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The collective spontaneous emission of N multilevel atoms is studied in optical vector theory and without
applying the rotating-wave approximation. The counter-rotating terms are included using a unitary transformation
method. We analyze the decay dynamics starting from two initial conditions, the standard Dicke and timed Dicke
states. In addition to the dependence on ensemble volume and density, we also study the effect of the ensemble
geometry on cooperative emission for spheres, cubes, and quasi-two-dimensional shapes in different orientations.
Finally, time-dependent cooperative spontaneous emission rates are introduced and investigated.
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I. INTRODUCTION

The phenomenon of spontaneous emission from atomic
systems is one of the most intriguing effects in quantum optics.
Spontaneous emission and the Lamb shift are not immutable
properties of the atom itself, but also depend on external
influences such as the environment [1]. In a pioneering work
by Dicke [2], it was found that the spontaneous emission from
an ensemble of two-level atoms confined inside a volume of
dimensions much smaller or much larger than the involved
emission wavelength is modified by collective effects. The
emission can either be accelerated (superradiance) or slowed
down (subradiance) compared to the natural decay time scale.
Subsequently, superradiance and subradiance were extensively
studied theoretically and experimentally [3–22]. In most
theoretical studies, the rotating-wave approximation (RWA)
is applied to simplify the discussion. Then the atomic system
can be reduced to a small number of states, as counter-rotating
contributions to the Hamiltonian leading to evolutions to
higher excited states are neglected [14–18]. It is commonly
assumed that the RWA is a reasonably good approximation
as the counter-rotating terms formally violate energy conser-
vation, leading to virtual processes, and thus are suppressed.
Recently, Scully and co-workers [19,20] and Friedberg and
Manasseh [21] discussed the collective spontaneous emission
of N two-level atoms with the counter-rotating terms included.
Surprisingly, it was found that the virtual processes from the
counter-rotating terms could induce non-negligible effects in
the long-time cooperative spontaneous emission.

Recently, an alternative method based on unitary transfor-
mations was introduced to include the effects of the counter-
rotating terms [23] for the case of a single multilevel atom. It
was found that the time evolution of the spontaneous emission
at short times is different from that obtained with the RWA,
which could be interpreted in terms of the quantum Zeno
[24] and anti-Zeno effects [25]. A similar method was later
used [26–35] to consider both the short-time and the long-time
spontaneous emission behavior for a two-level or multilevel
atom either in vacuum or in other reservoirs with different
spectra. The method has also been used [36] to study the
Lamb shift [37] and emission spectra of spontaneous emission
of two identical multilevel atoms. The unitary transformation
method has three major advantages: (1) After the unitary

transformation, the effective Hamiltonian has the form of
an RWA Hamiltonian, even though the RWA is not applied.
(2) The self-energy of the electron can be subtracted from the
Hamiltonian at the beginning. (3) The full level structure of
the original atom can easily be considered [28]. This is crucial,
as with counter-rotating terms included, the original atom can
no longer be modeled as a two-level system. The reason is
that the influence of other levels is of the same order in the
counter-rotating terms.

In this paper, we study the collective spontaneous emission
of N multilevel atoms in vacuum. We consider two initial
states with one excitation coherently spread out over many
atoms and zero photons in the reservoir: first, the standard
Dicke state, and, second, the timed Dicke state [17,19]. As the
polarization and the vector character of the fields are important
in the study of the collective spontaneous emission, we use a
vector theory including all possible wave-vector directions and
polarizations of the vacuum modes in the three-dimensional
space. For low atomic density, the correlations between the
atoms are negligible, while for very small volumes with large
density (V � λ3 with λ the involved optical wavelength),
the standard Dicke state and the timed Dicke state coincide.
Therefore, we mainly focus on intermediate densities in the
range of 10 atoms/λ3. Note that the decay dynamics depends
on the spatial structure of the atoms, as well as on the
initial state (the relative phases between atoms), as it is the
superposition of one excitation in a large number of atoms.
This excitation involves all atoms coherently, so that all atoms
take part in the system’s time evolution. The relative phases
between the atoms are important. For the standard Dicke state,
the relative phases are zero, while for the timed Dicke state, the
relative phases depends on the distance between the atoms and
the wave vector of the exciting field. Our main observables are
the population in the initial state, the total population in atomic
excited states, and the cooperative decay rates. We find that, as
expected, both the timed and the standard Dicke initial states
form approximately exponentially decaying eigenstates of the
ensemble for small volumes. But for intermediate volumes,
they are not eigenstates of the ensemble, resulting in complex
time evolutions of the initial excitation. Next, we consider
the effect of the ensemble geometry on the cooperative
emission. We find that at intermediate sizes, the emission
dynamics depends on the shape of the ensemble, which can
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be interpreted as arising from the geometry dependence of
the cooperative Lamb shift. After a comparison of a sphere
to a cube, we also analyze quasi-two-dimensional samples
in different orientations, and find characteristic differences in
the dependence on the geometry for timed and regular Dicke
states. We further analyze the dependence of the emission
dynamics of the timed Dicke state on the relative orientation
of the atomic dipole moments to the wave vector of the exciting
photon. Finally, we introduce the time-dependent cooperative
emission rate in order to describe the emission dynamics for
intermediate ensemble volumes, and study its time evolution.

II. MODEL AND HAMILTONIAN

We consider N identical multilevel atoms interacting with
the electromagnetic vacuum field. The total Hamiltonian of
the system reads (h̄ = 1)

H =
∑

j

∑
l

ωl |l〉jj 〈l| +
∑

k

ωkb
†
kbk

+
∑
j,k

∑
l,m

gk,lm |l〉jj 〈m| (b†ke
−ik·rj + H.c.), (1)

where ωl is the energy of the level |l〉, bk (b†k) is the
creation (annihilation) operator of the kth-mode vacuum field
of frequency ωk and wave vector k, rj is the position of the
j th atom, and

gk,lm = |ωlm|dlm

√
1

2ε0ωkV
(d̂lm · êk) (2a)

:= gk,lm(d̂lm · êk) (2b)

is the coupling strength. Here êk is the polarization direction
of the kth-mode field such that êk · k = 0. Usually, there are
two polarizations for each optical mode. But throughout this
paper, we consider only one of the two, êk, which is in the
plane spanned by dlm and k, and neglect the other one, ê′

k,
which is normal to both dlm and k and brings no contribution.
We assume that the dipole moments of all atoms are aligned,
such that the dipole moment dlm ≡ dlmd̂lm for the transition
between the levels |l〉 and |m〉 is identical for all the atoms.
For the sake of simplicity, we can further assume that gk,lm is
real. Note that gk,lm = 0 for l = m, and we define the notations
rjj ′ ≡ rj − rj ′ and ωlm ≡ ωl − ωm.

Next, we introduce a unitary transformation U = exp(iS)
with

S =
∑
j,k

∑
l,m

gk,lmξk,lm

iωk
|l〉jj 〈m| (b†ke

−ik·rj − H.c.) (3)

and

ξk,lm = ωk

ωk + |ωlm| . (4)

Subtracting in addition the free-electron self-energy

Eself = −
∑
j,k

∑
l,m

|gk,lm|2
ωk

|l〉jj 〈l| , (5)

the effective Hamiltonian after the transformation can be
written as

HS = U †HU − Eself

= HS
0 + H1 + HV 1 + HV 2 + O(g2). (6)

In the above expression, we have expanded the Hamiltonian
in powers of gk,lm. The zeroth-order term evaluates to

HS
0 =

∑
k

ωkb
†
kbk +

∑
j

∑
l

ω′
l |l〉jj 〈l| , (7)

where we have introduced the effective state energies ω′
l =

ωl + δl with

δl = −
∑
m,k

|gk,lm|2
ωk

(
2ξk,lm − ξ 2

k,lm + ωlm

ωk
ξ 2

k,lm − 1

)
. (8)

Here, the energy shift δl can be interpreted as the single-atom
nondynamic Lamb shift [28] for level |l〉 as it is not related to
any decay process.

The first-order term of the Hamiltonian (6) can be
expressed as

H1 =
∑
j,k

∑
l>m

2gk,lm|ωlm|
ωk + |ωlm| (|l〉jj 〈m| bke

ik·rj + H.c.), (9)

and describes vacuum-induced transitions between the states.
Note that Eq. (9) has the form of a Hamiltonian in the
RWA, even though we did not apply the RWA to the original
Hamiltonian Eq. (1). Instead, the simple structure of Eq. (9)
originates from the unitary transformation Eq. (3).

The second-order terms in the Hamiltonian (6) are

HV 1 = −
∑
j,k

∑
l,m,n�=l

gk,lmgk,mnξk,lmξk,mn

2ω2
k

|l〉jj 〈n|

× (2ωk + 2|ωlm| + 2|ωnm| + ωlm + ωnm), (10)

HV 2 = −
∑

j �=j ′,k

∑
l,l′,m,m′

gk,lmgk,l′m′ξk,lm

2ωk
(2 − ξk,l′m′)

× (eik·rjj ′ + c.c.) |l〉jj 〈m| ⊗ |l′〉j ′j ′ 〈m′|. (11)

They arise due to virtual photon processes involving the
emission and reabsorption of a photon related to the counter-
rotating terms in Eq. (1). The term HV 1 describes virtual pho-
ton processes within the same atom, whereas HV 2 describes
virtual photon processes between two different atoms.

In the interaction picture with respect to HS
0 , the interaction

Hamiltonian becomes

HI = eiHS
0 t (H1 + HV 1 + HV 2)e−iHS

0 t

= HI
1 + HI

V 1 + HI
V 2, (12)

where

HI
1 = eiHS

0 tH1e
−iHS

0 t

=
∑
j,k

∑
l>m

2gk,lm|ωlm|
ωk + |ωlm|

×(|l〉jj 〈m|eiω′
lmt bke

−iωkt eik·rj + H.c.), (13a)
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HI
V 1 = eiHS

0 tHV 1e
−iHS

0 t

= −
∑
j,k

∑
l,m,n�=l

gk,lmgk,mnξk,lmξk,mn

2ω2
k

eiω′
lnt

× (2ωk + 2|ωlm| + 2|ωnm| + ωlm + ωnm)|l〉jj 〈n|,
(13b)

HI
V 2 = eiHS

0 tHV 2e
−iHS

0 t

= −
∑

j �=j ′,k

∑
l,l′,m,m′

gk,lmgk,l′m′ξk,lm

2ωk
(2 − ξk,l′m′ )

× |l〉jj 〈m|eiω′
lmt ⊗ |l′〉j ′j ′ 〈m′|

× eiω′
l′m′ t (eik·rjj ′ + c.c.). (13c)

III. TIME EVOLUTION FOR SINGLE-ATOM-
EXCITATION STATES

A. Equations of motion

We next consider the special case of a single excitation
distributed in the ensemble of atoms. We denote the ground
and first excited levels of the individual atoms as |g〉 and |e〉,
respectively. The ensemble ground state of HS

0 then is

|G0〉 := |G,0〉 = |g1g2 · · · gN 〉 |0〉 , (14)

with |0〉 being the vacuum state of the electromagnetic field.
The single-atom excited states of the system can be expressed
as superpositions of basis states (j ∈ {1, . . . ,N})

|ej 〉 := |g1g2 · · · ej · · · gN 〉. (15)

Finally, we denote the state with all atoms in the ground state
and a single photon in mode k as |G,1k〉 = |G〉|1k〉.

From the structure of the effective Hamiltonian, Eqs. (13),
it is clear that when we start with the single-atom first excited
state, the influence of the higher excited states is at the fourth
order of the coupling constant, which can be neglected, so
that the higher excited levels can be discarded. Therefore, the
single-excitation states (|ej 〉 and |G,1k〉) span the sub-Hilbert
space relevant for the dynamics of the system with initially
one excitation in the atoms.

In the following, we will consider two types of initial state
of the atoms, the standard Dicke state [2]

|D〉 = 1√
N

∑
j

|ej ,0〉, (16)

and the timed Dicke states [17,19]

|TkI
〉 = 1√

N

∑
j

eikI ·rj |ej ,0〉. (17)

Here, kI is the wave vector of the single photon field which
prepared the state and thus defined the relative phase of
the different excitation possibilities. Note that there is a
nondynamic shift δe [as in Eq. (8)] for these two initial states
coming from HS

0 due to the counter-rotating terms, which is the
same for the above two initial single-excitation states [23,28].

The single-excitation wave function in the interaction
picture can be written as

|ψ(t)〉 =
∑

j

βj (t)|ej ,0〉 +
∑

k

ηk(t) |G,1k〉 . (18)

This simple structure is in contrast to the formulation in terms
of the original Hamiltonian Eq. (1), which contains counter-
rotating terms leading to higher excited states. Thus, due to
the unitary transformation Eq. (3), the problem reduces to
that of an ensemble of two-level atoms, even though (i) the
modification to the energies of the lowest two levels from all
the higher levels is included and (ii) the atom-atom interaction
through virtual photons is included.

The time evolution of Eq. (18) follows the Schrödinger
equation

i∂t |ψ(t)〉 = HI |ψ(t)〉 , (19)

which leads to the equations of motion for the state amplitudes

β̇j (t) = −i
∑

k

gk,eg

2ωeg

ωk + ωeg
eiω′

egt e−iωkt eik·rj ηk(t)

+ i
∑
j ′ �=j

∑
k

gk,eggk,geξk,eg

ωk
(2 − ξk,ge)

× (eik·rjJ + c.c.)βj ′ (t), (20)

η̇k(t) = −i
∑
j ′

2gk,egωeg

ωk + ωeg
e−i(ω′

eg−ωk)t e−ik·rj ′ βj ′ (t). (21)

Formal integration of Eq. (21) with the initial value ηk(0) = 0
leads to

ηk(t) = −i
∑
j ′

2ωeggk,ege
−ik·rj ′

ωk + ωeg

×
∫ t

0
e−i(ω′

eg−ωk)t ′βj ′ (t ′)dt ′. (22)

Substituting Eq. (22) into Eq. (20), and noting that in the
Markov approximation and long-time limit t → ∞,∫ t

0
ei(ω′

eg−ωk)(t−t ′)βj ′ (t ′)dt ′

≈ βj ′ (t)
∫ t

−∞
ei(ω′

eg−ωk)(t−t ′)dt ′

= βj ′ (t)

[
πδ(ω′

eg − ωk) + iP

(
1

ω′
eg − ωk

)]

= βj ′ (t)
i

ω′
eg − ωk + i0+ , (23)

where P(·) stands for the principal value, one finds

β̇j (t) = −�0

2
βj (t) −

∑
j ′(�=j )

�
(j )
j ′

2
βj ′ (t). (24)

Here,

�0 = 8ω2
eg

∑
k

g2
k,eg

(ωk + ωeg)2

i

ω′
eg − ωk + i0+ (25)
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is the complex single-atom decay rate which is identical for
each atom. The second term

�
(j )
j ′ = −i

∑
k

g2
k,eg

[−8ω2
ege

ik·rjj ′

(ωk + ωeg)2

1

ω′
eg − ωk + i0+

+ 2ξk,eg

ωk
(2 − ξk,ge)(eik·rjj ′ + c.c.)

]

≈ 2i
∑

k

g2
k,eg cos(k · rjj ′ )

×
(

1

ωeg − ωk + i0+ − 1

ωeg + ωk + i0+

)
(26)

describes the interaction between two different atoms j and
j ′. Note that we approximated ω′

eg ≈ ωeg in the final step
in Eq. (26). This introduces an error proportional to g4 and
therefore has a negligible effect on the value of �

(j )
j ′ (or �0)

[28]. A detailed calculation in the Appendix yields

�0 = γ0 − i
2γ0

π
, (27)

where γ0 = k3
egd

2
eg/(3πε0) is the standard single-atom spon-

taneous emission rate in vector theory [38]. The term −γ0/π

(=: L0) coming from the imaginary part is the single-atom
dynamic Lamb shift [39]. Note that the single-atom (half-
)decay rate γs in scalar photon theory [19,20] is different from
the result for vector theory, as γs = k3

egd
2
eg/(2πε0).

Similarly, �
(j )
j ′ in Eq. (26) can be evaluated to

�
(j )
j ′ = sin2 θjj ′�

(j )
j ′,1 + (3 cos2 θjj ′ − 1)

2
�

(j )
j ′,2, (28)

where

�
(j )
j ′,1 = −i

3 exp(iζjj ′)

2ζjj ′
γ0 (29)

is proportional to the induced term in scalar photon theory [see
Eq. (A7) in Ref. [20]], and

�
(j )
j ′,2 = 3

ζ 3
jj ′

γ0[(sin ζjj ′ − ζjj ′ cos ζjj ′ )

+ i(1 − cos ζjj ′ − ζjj ′ sin ζjj ′ )] (30)

with ζjj ′ := kegrjj ′ ≡ ωegrjj ′/c. Note that θjj ′ is the angle
between d̂eg and rjj ′ , and we have assumed the dipole moments
of the atoms to be aligned along the z direction (d̂eg = êz).

B. Eigensystem analysis

After having established the equations of motions Eq. (24)
for the state coefficients βj , the problem of the time evolution
of cooperative spontaneous emission of N atoms reduces to

finding all eigenstates
−→
β (n) and complex eigenvalues λn of

the evolution matrix, as in [20]. The time evolution in such an
eigenstate is given by

−→
β (n)(t) = −→

β (n)e−λnt , (31)

where
−→
β (n) ≡ (β(n)

1 ,β
(n)
2 , . . . ,β

(n)
N ) and Re(λn) > 0 is the

decay rate of the eigenstate. Substituting this ansatz into

Eq. (24) yields the secular equation

λn

−→
β (n) = −→

β (n)�, (32)

where the matrix element of � is

�jj ′ =
{

�0/2 for j = j ′,

�
(j )
j ′ /2 for j �= j ′.

(33)

Technically,
−→
β (n) is the left eigenvector of the symmetric and

non-Hermitian matrix � which is the effective Hamiltonian
describing the time evolution of the singly excited atoms, and
λn is the corresponding complex eigenvalue. One can also
write the secular equation as

λn(
−→
β (n))T = �(

−→
β (n))T , (34)

where (
−→
β (n))T = (β(n)

1 ,β
(n)
2 , . . . ,β

(n)
N )T is the right eigenvector

of �. Here T denotes the transpose. That is, the symmetric
non-Hermitian matrix � can be diagonalized as

� =
N∑

n=1

λn(
−→
β (n))T

−→
β (n) (35)

with
−→
β (n) satisfying

−→
β (m)(

−→
β (n))T = δmn.

After obtaining the eigenvalues and eigenvectors from the
secular equation (by numerical calculation), one can consider
the time evolution of an arbitrary initial single-atom-excitation
state |ψ(0)〉. For this, the initial state is decomposed into a

superposition of eigenstates |λn〉 corresponding to (
−→
β (n))T as

|ψ(0)〉 =
N∑

n=1

an |λn〉 , (36)

such that its time evolution is

|ψ(t)〉 =
∑

n

ane
−λnt |λn〉 . (37)

If one of the an’s dominates the initial state, then the
initial state |ψ(0)〉 is an approximate (exponentially decaying)
eigenstate. Otherwise, |ψ(0)〉 is not an eigenstate, such that
the time evolution is a superposition of different exponentially
decaying components.

We start by analyzing the eigenvalue structure of the
system, which is dependent on the atom number and volume,
but is independent of the initial state of the single-atom
excitation. We consider two ensemble shapes, a cube and a
sphere, for an intermediate volume V = (5λ)3 and a small
volume V = (0.1λ)3 with the same atom density. There are
N = 8000 atoms randomly distributed in the cubes or spheres.
In Figs. 1(a) and 1(b), we plot eigenvalues for V = (5λ)3 and
V = (0.1λ)3, respectively. The eigenvalues are arranged in the
order of decreasing real part.

It can be seen that the real and imaginary parts of the
eigenvalues for the sphere and the cube with the same volume
(as well as the same density) are similar. However, a difference
for the eigenvalues with largest real parts can be observed in
the intermediate-volume case as shown the inset of Fig. 1(a).
Thus we find that a sphere gives rise to faster decay in the case
of superradiance. This can be viewed as a manifestation of the
shape dependence of the cooperative superradiance. For small
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(a)

(b)

FIG. 1. (Color online) Real [curves (i) and (ii)] and imaginary
[curves (iii) and (iv)] parts of the eigenvalues (in units of γ0). Results
are shown for an ensemble of N = 8000 atoms (a) in an intermediate
volume V = (5λ)3 and (b) in a small volume V = (0.1λ)3. Note that
(ii) and (iv) show the results for a cube, whereas (i) and (iii) show
those of a sphere of equal volume.

volumes, the real part of the first eigenvalue is much larger
than the others; see Fig. 1(b). This is the dominant superradiant
decay mode with half-decay rate approaching Nγ0/2. This is
the expected behavior of Dicke superradiance for volumes
much smaller than the typical optical wavelength [2]. In
contrast to the intermediate-volume case, the results for the
sphere and the cube of small volume are almost the same, as
the cube and the sphere have no difference perceptible to the
optical fields in this case. As will be discussed further in the
following, in the intermediate-volume case, the decay rates
can also scale with the number of atoms N , even though the
absolute rates are smaller than in the small-volume case.

C. Observables

Next, we discuss the observables analyzed in the following.
To characterize the ensemble state, we calculate the time-
dependent population in the initial state

P (I )(t) = |〈ψ(0) |ψ(t)〉|2 , (38)

and the total population in all atomic excited states

P (T )(t) =
∑

j

〈ej ; 0 |ψ(t)〉 〈ψ(t) |ej ; 0〉. (39)

Here, the superscript “(I)” stands for the initial state and the
superscript “(T)” for the total (atomic) excitation. Note that
P (I )(t) and P (T )(t) differ, if the initial state is not an eigenstate
of the system. Then, transitions between the different excited
atomic states of the system occur, which change P (I )(t), but
not P (T )(t).

The time-evolved state |ψ(t)〉 in Eq. (37) can also be
written as

|ψ(t)〉 = cI (t) |ψ(0)〉 +
N−1∑
α=1

cα(t) |ψα〉 , (40)

where the |ψα〉 form a basis of the single-atom-excitation
states orthogonal to |ψ(0)〉, such that 〈ψ(0)|ψα〉 = 0 for
α ∈ {1, . . . ,N − 1}. (The specific form of |ψα〉 is not of
relevance here.) In this notation, the observables can be
written as

P (I )(t) = |〈ψ(0) |ψ(t)〉|2 = |cI (t)|2 (41)

and

P (T )(t) = P (I )(t) +
∑

α

|cα(t)|2 � P (I )(t). (42)

Note that as the initial state is a subset of all single-atom-
excitation states, one always has P (I )(t) � P (T )(t).

We can further write

cI (t) = exp

[
−γ

(I )
eff (t)

2
t − iL

(I )
eff (t)t − iL0t

]
, (43)

which defines the time-dependent effective decay rate γ
(I )
eff (t)

and the time-dependent effective collective dynamical Lamb
shift L

(I )
eff (t) of the initial state, respectively. Note that here we

have extracted the single-atom dynamic shift L0 (= −γ0/π )
from the collective one. From this definition we find

P (I )(t) = exp
[ − γ

(I )
eff (t)t

]
. (44)

Similarly, we can also define a corresponding time-dependent
effective decay rate γ

(T )
eff (t) for the total excitation of the

system, such that

P (T )(t) = exp
[ − γ

(T )
eff (t)t

]
. (45)

IV. NUMERICAL ANALYSIS OF COLLECTIVE
SPONTANEOUS EMISSION

A. Time evolution of the timed Dicke state

First, we consider the dependence of the evolution of a
timed Dicke state |TkI

〉 in Eq. (17) on the direction of the
wave vector of the preparing photon kI . For this, we analyze a
spherical volume V = 4π

3 (4λ)3 containing N = 7000 atoms.
The wave number is chosen as |kI | = keg, and we denote
the angle between kI and the dipole moment deg (assumed
along êz) as the incident angle θI . The results are shown
Fig. 2. Figure 2(a) shows the time evolution of the total
upper-state population with incident angles θI = 30◦, 90◦,
and 170◦, respectively. It can be seen that the time evolution
strongly depends on the direction of the preparing field, which
determines the relative phases entering the initial state. The
decay of the total upper-state population for an initial timed
Dicke state is fastest when the wave vector of the preparing
field is normal to the direction of the atomic dipole moment,
i.e., for incident angle close to 90◦. Instead, when the wave
vector of the preparing field is along the direction of the atomic
dipole (that is, θI close to 180◦ or 0◦), the system decays slowly.
For comparison, the evolution for the Dicke state |D〉 is also
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YONG LI, JÖRG EVERS, HANG ZHENG, AND SHI-YAO ZHU PHYSICAL REVIEW A 85, 053830 (2012)

(a)

(b)

FIG. 2. (Color online) (a) Time evolution of the total upper-state
population for different initial states. Curve (i) shows the results
for the untimed standard Dicke state |D〉, and (ii)–(iv) for timed
Dicke states with different incident angles θI of the preparing wave
vector relative to the atomic dipole moments. The wave number of
the preparing initial field is chosen as |kI | ≡ keg. Each case (i)–(iv)
shows the results for five realizations of atom positions in the volume,
which lie on top of each other. (b) The effective decay rate for the total
excitation at short time instant τ , γ

(T )
eff (τ ) as functions of the incident

angle θI . The curve is an average over five realizations of the atom
positions. In both panels, N = 7000 atoms are distributed randomly
in a sphere of volume V = 4π (4λ)3/3.

plotted [see curve (i) in Fig. 2(a)], which tells us that the
standard Dicke state has the slowest decay.

To analyze the angle dependence further, we concentrate
on the effective decay rate for the total upper-state population
at short times τ (but still in the Markovian time limit, that is,
γ0/ωeg � γ0τ � 1), γ (T )

eff (τ ), as functions of the incident angle
of kI . The results are shown in Fig. 2(b). Again, we find that
the effective decay rate is fastest when the initial state is timed
orthogonal to the dipole moment. An intuitive explanation for
this relies on the fact that the superradiant emission of a timed
Dicke state predominantly occurs in the forward direction, i.e.,
in the direction of the preparing field [19]. On the other hand,
the dipole emission pattern has minima along the direction
of the dipole moments. Therefore, fast superradiant decay can
occur only if the emission direction imprinted on the ensemble
matches the dipole emission pattern of the atoms. This result
is obtained due to the vector nature of our calculation.

Our numerical calculations also show that the initial decay
at very short times τ of the population in the initial state,
γ

(I )
eff (τ ), coincides with the total decay rate γ

(T )
eff (τ ). This is

consistent with the physical analysis from Eq. (42). At short
times τ , the decay of the initial state to the ground state is
proportional to τ : [1 − |cI (τ )|2] ∝ τ . However, the transition
of the initial state to other single-atom-excitation state is
proportional to τ 2: |cα(τ )|2 ∝ τ 2. Thus, the initial decrease

of the total upper-state population at the short-time instant
τ is dominated by the decay of the initial atomic state to
the atomic ground state. The transition of the initial state to
other excited states becomes significant only later in the time
evolution. Therefore, γ

(T )
eff (τ ) ≈ γ

(I )
eff (τ ) for short-time instant

τ , such that the effective decay rates in Fig. 2(b) can directly be
compared with the superradiant decay rates of the timed Dicke
state predicted previously [19]. Moreover, Fig. 2(b) shows that
γ

(T )
eff (τ ) is symmetric with respect to the angle of θI = 90◦ at

short-time instants τ , which also agrees with the theoretical
analysis of the system’s properties.

Finally, we note that Fig. 2 also illustrates the dependence of
the results on the specific patterns of random atom positions in
the chosen volume. There are five curves due to five different
patterns for each incident field angle in Fig. 2(a), and the
result in Fig. 2(b) is averaged over five different atom position
patterns. It can be seen that an ensemble size of N = 7000
atoms is sufficient to average out statistical fluctuations, such
that the different realizations lead to virtually indistinguishable
results. In the following, results from single realizations of the
random atom positions are shown, as averaging over several
patterns would lead to similar results.

B. Time evolution of spherical ensembles

We now turn to the dependence of the dynamics of the
timed Dicke state |T 〉 = ∑

j eikegxj |ej ,0〉/√N on the volume
for intermediate atomic density. We consider N = 8000 atoms
located randomly in spheres with different radii. The results are
shown in Fig. 3, where (a) is for the total upper-state population
P (T )(t), and (b) for the population in the initial state P (I )(t).
The corresponding results for the time-dependent effective
decay rates γ

(T )
eff (t) and γ

(I )
eff (t) are plotted in Figs. 3(c) and

3(d). Here and in the following, we set kI = kegêx in the case
of the timed Dicke state.

One finds that for an initial timed Dicke state |T 〉 in
intermediate volumes, P (T )(t) always decreases with time, and
the corresponding effective decay rates γ

(T )
eff (t) are larger than

the single-atom rate γ0 in the time interval t � 1/γ0. Thus we
find superradiance. Usually, the decay γ

(T )
eff (t) of P (T )(t) will

decrease with time such that eventually subradiance occurs.
In the long-time limit t → ∞, P (T )(t) ∝ exp[−2Re(λN )t],
where Re(λN ) (>0) is the smallest real part of the N complex
eigenvalues in Eq. (32) and is much less than γ0/2 for large
N . This explains why P (T )(t) shows superradiance at first and
then subradiance later [22].

The time evolution of P (I )(t) exhibits dips. The reason
is that starting from an initial timed Dicke state, the system
decays incoherently to the atomic ground state with generation
of one photon, but also undergoes coherent transitions to other
single-atom-excitation states, which can decay incoherently to
the atomic ground state and evolve coherently to the initial state
(also other single-atom-excitation states). At the beginning,
the incoherent decay always dominates over the coherent
transition back to the initial state and the related population
projection on the initial state always decreases with time. After
some time, the coherent transition back to the initial state may
dominate over the incoherent decay, and the population in the
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FIG. 3. (Color online) The dynamic evolution (a) of the total
upper-state population P (T )(t) and (b) of the population in initial state
P (I )(t), and (c) the corresponding effective decay rates γ

(T )
eff (t) and

(d) γ
(I )
eff (t), with fixed N = 8000 atoms in a sphere of V = 4πR3/3

with R = 12λ (i), R = 6λ (ii), or R = 3λ (iii). Here the initial state
is the timed Dicke state |T 〉 = ∑

j eikegxj |ej ,0〉/√N .

initial state may increase. This happens in a limited period
throughout the evolution.

We also see that in both cases the decay is faster with smaller
radius as expected, since the effective interaction between the
atoms becomes stronger and enhances the collective decay
with decreasing radius. Similar results can also be obtained
for other shapes of the atomic ensemble such as cubes. This
is evidenced by the evolution of the population projection on
the initial state, as the population minimum occurs at later
times for larger volumes, which can be interpreted as slower
population exchange between various excited states due to
smaller interaction strength.

In the inset of Fig. 3(c), we plot the dynamic evolution of the
collective decay rate (after subtracting the single-atom part),
which shows that the collective decay rate is proportional to

FIG. 4. (Color online) The effective decay rates of the total upper-
state population (a) for different atom numbers (i) N = 2000, (ii) N =
8000, and (iii) N = 32 000, and (b) for different spheres (different
atom numbers) with fixed atomic density: (i) R = 2λ and N = 500,
(ii) R = 4λ and N = 4000, and (iii) R = 8λ and N = 32 000. The
insets are the corresponding collective decay rates scaled to the atom
number [the inset in (a)] or scaled to the radius [the inset in (b)] in
arbitrary units. Here the initial state is still the timed Dicke state |T 〉
in Fig. 3.

R−2 throughout a short initial period. The dependence of the
effective decay rate on the atom number N for fixed radius
R is shown in Fig. 4(a), and the dependence on the radius R

with fixed atomic density is shown in Fig. 4(b). Interestingly,
we find that at the very beginning, the collective decay rate
(after subtracting the single-atom part) divided by NR/V

(∝N/R2) is constant, as shown by the insets of Figs. 3 and
4, which was predicted in Ref. [19]. At the beginning, the
fast decay due to the eigenmodes, whose eigenvalues’ real
parts are large, dominates. Therefore, at the very beginning,
the decay rate scales with the number of atoms as in the
ordinary superradiance. Note that it also depends on the
ensemble volume and shape. This scaling will not be observed
at later times, because then the other eigenmodes, whose real
parts of the eigenvalues are smaller, will dominate the decay.
We observed such a scaling behavior at the very beginning
also for other shapes such as cubes, but only when N � 1
and the dimension of the atomic ensemble is larger than λ.
Otherwise, when the dimensions of the atomic ensemble are
much smaller than λ, the well-known superradiance result is
obtained wherein the collective decay rate for a standard Dicke
state is proportional to N , independent of the atomic volume.

C. Time evolution of ensembles in quasi-two-dimensional
cuboids

Next, we analyze the dynamics of atomic ensembles
confined to a quasi-two-dimensional square sheet. The longer
sides have length 10λ, and the thickness (short axis) is chosen
as 0.01λ, resulting in a volume of 1λ3. In Fig. 5, we plot the
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time evolution of the upper-state population for an initial timed
Dicke state and the Dicke state for three different orientations
(the short axis in the x, y, and z directions, respectively) and
three different atom numbers (densities). The timed Dicke state
|T 〉 ≡ ∑

j eikegxj |ej ,0〉/√N is assumed to be initialized by a
plane wave whose vector points in the x direction and whose
polarization is parallel to the atomic dipoles (z direction). Due
to the fixed directions of the wave vector and the dipoles, in
general the evolutions in the three orientations are different
from each other for a given initial state.

Now let us consider the effect of the orientation on the decay
in detail. The slowest decay (subradiance) occurs in the case
of an initial Dicke state |D〉 with the short axis of the cuboid
along the z direction of the atomic dipoles [see Fig. 5(a)].
In this case, the position vectors connecting any two atoms
are normal to the atomic dipoles, and the emission from a
dipole is strongest in the direction normal to the dipole, which

FIG. 5. (Color online) Time evolution of the total upper-state
population P (T )(t) for the quasi-two-dimensional cuboid cases
of (a) V = 10λ × 10λ × 0.01λ, (b) V = 10λ × 0.01λ × 10λ, and
(c) V = 0.01λ × 10λ × 10λ. In all cases, curves (i)–(iii) stand for
the initial standard Dicke state |D〉 and curves (iv)–(vi) for the
timed Dicke state |T 〉 = ∑

j eikegxj |ej ,0〉/√N [with curves (i) and
(iv) N = 2000, curves (ii) and (v) N = 4000, and curves (iii) and
(vi) N = 8000]. For comparison, the decay of a single atom is also
plotted.

results in the strongest interference between atoms and the
quenching of spontaneous emission. The decays of the initial
Dicke state |D〉 in the cases of the two other orientations
are faster [see Figs. 5(b) and 5(c)] and show superradiance,
because some position vectors are not normal to the atomic
dipoles. Note that the curve for |D〉 in Fig. 5(b) is the same
as that in Fig. 5(c) for the same N . The decay of the timed
Dicke state |T 〉 with short axis along the incident wave vector
(x direction) is the same as the decay of |D〉 with the short
axis along the x orientation [see Fig. 5(c)], as |T 〉 = |D〉 in
this orientation. In the two other orientations of the short axis
(along the y and z directions), the decay dynamics of the timed
Dicke states are similar [but not the same; see Figs. 5(a) and
5(b)], and are substantially different from the case of the short
axis along the x orientation in Fig. 5(c). As expected, we find
faster decay for higher densities. The detailed calculation (not
shown in the figures here) shows that the collective decay rates
for the superradiance in Fig. 5 are proportional to N at very
short times, as discussed in Fig. 4(a) above.

V. CONCLUSION

In conclusion, we investigated the collective spontaneous
emission for N multilevel atoms in vacuum. We used the
method of unitary transformations to include the counter-
rotating terms in our analysis. We focused on the case with
only one excitation initially in the atomic ensemble. Then,
following the unitary transformation method, the system
Hamiltonian assumes the simple RWA form for N two-level
atoms, even though the RWA was not applied, and even though
multilevel atoms are considered. The decay dynamics can then
be studied by finding all eigenstates as well as their complex
eigenvalues for an effective non-Hermitian matrix.

We analyzed the decay dynamics for different initial states
chosen as timed Dicke states |TkI

〉 or untimed standard Dicke
states |D〉, for different atom densities and different ensemble
volumes and shapes. For this, we considered both the time
evolution of the total upper-state population [P (T )(t)] and that
of the population in the initial state [P (I )(t)].

Unlike some previous works based on the scalar optical feld
theory, here, we considered all the directions and polarizations
of the wave vectors for all the vacuum modes.

In the case of small volume, the timed Dicke state reduces
to the standard Dicke state. Our numerical calculations show
that then the timed or untimed Dicke states are approximately
exponentially decaying eigenstates of the system. In this setup,
superradiance appears with the effective decay rate increased
by a factor of N .

However, in the intermediate-volume case, neither the
standard Dicke state nor the timed Dicke state is an “eigen-
state” of the system. Throughout their decay, the population
in the initial state or all the upper states can exhibit both
superradiance and subradiance. We found that for intermediate
volumes, the emission dynamics depends on the shape of
the ensemble, which can be interpreted as arising from the
geometry dependence of the cooperative emission effect.
After a comparison of a sphere to a cube, we also analyzed
quasi-two-dimensional samples in different orientations, and
found characteristic differences in the dependence on the
geometry for timed and regular Dicke states. These effects arise
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'jj

g

e

0
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FIG. 6. (Color online) The ensemble of randomly distributed
atoms with the two chosen coordinate systems. After the unitary
transformation, the atoms are reduced to two-level systems with γ0

the single-atom spontaneous decay of the first excited state |e〉 to the
ground state |g〉. All atoms are assumed to have identical transition
dipole moments deg aligned along the z direction.

from the dependence of the emission dynamics of the Dicke
states on the relative orientation of the atomic dipole moments
to the wave vector of the exciting photon. Note that we could
not identify collective phenomena in very large volumes by
our numerical calculation since the atom number is limited to
about 104. For large volumes, the atomic density is then so
low that the emission approaches the single-atom spontaneous
emission.

ACKNOWLEDGMENTS

We thank Yan-Jun Chen, Peng Zhang, and Xiang Gao
for helpful discussions. This work was supported by the
National Natural Science Foundation of China under Grants
No. 11174026, No. 11174027, and No. 11174198, and the
Research Funds of Renmin University of China (Grant No.
10XNL016).

APPENDIX: CALCULATION OF Eqs. (27) AND (28)

In this Appendix, we provide details of the angular
integration required for the calculation of Eqs. (27) and (28).
As shown in Fig. 6, we assume the N atoms to be located
randomly in space with all dipole moments deg aligned along
êz. For a given pair of two atoms j and j ′, we denote the
direction of rjj ′ as r̂jj ′ = (θjj ′ ,φjj ′ ). To simplify the angular
integration, we define a new basis ê′

x,y,z such that r̂jj ′ ≡ ê′
z,

d̂eg = (θjj ′ ,0), and k̂ = (θ,φ) in the new basis. Thus, d̂eg is
in the plane spanned by ê′

x and ê′
z. The direction of the

polarization êk is in the plane spanned by k̂ and d̂eg.

Then the angle between d̂eg and k̂, which we denote as θd ,
satisfies

cos θd = cos θ cos θjj ′ + sin θ cos φ sin θjj ′ . (A1)

In Eq. (25), the integral over the solid angle for fixed |k| then
gives ∫ 2π

0
dφ

∫ π

0
dθ sin θg2

k,eg

= g2
k,eg

∫ 2π

0
dφ

∫ π

0
dθ sin θ sin θ2

d

= 8π

3
g2

k,eg. (A2)

Further performing the integral over |k| in Eq. (25) with
standard methods, one obtains

�0 ≈ γ0 − i
2γ0

π
. (A3)

To obtain this result, we replaced ω′
eg in the denominator in

Eq. (25) by ωeg. Here, γ0 ≡ ω3
egd

2
eg/(3πε0c

3) = k3
egd

2
eg/(3πε0)

is the standard single-atom decay rate of spontaneous emis-
sion, and γ0/π , which comes from the corresponding imagi-
nary part, is the single-atom Lamb shift.

In Eq. (26), the integral over the solid angle for fixed |k|
gives∫ 2π

0
dφ

∫ π

0
dθ sin θg2

k,eg cos(k · rjj ′ )

= 2πg2
k,eg

∫ π

0
dθ sin θ sin θ2

d cos(krjj ′ cos θ )

= sin2 θjj ′

[
2πg2

k,eg

2 sin krjj ′

krjj ′

]
+ (3 cos2 θjj ′ − 1)

2

×
[

2πg2
k,eg

4 sin krjj ′ − 4krjJ cos krjj ′

(krjJ )3

]
. (A4)

Then, after the integration over |k|, the term �
(j )
j ′ in Eq. (26)

can be evaluated to

�
(j )
j ′ = sin2 θjj ′�

(j )
j ′,1 + (3 cos2 θjj ′ − 1)

2
�

(j )
j ′,2, (A5)

where

�
(j )
j ′,1 = i

3 exp(iζjj ′)

2ζjj ′
γ0 (A6)

and

�
(j )
j ′,2 = − 3

ζ 3
jj ′

γ0[(sin ζjj ′ − ζjj ′ cos ζjj ′ )

+ i(1 − cos ζjj ′ − ζjj ′ sin ζjj ′)] (A7)

with ζjj ′ := kegrjj ′ ≡ ωegrjj ′/c.
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