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Quantum-state-preserving optical frequency conversion and pulse reshaping by four-wave mixing
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Nondegenerate four-wave mixing driven by two pulsed pumps transfers the quantum state of an input signal
pulse to an output idler pulse, which is a frequency-converted and reshaped version of the signal. By varying
the pump shapes appropriately, one can connect signal and idler pulses with arbitrary durations and shapes. This
process enables a variety of functions required by quantum information networks.
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In conventional communication networks, classical infor-
mation is transported by optical pulses. In a coherent channel,
information is encoded in the pulse amplitudes and phases. One
can increase the rate at which information is transported by
multiplexing channels in frequency, polarization, pulse shape
or time [1,2]. To operate multichannel networks efficiently, one
should be able to insert (add) information to, and extract (drop)
information from, specific channels and transfer (reroute)
information between different channels.

A key requirement of quantum information networks is the
ability to transport quantum states between nodes [3,4]. These
nodes (material-based quantum memories with resonance
wavelengths in the range 300–800 nm) could be nearby (in the
same device) or distant (linked by optical fibers with low-loss
windows centered on 1310 or 1550 nm). Their resonance
wavelengths could be the same, or similar, or could differ
significantly. Furthermore, the durations and shapes of pulses
emitted by quantum memories differ significantly from the
short bell-shaped pulses favored by communication systems.
To optimize the transmission of quantum information, the
ability to frequency convert (FC) and reshape optical pulses,
while preserving their quantum states, is essential. This ability
also enables new physical paradigms, such as the modification
of two-photon Hong-Ou-Mandel (HOM) interference [5–7]
and photon concealment [8].

Quantum-state-preserving FC is enabled by three-wave
mixing (TWM) in a crystal [9,10]. In this process, a strong
pump wave (p) couples weak signal (s) and idler (r) waves.
(At the photon level, πs ←→ πp + πr , where πj represents a
photon with carrier frequency ωj .) Recently, it was shown the-
oretically that TWM, in conjunction with spectral phase mod-
ulation and propagation [11], or dispersion engineering [12],
can connect pulses with disparate durations (quasicontinuous
waves are converted to short pulses, or vice versa). However,
TWM is limited in practice to large frequency shifts, which
prevents its use for FC within the telecommunication bands.

Quantum-state-preserving FC is also enabled by four-wave
mixing (FWM) in a fiber [13,14]. In the nondegenerate FWM
process called Bragg scattering (BS), which is illustrated
in Fig. 1, two pump waves (p and q) couple signal and
idler waves, whose frequencies differ by arbitrary amounts
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(πs + πp ←→ πq + πr ). BS has been used in conventional
communication experiments to provide tunable intraband FC
and multiplexing [15,16]. In this article, we show that BS
also has the ability to reshape pulses (including single-photon
wave packets) arbitrarily, without additional processing or dis-
persion engineering. This extra functionality is enabled by the
presence of two pumps, which can be shaped independently.
If single-photon states are used as qubits, information can
be encoded in all but one of the aforementioned degrees of
freedom (the coherent amplitude). If the input photon is entan-
gled with another system, this entanglement is preserved by
FC and reshaping. Examples include two-photon energy-time
entanglement, the preservation of which was demonstrated in
Ref. [3], and polarization entanglement, which is preserved by
signal-polarization-independent BS [13].

BS is governed by the coupled-mode equations (CMEs)

(∂z + βr∂t ) ar (z,t) = iγpq(z,t) as(z,t), (1)

(∂z + βs∂t ) as(z,t) = iγ ∗
pq(z,t) ar (z,t), (2)

where ar and as are the annihilation operators of the idler
and signal, respectively, βr and βs are the group slownesses
(inverse speeds), and γpq(t,z) = γAp(t − βsz)A∗

q(t − βrz) is
the pump-induced coupling function [13]. These CMEs are
based on the assumption that the carrier frequencies and
wave numbers are matched. Pump p copropagates with the
signal, whereas pump q copropagates with the idler [14].
If the waves are copolarized and each pump amplitude
satisfies the normalization condition

∫ |Aj (t)|2dt = 1, the
coupling coefficient γ = 2γK (EpEq)1/2, where γK is the
Kerr coefficient and Ej is a pump energy. The CMEs for
cross-polarized waves are similar [13].

FIG. 1. Frequency diagram for (a) nearby and (b) distant Bragg
scattering. Long arrows denote pumps (p and q), and short arrows
denote idler and signal sidebands (r and s). Downward arrows denote
modes that lose photons, whereas upward arrows denote modes that
gain photons. The directions of the arrows are reversible.
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The solutions of the CMEs can be written in the input-output
form,

aj (l,t) =
∑

k

∫ ∞

−∞
Gjk(l,t |0,t ′) ak(0,t ′) dt ′, (3)

where Gjk is the Green (transfer) function that describes the
effect on mode j at the output point (l,t) of an impulse applied
to mode k at the input point (0,t ′). These functions describe
the properties of FC completely. Each Green function has the
Schmidt decomposition [17]

G(t,t ′) =
∑

n

vn(t) σ 1/2
n u∗

n(t ′), (4)

where G(t,t ′) is an abbreviation for G(l,t |0,t ′), un and vn are
input and output Schmidt modes (temporal eigenfunctions),
respectively, and σn is a Schmidt coefficient (dilation factor).
Furthermore, because FC is a unitary process, the Green
functions and their decompositions are related by the matrix
equation[

Grr Grs

Gsr Gss

]
=

∑
n

[
vrnτnu

∗
rn vrnρnu

∗
sn

−vsnρ
∗
nu∗

rn vsnτ
∗
n u∗

sn

]
, (5)

where |τn|2 + |ρn|2 = 1 [7]. If the sideband operators
are decomposed in terms of Schmidt modes [aj (0,t ′) =∑

n ajn(0)ujn(t ′)], each pair of mode operators undergoes the
beam-splitter-like transformation [18]

arn(l) = τnarn(0) + ρnasn(0), (6)

asn(l) = −ρ∗
narn(0) + τ ∗

n asn(0). (7)

If the input photon is prepared in the mode usn, the output
photon will be in the mode vsn, with probability |τn|2, or vrn,
with probability |ρn|2.

For example, if the mode-conversion efficiency |ρn|2 =
1/2, FC generates two-frequency entanglement: |0r〉|1s〉 −→
(|1r〉|0s〉 + eiφ|0r〉|1s〉)/21/2, where |1j 〉 represents a one-
photon wave-packet state with carrier frequency ωj , φ

is a phase factor, and the mode number was omit-
ted. It also enables two-frequency HOM interference [7]:
|1r〉|1s〉 −→ (|2r〉|0s〉 + eiφ|0r〉|2s〉)/21/2. Alternatively, if
|ρn|2 = 1, FC enables quantum state translation: |0r〉|1s〉 −→
|1r〉|0s〉. It also enables entanglement swapping: (|1s〉|ψa〉 +
eiθ |0s〉|ψb〉)/21/2 −→ (|1r〉|ψa〉 + eiφ|0r〉|ψb〉)/21/2, where
|ψa〉 and |ψb〉 are two states associated with another subsystem.
The Schmidt modes are the optimal input wave packets for
these processes. Determining them allows one to optimize
experiments or calculate the degradations associated with
nonoptimal wave packets.

The CMEs are partial differential equations with space-
and time-varying coefficients. Nonetheless, by using standard
mathematical methods [19,20], one can solve them analytically
for arbitrary pump shapes and strengths. The final results are

Grs(t,t
′) = iγ̄ A∗

q(t − βr l)J0{2γ̄ [ξ (t,t ′) η(t,t ′)]1/2}Ap(t ′)

×H (t ′ + βr l − t)H (t − t ′ − βsl), (8)

Gsr (t,t ′) = iγ̄ A∗
p(t − βsl)J0{2γ̄ [ξ (t,t ′) η(t,t ′)]1/2}Aq(t ′)

×H (t ′ + βr l − t)H (t − t ′ − βsl), (9)

where γ̄ = γ /(βr − βs) is the interaction strength, J0 is a
Bessel function of zeroth order, H is a Heaviside step function,

and the interaction distances

ξ (t,t ′) =
∫ t ′

t−βr l

|Aq(s)|2ds, (10)

η(t,t ′) =
∫ t−βs l

t ′
|Ap(s)|2ds. (11)

Only the cross functions Grs and Gsr are considered in this
article. However, since the cross functions are known, the self
functions Grr and Gss can be determined by differentiation
[Eqs. (1) and (2)], and once the Schmidt decompositions of
the cross functions are known, the decompositions of the self-
functions can be deduced [Eq. (5)].

In the low-strength regime (γ̄ � 1), J0 ≈ 1, and the cross
functions [Eqs. (8) and (9)] are just products of the strength
parameter, and the shape and step functions. If the sideband
transit times (βj l) are longer than the pump durations (τj ), the
step functions are 1 for times of interest: The cross functions
are separable [Grs(t,t ′) = gr (t)gs(t ′)], and the input and output
Schmidt modes are just the conjugates of the shape functions.
One can verify these results by using perturbation theory to
solve the CMEs approximately. In the high-strength regime
(γ̄ > 1) J0 
= 1, and the Schmidt modes differ from the shape
functions.

The cross function Grs is illustrated in Fig. 2 for cases in
which γ̄ = 0.1, and the pumps have Gaussian shape functions
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FIG. 2. (Color online) Contour plots of the Green function
Grs for the strength parameter γ̄ = 0.1 and the length parameters
(a) βl/τ = 1 and (b) βl/τ = 4. The Green function is 0 outside the
diagonal lines. Time is measured in units of τ .
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with width τ and are timed to collide at the midpoint of the
fiber. In a frame moving with the average slowness βa = (βr +
βs)/2, the relative slowness β = βr − βa = −(βs − βa). Time
and distance are measured in units of τ and τ/β, respectively.
For fibers with intermediate lengths (βl/τ = 1), the cross
function is maximal at the collision point (0.5,0.5) and extends
diagonally in the input-output plane. The abrupt cutoffs are
caused by the step functions in Eq. (8), which impose causality
and delineate the fiber boundaries. The absolute probability
that an idler photon will be created always depends on the
arrival time of the signal photon and the time interval during
which the pumps collide. In this case, the relative probability
that the idler photon will depart at a particular time depends
strongly on the arrival time of the signal photon: The input
and output times are correlated. For long fibers (βl/τ = 4),
the cross function is maximal at the collision point (2,2) and
has circular contours. There is no abrupt cutoff because the
pump-sideband collision takes place entirely within the fiber
(is complete). In this case, the cross function is separable, and
the input and output times are uncorrelated.

The square-root Schmidt coefficients (|ρn|) associated
with Grs are displayed in Fig. 3(a). For βl/τ = 1, several
coefficients have significant magnitudes, which is evidence
of nonseparability. In contrast, for βl/τ = 4, the lowest-
order (first) coefficient is approximately 0.1, and the other
coefficients are approximately 0.0, which is evidence of
separability. The lowest-order Schmidt mode of the output
idler is displayed in Fig. 3(b). For βl/τ = 4, the idler mode
equals A∗

q(t − βr l), as predicted by perturbation theory: It is
an image of the input pump, conjugated and delayed by the
transit time. [The input signal mode is A∗

p(t ′).] For βl/τ = 1,
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FIG. 3. (Color online) (a) Square-root Schmidt coefficients (|ρn|)
of the Green function Grs for the strength parameter γ̄ = 0.1 and
the length parameters βl/τ = 1 (hollow triangles) and βl/τ = 4
(solid circles). (b) Lowest-order Schmidt mode plotted as a function
of time (t/τ ) for βl/τ = 1 (dashed curve) and βl/τ = 4 (solid
curve).
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FIG. 4. (Color online) Schmidt coefficients (|ρn|2) plotted as
functions of the strength parameter (γ̄ ). The solid circles denote
|ρ1|2, and the hollow triangles denote |ρ2|2.

the Schmidt mode is taller and narrower than the pump, but is
still bell shaped.

In the low-strength (low-conversion-efficiency) regime, the
cross functions are separable if the fiber is sufficiently long, and
one can FC and reshape signal pulses arbitrarily by varying the
pump shapes. To determine whether these properties remain
as the conversion efficiency increases, the cross function Grs

was decomposed numerically for the case in which βl/τ = 4
(complete collision).

In Fig. 4, the first and second Schmidt coefficients (|ρ1|2
and |ρ2|2) are plotted as functions of the interaction strength
(γ̄ ). In the low-strength regime, the first coefficient (conversion
efficiency) |ρ1|2 ≈ γ̄ 2. In the high-strength regime, |ρ1|2 tends
monotonically to 1 as γ̄ increases, so complete conversion is
possible. For efficiencies as high as 0.70, the value of the
second Schmidt coefficient is no larger than 0.01, so the cross
function is nearly separable: The first (target) Schmidt mode is
converted with reasonable efficiency, whereas the other modes
are unaffected. For higher efficiencies, the second coefficient
increases rapidly, and the potential exists for intermodal
crosstalk.

The lowest-order Schmidt mode of Grs is displayed in
Fig. 5 for the case in which βl/τ = 4 and γ̄ = 0.834.
These parameters correspond to a conversion efficiency of
50%, which is suitable for entanglement generation (which is
optimized by phase-locked pumps) or HOM interference. The
pumps are identical Gaussians, and the (common) Schmidt
mode differs only slightly from the Gaussian predicted by
perturbation theory. Numerical simulations, which include the
effects of nonlinear phase modulation, show that the Schmidt
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FIG. 5. (Color online) Lowest-order Schmidt mode (solid curve)
and (common) pump shape function (dashed curve) plotted as
functions of time (t/τ ) for the strength parameter γ̄ = 0.834.
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FIG. 6. (Color online) Lowest-order (a) signal and (b) idler
Schmidt modes (solid curves) and pump shape functions (dashed
curves) plotted as functions of time (t/τ ) for the strength parameter
γ̄ = 1.544.

modes are chirped, but are otherwise similar to the idealized
modes described here [21].

The lowest-order Schmidt modes of Grs are displayed in
Fig. 6 for the case in which βl/τ = 4 and γ̄ = 1.544. These
parameters correspond to a conversion efficiency of 90%,
which is high enough for reliable quantum FC or entanglement
swapping. Pumps p and q are zeroth- and first-order Hermite-
Gauss functions, respectively, so the wave packet is reshaped.
The Schmidt modes are distorted Hermite-Gauss functions, as
predicted by Eq. (8).

Speciality fibers exist with customizable dispersion, nonlin-
earity coefficients of 10–100/km-W, and lengths of 1–300 m.
If β = 0.7 ps/m [14] and τ = 10 ps, the required fiber length
is 56 m, and the required pump powers are of order 1 W, so
the proposed experiments are feasible.

In summary, BS driven by pulsed pumps was studied
in detail. The Green functions and Schmidt decompositions
associated with this FC process were determined for arbitrary
signal-idler conversion efficiencies. Provided that the fiber
is long enough for a complete pump-sideband collision, BS
enables the generation of entanglement, or HOM interference,
between photons with different carrier frequencies and wave
packets, and photon FC, or entanglement swapping, with
simultaneous wave-packet reshaping that is limited only by
the available pump shapes (wave forms). Since arbitrary
pump-wave-form generation is possible [22], the future of FC
by BS looks bright.
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