and ω0 = ω = 1 as a function of λ. All values are in atomic units.

points

αe =

⎧⎪⎪⎨
⎪⎪⎩

0 if λ < λc

−√
2j

√
ω0
ω

λ
λc

√
1 −

(
λ
λc

)−4
if λ � λc,

ze =

⎧⎪⎪⎨
⎪⎪⎩

0 if λ < λc√√√√ λ
λc

−
(

λ
λc

)−1

λ
λc

+
(

λ
λc

)−1 if λ � λc.
(27)

Note that αe and ze are real and nonzero above the critical
point λc (i.e., in the superradiant phase).

Although the direct product |α,z〉 gives a good varia-
tional approximation to the ground-state mean energy in
the thermodynamic limit j → ∞, it does not capture the
correct behavior for other ground-state properties sensitive
to the parity symmetry �̂ of the Hamiltonian (1) like, for
instance, uncertainty and entropy measures. This is why parity-
symmetry adapted coherent states are introduced. Indeed, a far
better variational description of the ground (first-excited) state
is given in terms of the even-parity (odd-parity) coherent states

|ψ±〉 = |α,z,±〉 = |α〉 ⊗ |z〉 ± | − α〉 ⊗ | − z〉
N±(α,z)

, (28)

obtained by applying projectors of even and odd parity P̂± =
(1 ± �̂) to the direct product |α〉 ⊗ |z〉. Here

N±(α,z) =
√

2

[
1 ± e−2|α|2

(
1 − |z|2
1 + |z|2

)2j
]1/2

(29)

is a normalization factor. These even and odd coherent
states are “Schrödinger cat states” in the sense that they are
a quantum superposition of quasiclassical, macroscopically
distinguishable states. The new energy surface is now

H±(α,z) = 〈α,z, ± |H |α,z,±〉
= H(α,z) ± 〈α,z|H | − α, − z〉

N 2±(α,z)/2
, (30)

with nondiagonal elements

〈α,z|H | − α, − z〉

= e−2|α|2
(

1 − |z|2
1 + |z|2

)2j

×
(

ω|α|2 − jω0
1 + |z|2
1 − |z|2 + λ

√
2j (α − ᾱ)

z − z̄

1 − |z|2
)

.

(31)

The more involved structure of H±(α,z) makes it much more
difficult to obtain the new critical points α(±)

e ,z(±)
e that mini-

mize the corresponding energy surface. Instead of carrying out
a numerical computation of α(±)

e ,z(±)
e for different values of

j and λ, we shall use the approximation α(±)
e ≈ αe,z

(±)
e ≈ ze,

which turns out to be quite good except in a close neighborhood
around λc which diminishes as the number of particles N = 2j

increases (see Ref. [24]). With this approximation, we expect a
rather good agreement between our numerical and variational
results except perhaps in a close vicinity of λc.
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Taking into account the coherent-state overlaps

〈α| ± αe〉 = e− 1
2 |α|− 1

2 α2
e ±ᾱαe ,

〈z| ± ze〉 = (1 ± z̄ze)2j

(1 + |z|2)j
(
1 + z2

e

)j , (32)

the Husimi distribution for the variational states |αe,ze,±〉 can
be simply written as


±(α,z) = |〈α,z|αe,ze〉 ± 〈α,z| − αe, − ze〉|2
N 2±(αe,ze)

. (33)

In order to compute the zeros, moments, and entropies
of 
±(α,z), and to compare with numerical results of the
previous section, we shall make use of the Holstein-Primakoff
representation (10, 14, 15). With this approximation, the
Husimi distribution can be cast in the new form

�±(α,β) = e−|α|2−|β|2−α2
e −β2

e |eᾱαe+β̄βe ± e−ᾱαe−β̄βe |2
2(1 ± e−2α2

e −2β2
e )

, (34)

From now on we shall restrict ourselves to the even case and
simply denote by ψ = ψ+ and � = �+ the wave function and
the Husimi distribution, respectively, of the variational ground
state.

B. Moments and Rényi-Wehrl entropy of Husimi distribution

Important quantities to visualize the QPT in the Dicke
model across the critical point λc will be the νth moments of the
Husimi distribution (19). In particular, the inverse participation
ratio is given by

Pj (λ) = Mj,2(λ) = 1 + sech2
(
α2

e + β2
e

)
8

. (35)

Figure 3 shows that Pj (λ) tends to a Heaviside-type step
function

P∞(λ) =
{

1/4 if λ < λc

1/8 if λ � λc,
(36)

which suffers a sudden decrease of 1/4 from normal to
superradiant phase, thus indicating a delocalization of � above
the critical point λc. A similar behavior is displayed by higher

0.5 1
λ

1
8

1
4

Pj

j 5

j 2

j 1

FIG. 3. (Color online) Inverse participation ratio of the Husimi
distribution as a function of λ for different values of j and λc = 0.5.
All values are in atomic units.

moments in the thermodynamic limit

Mj,ν(λ)
j→∞−→

{
ν−2 if λ < λc

21−νν−2 if λ � λc.
(37)

The definition of the moments Mj,ν is not restricted to integer
values of ν. Once Mj,ν are known for all integer ν, there is a
unique analytic extension to real ν > 0 (and to the right-half
complex plane). This analytic extension is possible due to the
particular expression of � in terms of Gaussian bells. Using
(37), we can easily compute Rényi-Wehrl entropies (20) and, in
the limit ν → 1, the Wehrl entropy (21) in the thermodynamic
limit

Wj (λ)
j→∞−→

{
2 if λ < λc

2 + ln(2) if λ � λc.
(38)

This result is in agreement with the (still unproven) Lieb’s
conjecture. Indeed, as conjectured by Wehrl [25] and proved
by Lieb [26], any Glauber coherent state |α〉 has a minimum
Wehrl entropy of 1. In the same paper by Lieb [26], it was also
conjectured that the extension of Wehrl’s definition of entropy
for coherent spin-j states will yield a minimum entropy j/(j +
1). For the joined system of radiation field plus atoms we
would have Wj (λ) = 1 + j/(j + 1) in the normal phase (λ <

λc) and, therefore Wj → 2 in the thermodynamic limit, in
agreement with our result.

C. Marginals of Husimi distribution

The explicit expressions of the marginal Husimi distribu-
tions (22) for our variational ground state ψ are

�1(α1,β1) = 1 + eα2
e +β2

e cosh (2(α1αe + β1βe))

eα2
1+β2

1
(
1 + e2α2

e +2β2
e

) ,

�2(α2,β2) = 1 + e−α2
e −β2

e cos (2(α2αe + β2βe))

eα2
2+β2

2
(
1 + e−2α2

e −2β2
e

) . (39)

Using the definition (24), we can compute inverse par-
ticipation ratios for marginal distributions as a function of
ζj (λ) ≡ eα2

e +β2
e :

P
(1)
j (λ) = 2 + 4ζ

3/2
j (λ) + ζ 2

j (λ) + ζ 4
j (λ)

4
[
1 + ζ 2

j (λ)
]2 ,

P
(2)
j (λ) = 1 + ζ 2

j (λ) + 4ζ
5/2
j (λ) + 2ζ 4

j (λ)

4
[
1 + ζ 2

j (λ)
]2 . (40)

Figure 4 shows P
(κ)
j (λ) for j = 10, indicating that P

(1)
j (λ)

suffers a sudden decrease from 1/2 to 1/4 across the phase
transition, whereas P

(2)
j (λ) remains constant (the small peak

around λc = 0.5 is perhaps an artifact due to the approximate
character of αe,βe in the neighborhood of λc). In general,
higher moments of marginal distributions in the thermody-
namic limit are given by

M
(1)
j,ν(λ)

j→∞−→
{

ν−1 if λ < λc

21−νν−1 if λ � λc,

M
(2)
j,ν(λ)

j→∞−→ ν−1 ∀ λ, (41)
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1
4

1
2
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2

1

FIG. 4. (Color online) Marginal inverse participation ratios
P

(κ)
j ,κ = 1,2 (position and momentum, respectively) of Husimi

distribution as a function of λ for j = 10 and λc = 0.5. All values
are in atomic units.

so that, in this limit, we have Mj,ν(λ) = M
(1)
j,ν(λ)M (2)

j,ν(λ). This
equality is not true in general for finite j and λ > λc, as can
be directly checked for ν = 2 from (35) and (40). Now we
see that the entropy excess of ln(2) comes from the position
contribution, since Wehrl entropy in momentum space remains
constant:

W
(1)
j (λ)

j→∞−→
{

1 if λ < λc

1 + ln(2) if λ � λc,
(42)

W
(2)
j (λ)

j→∞−→ 1. (43)

In order to connect with (A3), we introduce position
and momentum operators for the two bosonic modes as
in (10). Taking into account the position and momentum
representation of an ordinary (canonical) CS (A2), the explicit
expression of the ground-state wave function |αe,βe〉+ in posi-
tion [ψ(x,y) = 〈x,y|αe,βe,+〉] and momentum [ψ̃(px,py) =
〈px,py |αe,βe,+〉] representations can be easily obtained as

ψ(x,y) =
√

ωω0

π
N+(αe,βe)

{
exp

[
−1

2
(
√

ωx −
√

2αe)2

−1

2
(
√

ω0y −
√

2βe)2

]
+exp

[
−1

2
(
√

ωx +
√

2αe)2

−1

2
(
√

ω0y +
√

2βe)2

]}
, (44)

ψ̃(px,py) = 2√
ωω0π

N+(αe,βe) exp

(
− p2

x

2ω
− p2

y

2ω0

)

× cos

[√
2

(
px√
ω

αe + py√
ω0

βe

)]
, (45)

where N+(αe,βe) = [2(1 + e−2α2
e −2β2

e )]−1/2 is the typical nor-
malization factor obtained earlier. Note that, for λ > λc,
the ground-state wave function ψ(x,y) splits up into two
Gaussian packets centered at antipodal points

√
2(αe,βe) and

−√
2(αe,βe) in the x-y plane. The packets move away from

each other for increasing j above the critical point λ > λc.
In momentum space, ψ̃(px,py) is a Gaussian modulated by a
cosine function which oscillates rapidly for high j for λ > λc.
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FIG. 5. (Color online) Zeros of the Husimi distribution �(α,β) in
the cell α2,β2 ∈ [−1,1] of the momentum plane for λ = 0.6, j = 10
(top left), λ = 0.6, j = 100 (top right), λ = 10, j = 10 (bottom left),
and λ = 10, j = 100 (bottom right) for λc = 0.5. All values are in
atomic units.

D. Zeros of Husimi distribution and QPT

It is well known that the Husimi density is determined by
its zeros through the Weierstrass-Hadamard factorization. It
has also been observed that the distribution of zeros differs for
classically regular or chaotic systems and can be considered as
a quantum indicator of classical chaos (see, e.g., Refs. [4,6,7]).

Here we shall explore the distribution of zeros of the Husimi
density as a fingerprint of QPT in the Dicke model. From (33)
we obtain


(α,z) = 0 ⇒ 2ᾱαe + 2j ln
1 + z̄ze

1 − z̄ze

= iπ (2l + 1), l ∈ Z.

(46)

Instead of this condition, we shall use the approximation (15)
and from (34) obtain

�(α,β) = 0 ⇒ 2ᾱαe + 2β̄βe = iπ (2l + 1), l ∈ Z, (47)

which is equivalent to

α1 = −βe

αe

β1, (48)

α2 = −βe

αe

β2 − π

2αe

(2l + 1). (49)

We see that, in the normal phase (αe = 0 = βe) the Husimi
distribution �(α,β) has no zeros. In the superradiant phase
(λ > λc) the zeros are localized along straight lines (“dark
fringes”) in the α1β1 (position) and α2β2 (momentum) planes.
In the momentum plane, the number of dark fringes per cell
α2,β2 ∈ [−1,1] grows with λ and j , as depicted in Fig. 5.
In the thermodynamic limit j → ∞, zeros densely fill the
momentum plane α2β2.

IV. CONCLUSIONS

We have found that inverse participation ratios and Rényi-
Wehrl entropies of the Husimi distribution provide sharp
indicators of a quantum phase transition in the Dicke model.
These uncertainty measures detect a delocalization of the
Husimi distribution across the critical point λc and we have
employed them to quantify the phase-space spreading of the
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states. The advantage of working in phase space is that we can
analyze contributions in position and momentum space jointly
and separately. Marginal magnitudes in position space turn out
to provide sharper indicators of the QPT than in momentum
space, where these quantities remain nearly constant. However,
zeros of the Husimi distribution exhibit a richer structure in
momentum than in position space.

Calculations have been done numerically and through a
variational approximation. Numerical calculations are per-
formed by using explicit expressions which have been de-
rived by adopting a truncation of the Holstein-Primakoff
representation of the angular momentum operators. The
variational approach, in terms of symmetry-adapted coherent
states, complements and enriches the analysis providing
explicit analytical expressions for the inverse participation
ratios and Rényi-Wehrl entropies which remarkably coincide
with the numerical results, especially in the thermodynamic
limit.

In the superradiant phase, Wehrl’s entropy undergoes an
entropy excess (or “subentropy” [27]) of ln(2). This fact
implies that the Husimi distribution splits up into two identical
subpackets with negligible overlap in passing from the normal
to superradiant phase. In general, for s identical subpackets
with negligible overlap, one would expect an entropy excess of
ln(s). We would like to mention that the Wehrl subentropy (or
excess of the Wehrl entropy) has also been used in Ref. [9] as a
measure of the degree of mixing for monopartite states or of the
degree of entanglement for pure states of bipartite systems. The
Dicke model is also known to exhibit entanglement between
the atoms and the field [15,16] and a characterization of it in
terms of entropy excesses of this kind would be interesting.

The QPT fingerprints in the Dicke model have also been
tracked by exploring the distribution of zeros of the Husimi
density within the analytical variational approximation. We
have found that the zeros characterize the QPT in this model.
Moreover, zeros densely fill the momentum plane in the super-
radiant phase for the ground state variational approximation
in the thermodynamic limit. This subject deserves further
attention and should be studied in other models too. For the
moment, we have detected a sudden growth of zeros above the
critical point λc in the Holstein-Primakoff approximation.

Additionally, we would like to remark some points concern-
ing the chaotic behavior in the Dicke model. In Ref. [20] it was
demonstrated that the Dicke Hamiltonian is exactly integrable
in the thermodynamic limit. However, for finite j this is not
the case, and the possibility of quantum chaos remains. The
signature of quantum chaos used in Ref. [20] to investigate
this possibility was the character of the energy spectrum. As
already said, the different structure of zeros of the Husimi
distribution for classically regular or chaotic systems has also
been considered as a quantum indicator of classical chaos (see,
e.g., Refs. [4,6,7]). For example, in Ref. [7] it is shown that,
in integrable regions, the zeros lie on one-dimensional curves,
while in chaotic regions the distribution is bidimensional and
the zeros fill the phase-space. Here we have restricted ourselves
to the phase-space analysis of the ground state. One could think
about the sudden growth of zeros above the critical point λc

(in the Holstein-Primakoff approximation) as a symptom of
chaos. However, we believe that the presence of chaos in the

Dicke model at the quantum level should be analyzed from the
Husimi distribution of excited states.
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APPENDIX: MARGINAL HUSIMI DISTRIBUTIONS AS
GAUSSIAN SMEARINGS

Working on the resonance ω = ω0, we can introduce
a “natural variance” σ 2 = 1/(2ω) in the Dicke model by
considering the change of coordinates

α1 = x

2σ
, α2 = σkx,

(A1)
β1 = y

2σ
, β2 = σky,

with r = (x,y), k = (kx,ky) being position and momentum
vectors. Taking into account the position and momentum
representation of an ordinary (canonical) CS [18],

〈x|α〉 =
(

ω2

π

)1/4

ei
√

2ωα2x exp [−(
√

ωx −
√

2α1)2/2],

〈k|α〉 =
(

1

πω2

)1/4

ei
√

2
ω
α1k exp

[
−
(

k√
ω

−
√

2α2

)2/
2

]
,

(A2)

one can easily see that marginal distributions (22) can be
also obtained as a smearing (convolution product) of the
density functions |ψ(r)|2 and |ψ̃(k)|2 by Gaussians gσ (r) =
(2πσ 2)−1 exp [−r2/(2σ 2)] and g̃σ (k) = 4πσ 2 exp (−2σ 2k2)
as

ξ (r) =
∫

dr′gσ (r − r′)|ψ(r′)|2,

ξ̃ (k) =
∫

dk′

(2π )2
g̃σ (k − k′)|ψ̃(k′)|2, (A3)

with
∫

drξ (r) = 1 and
∫

dk
(2π)2 ξ̃ (k) = 1. Inverse participation

ratios and Wehrl entropies for these marginal distributions are
now written as

P
ξ

j =
∫

drξ 2(r), P
ξ̃

j =
∫

dk
(2π )2

ξ̃ 2(k), (A4)

W
ξ

j =
∫

drξ (r) ln ξ (r), W
ξ̃

j =
∫

dk
(2π )2

ξ̃ (k) ln ξ̃ (k).

(A5)

More explicitly, from (11) and (13), marginal Husimi distri-
butions (A3) are given in terms of the coefficients c

(j )
nm as

ξ (x,y) =
∑

n,m,n′,m′
c(j )
nmc

(j )
n′m′In,n′ (x)Im+j,m′+j (y), (A6)

and

ξ̃ (kx,ky) = (2π )2
∑

n,m,n′,m′
d (j )

nmd
(j )
n′m′In,n′ (px)Im+j,m′+j (py),

(A7)
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with d
(j )
nm ≡ (−i)n+m+j c

(j )
nm and

In,n′ (x) = Aα

√
n!n′!

(
1 − α2

2

)n+n′

exp

( −x2

1 + 2σ 2

)

×
μ∑

k=0

B(n,n′,k)

(
2

1 − α2

)k

Hn+n′−2k

(
αs

(1 − α2)1/2

)
,

(A8)

with μ = min{n,n′}, A = (2πσ 2)−1/2, B(n,n′,k) =
[(k!)(n − k)!(n′ − k)!]−1, α =

√
2σ 2/(2σ 2 + 1) and

s = x/[σ
√

2(1 + 2σ 2)]. Relations between marginal inverse
participation ratios and Wehrl entropies in both cases can be

straightforwardly obtained: P
ξ

j = π−1P
(1)
j , P

ξ̃

j = πP
(2)
j and

W
ξ

j = W
(1)
j + ln(2π ), W

ξ̃

j = W
(2)
j − ln(2π ).
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[13] Á. Nagy and E. Romera, Physica A 391, 3650 (2012).
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