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Photonic forces in the near field of statistically homogeneous fluctuating sources
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Electromagnetic sources, e.g., lasers, antennas, diffusers, or thermal sources, produce a wave field that interacts
with objects to transfer to them its momentum. We show that the photonic force exerted on a dipolar particle
in the near field of a planar statistically homogeneous fluctuating source uniquely depends on and acts along
the coordinate perpendicular to its surface. The gradient part of this force is contributed by only the evanescent
components of the emitted field, its sign being opposite that of the real part of the particle polarizability. The
nonconservative force is due to the propagating components, which are repulsive and constant. In addition, the
source coherence length adds a degree of freedom since it largely affects these forces. The excitation of plasmons
in the source surface drastically enhances the gradient force while slightly weakening the nonconservative
scattering plus curl force. Hence these consequences obtained for random and partially coherent wave fields
emitted by the sources addressed here should be relevant for particle manipulation at the subwavelength scale.
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I. INTRODUCTION

Photonic forces have been increasingly studied due to
their potential in many disciplines ranging from physics and
chemistry to biology [1–3]. Of special importance is the
manipulation of dipolar particles, which are understood as
those for which the incident wave excites their first electric
and/or magnetic Mie coefficients [4,5]. Extensive research
done on light from quasicoherent sources shows that it
exerts a mechanical action on these particles through both
their conservative (gradient) and nonconservative components,
thus allowing the design of optical tweezers that rely on
the former component [1,2,6] and their recent extensions to
the subwavelength, particularly nanometric, scale [6,7]. In
contrast, the scattering or radiation pressure force, which until
recently was believed to push objects [3,4,7–9], has recently
been designed to exert a pulling action toward the coherent
source, as recently shown by exciting the induced magnetic
dipole or multipoles of the particle [10,11] as well as by
an appropriate choice of the illuminating wave-field angular
spectrum [12].

We report here a study of the mechanical action on a
dipolar particle due to a fluctuating wave field emitted by
a statistical source. The subject of random fields has been
extensively addressed in different contexts, ranging from
macroscopic physics (e.g., in coherence theory [13,14], atmo-
spheric turbulence [15,16], wave propagation in random and
dense media [17–19], speckle formation from random phase
screens [20,21], and reflection from rough surfaces [22–25])
to the microscopic and nanoscopic scales (such as systems of
randomly distributed nanoparticles [14,26], quantum dots [27],
and disordered photonic crystals [28], including dispersion
forces between fluctuating atoms or molecules of separated
objects as thermal sources and blackbodies at the nanoscale
[29–37]).

Studying the optical force from a fluctuating field is of
interest for optical manipulation at the subwavelength scale by
random and partially coherent fields emanating from statistical
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sources. The nature and behavior of these forces strongly
depend on the source statistics. Interestingly, we find that
planar sources, of a general class such as those that are
statistically stationary and homogeneous, produce gradient
forces that may be either attractive or repulsive. In turn,
we demonstrate that these force components are dramatically
enhanced as the coherence length of the source decreases as
well as when surface plasmon polaritons are excited on its
surface. In contrast, the nonconservative part of the force,
composed of the radiation pressure plus the spin density of
the angular momentum of the electric wave vector, is pushing
and constant throughout the emission half space. In this way,
one can control either the tractor or the pushing effect of the
resulting force on the particle according to the sign of the real
part of its polarizability [12,38–49].

II. FLUCTUATING OPTICAL FORCES

Let us consider a fluctuating source emitting into z � 0
from the plane z = 0, with its volume being in the region
z < 0 (see Fig. 1). We shall assume that the radiated random
field is described by an statistical ensemble that is stationary;
then we may work in the space-frequency domain [14] so that
its electric vector is expressed at frequency ω as an angular
spectrum of plane waves propagating throughout the half space
z > 0 [14,50]:

E(r,ω) =
∫ ∞

−∞
e(ks⊥,ω)eiks·rd2s⊥, (1)

where k = ω/c, with c being the speed of light in a vacuum.
The propagation vector k = ks is expressed as k = k(s⊥,sz),
so that s⊥ = (sx,sy) are the transversal components of s and
sz =

√
1 − |s⊥|2 (|s⊥|2 � 1) for homogeneous or propagating

waves and sz = i
√

|s⊥|2 − 1 (|s⊥|2 > 1) for evanescent com-
ponents.

We shall describe the source as planar [14] on characterizing
it by the limiting value at z = 0: E(0)(ρ,ω) [r = (ρ,z)] of the
random field E(r,ω) emitted into free space. It is known [14,50]
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FIG. 1. (Color online) Illustration of the notation.

that

e(ks⊥,ω) =
(

k

2π

)2 ∫
�

E(0)(ρ,ω)e−iks⊥·ρd2ρ, (2)

where � denotes the source domain of integration at z = 0.
In the Appendix we present a discussion of the relationship

between the correlation of the planar source limiting value
in z = 0, E(0)(ρ,ω), and the correlations of the volumetric
fluctuating currents and/or polarizations employed in the study
of fluctuating wave fields. There we state that in z � 0, the
subwavelength correlation length of E(0) is similar to that of
those currents and/or polarizations. Even when these latter are
δ correlated, so is E(0).

Let a dipolar particle with dynamic electric polarizability
αe be placed in the source vicinity. Since p = αeE is the dipole
moment induced in the particle by the E field, the ith Cartesian
component (i = 1,2,3) of the mean force that the emitted wave
field exerts on it at frequency ω is [3,4,51]

Fi(r,ω) = 1
2 Re{αe〈E∗

j ∂iEj 〉}
= 1

4 Reαe∂i〈E∗
j Ej 〉 + 1

2 ImαeIm{〈E∗
j ∂iEj 〉}

= F
grad
i (r,ω) + F nc

i (r,ω) (i,j = 1,2,3), (3)

expressed as the sum of a conservative, or gradient, force
F

grad
i proportional to Reαe and a nonconservative term F nc

i

proportional to Imαe, where Re and Im stand for the real and
imaginary parts, respectively, the asterisk denotes a complex
conjugate, the angular brackets mean an ensemble average,
and Einstein’s convention of omitting the sum symbol

∑3
j=1

on the repeated index j has been used.
It should be noted that in writing the force as in Eq. (3) we

have assumed that the particle dipole does not fluctuate itself.
Otherwise, one should add a term similar to that of Eq. (3)
containing both the fluctuating dipole moment and the electric
field that it emits. This occurs, for example, in studies of van
der Waals and Casimir forces between bodies of fluctuating
atoms or molecules at a given temperature, whose current
and polarization correlations are expressed by the fluctuation-
dissipation theorem [29,30,32–37,41,52].

On introducing Eq. (1) into Eq. (3) one obtains

F
grad
i (r,ω) = −i

k

4
Reαe

∫∫ ∞

−∞
TrA(e)

jk (ks⊥,ks′⊥ω)

× (s∗
i − s ′

i)e
−ik(s∗−s′)·rd2s⊥d2s′

⊥, (4)

F nc
i (r,ω) = 1

2
ImαeIm

{
ik

∫∫ ∞

−∞
TrA(e)

jk (ks⊥,ks′⊥ω)

× s ′
ie

−ik(s∗−s′)·rd2s⊥d2s′
⊥

}
, (5)

(with i,j,k = 1,2,3), where Tr denotes the trace of
the electric angular correlation tensor A(e)

jk (ks⊥,ks′⊥,ω) =
〈e∗

j (ks⊥,ω)ek(ks′⊥,ω)〉. Notice that since 〈E∗
j Ej 〉 is real

and non-negative, F
grad
i , given by Eq. (4), which equals

1
4 Reαe∂i〈E∗

j Ej 〉 according to Eq. (3), is a real quantity.
Equations (4) and (5) reveal that whereas the gradient force
depends on a weighted sum of the difference vectors s∗ − s′
and, as we shall see, it has a negative sign if Reαe is
positive, thus pulling the particle towards the source, the
nonconservative force associated with Imαe, which is always
non-negative, depends only on the weighted sum of vectors s
and pushes the particle forward.

A. Statistically homogeneous sources: Gradient and
nonconservative forces

Let us address the wide variety of statistically homogeneous
sources [38,39]. Their electric cross-spectral density tensor
[14] Eij (r1,r2,ω) = 〈E∗

i (r1)Ej (r2)〉 in the source plane z = 0
is [53] E (0)

ij (ρ1,ρ2,ω) = 〈E(0)∗
i (ρ1)E(0)

j (ρ2)〉 = E (0)
ij (ρ,ω), with

ρ = ρ2 − ρ1, and rα = (ρα,zα), with α = 1,2.
It is well known [14] that A(e)

jk (ks⊥,ks′⊥ω) =
k2Ẽjk(ks⊥,ks′⊥ω), where Ẽjk(ks⊥,ks′⊥ω) is the
four-dimensional inverse Fourier transform of E (0)

ij (ρ1,ρ2,ω).
In addition, it was proven [40] that for a homogeneous source
the components of the electric angular correlation tensor are
δ correlated as

A(e)
jk (ks⊥,ks′⊥,ω) = k4δ(2)[k(s⊥ − s′⊥),ω]

× Ẽ (0)
jk

[
k

2
(s⊥ + s′⊥),ω

]
, (6)

where δ(2) represents the two-dimensional Dirac delta function.
On introducing the above δ-function expression for

A(e)
jk (ks⊥,ks′⊥,ω) into Eqs. (4) and (5) one straightforwardly

obtains for the gradient force

F
grad
i (z,ω) = F grad

z,ev (z,ω)

= −i
k3

4
Reαe

∫
|s⊥|2>1

TrẼ (0)
jk (ks⊥,ω)

× (s∗
i − si)e

−2k
√

|s⊥|2−1zd2s⊥. (7)

The subindex in the integral of Eq. (7) means that the
integration extends only to the nonradiative region because
the difference vector s∗ − s in Eq. (4) is clearly zero for
propagating waves (|s⊥|2 � 1). Therefore the radiative com-
ponents of the field emitted by statistically homogeneous
sources do not contribute to the gradient force, which depends
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only on the evanescent components (|s⊥|2 > 1) for which
s∗ − s = (0,0,s∗

z − sz) = (0,0, − 2i
√

|s⊥|2 − 1). Hence this
force exists only in the near field and depends on the distance
z of the particle to the source, having solely a z component
normal to its surface. In addition, this force is attractive or
repulsive depending on the sign of Reαe. Small particles with
relative permittivity ε > 1 have Reαe > 0 out of resonance and
thus F

grad
z (z,ω) will drag them toward the source. Conversely,

near a resonance Reαe may be negative [3]; thus this force is
repulsive. However, further study is required in this latter case
since then the particle strongly scatterers the field emitted
by the source and therefore the analysis developed here
should not be exact due to multiple scattering of the radiation
between the source and the particle. Hence it is shown that
the gradient force near a statistically homogeneous source
is entirely of nonradiative nature and may work as a tractor
force [10–12,46].

Analogously, from Eq. (5) one also derives for the noncon-
servative force F nc

i a dependence on z only:

F nc
i (z,ω) = F nc

i,h(z,ω) + F nc
i,ev(z,ω)

= k3

2
ImαeIm

{
i

∫
|s⊥|2�1

TrẼ (0)
jk (ks⊥,ω)sid

2s⊥

}

+ k3

2
ImαeIm

{
i

∫
|s⊥|2>1

TrẼ (0)
jk (ks⊥,ω)

× sie
−2k

√
|s⊥|2−1zd2s⊥

}
, (8)

where F nc
i,h and F nc

i,ev, denote propagating and evanescent wave
contributions, which correspond to the first and second integral
terms of Eq. (8), respectively. Notice that F nc

i,h > 0 is constant
throughout z > 0.

Let the source also be statistically isotropic [14] so that
E (0)

ij (ρ1,ρ2,ω) = E (0)
ij (ρ,ω), where ρ = |ρ1 − ρ2|. The spatial

coherence function of the field in z = 0 is [53–55] TrE (0)
ij (ρ,ω)

and the spectral degree of spatial coherence μ(0)(ρ,ω) =
TrE (0)

ij (ρ,ω)/S(0)(ω), where the wave-field spectrum on the

source is S(0)(ω) = TrE (0)
ij (0,ω).

To illustrate these results, we shall consider a Gaussian
spectral degree of coherence μ(0)(ρ,ω) = exp[−ρ2/2σ 2], so
that taking the Fourier inverse one obtains

TrẼ (0)
jk (ks⊥,ω) = S(0)(ω)μ̃(0)(ks⊥,ω)

= S(0)(ω)(σ 2/2π )exp[−(kσ |s⊥|)2/2], (9)

where σ is the correlation, or coherence, length of the source.
We shall write [45]

S(0)(ω) = S(ω)/2πσ 2 (10)

to express that when σ → 0, the source is δ correlated so that
TrE (0)

ij (ρ,ω) → S(ω)δ(2)(ρ). Here S(ω) is a positive quantity

such that S(ω) = ∫
TrE (0)

ij (ρ,ω)d2ρ for any σ . Equations (9)

and (10) convey a normalization of TrE (0)
jk (ρ,ω) in the ρ space

that is analogous to the ω normalization of the source spectrum
in the theory of partial coherence (see Refs. [56,57]).

On introducing Eq. (9) for TrẼ (0)
jk (ks⊥,ω) into the force

equations (7) and (8), employing cylindrical coordinates sx =

s⊥ cos φ and sy = s⊥ sin φ, and making use of the rotational
symmetry of the source, we obtain that the transversal
components of the nonconservative force are zero, viz.,
F nc

x,y(z,ω) = 0, as are the corresponding integrals of Eq. (8)
when one performs the azimuthal angle φ integration. Also,
since sz = i

√
|s⊥|2 − 1 for |s⊥|2 > 1, the second integral in

Eq. (8) is purely imaginary, which implies that F nc
z,ev = 0.

Hence

F nc
i (z,ω) = F nc

i,h(z,ω)

= k3

2
ImαeIm

{
i

∫
|s⊥|2�1

TrẼ (0)
jk (ks⊥,ω)sid

2s⊥

}
.

(11)

Thus, while F nc
z,h(z,ω) > 0 is constant throughout z > 0, as

is the spectrum S(0)(ω) propagating into z > 0 [43], the
evanescent waves do not contribute to the nonconservative
force F nc

z (r,ω).
In summary, there are two force components acting on

the particle, F
grad
z,ev (z,ω) and F nc

z,h(z,ω), which are perfectly
distinguishable from each other since the former is due
to the nonradiative plane-wave components of the emitted
field, whereas to the latter only the radiative components
contribute. As the distance from the particle to the source
plane grows to values z > λ, F

grad
z,ev (z,ω) tends to zero due to

its evanescent wave composition. Nevertheless, as we shall
see, the source coherence length σ plays an important role in
these contributions.

The integration of Eqs. (7) and (11) using the Gaussian
spectral degree of coherence, quoted before, μ(0)(ρ,ω) =
exp[−ρ2/2σ 2], leads to an analytical expression for the
gradient and for the nonconservative force. For the latter,
Eq. (19) yields the proportion of radiation pressure and curl
components for unpolarized emission. This calculation is
straightforwardly done again on setting sx = s⊥ cos φ and
sy = s⊥ sin φ and leads to

F grad
z (z,ω) = ReαeS(ω)e−k2σ 2/2 1

σ 2

[
z

σ 2

−
√

π

2

(
2z2

σ 3
+ 1

2σ

)
e2z2/σ 2

erfc(
√

2z/σ )

]
,

(12)

F nc
z (z,ω) = ImαeS(ω)

1

2σ 2

×
[
k − 1

σ

√
π

2
e−k2σ 2/2erfi(kσ/

√
2)

]
, (13)

where erfc(x) = 1 − erf(x), with erf(x) being the error func-
tion erf(x) = 2/

√
π

∫ x

0 e−t2
dt , and erfi(x) is a positive real

function defined as erfi(x) = erf(ix)/i.

B. The curl force

It is well known [9,51] that the nonconservative part of the
force F nc

i is the sum of a scattering force, or radiation pressure

F nc
i = (k/2)ImαeRe〈E × B∗〉i

= (1/2)ImαeIm{〈E∗
j ∂iEj 〉 − 〈E∗

j ∂jEi〉}, (14)
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given by the averaged field Poynting vector, plus the curl of an
electric spin density

F
nc,curl
i = (1/2)ImαeIm〈(E∗ · ∇)E〉i

= (1/2)ImαeIm〈E∗
j ∂jEi〉. (15)

If the field emitted by the source is unpolarized, E (0)
jk (ρ,ω) =

F (0)(ρ,ω)δjk , with F (0)(ρ,ω) being a scalar spatial correlation
function whose two-dimensional Fourier transform will be
denoted as F̃ (0)(ks⊥,ω), then

TrẼ (0)
jk (ks⊥,ω) = 3F̃ (0)(ks⊥,ω) (16)

and the radiation pressure contribution F
nc,pr
i to the noncon-

servative force is

F
nc,pr
i

= k3

2
Imαe

∫
|s⊥|�1

[
TrẼ (0)

jk (ks⊥,ω)si − Ẽ (0)
ji (ks⊥,ω)sj

]
d2s⊥

= k3

2
Imαe

∫
|s⊥|�1

[3F̃ (0)(ks⊥) − F̃ (0)(ks⊥)]sid
2s⊥

= k3Imαe

∫
|s⊥|�1

F̃ (0)(ks⊥)szd
2s⊥ = F nc,pr

z (17)

since the azimuthal angle integration when si is either sx or sy

is zero. In a similar manner, the curl force contribution F
nc,curl
i

to F nc
i is

F
nc,curl
i = k3

2
Imαe

∫
|s⊥|�1

Ẽ (0)
ji (ks⊥,ω)sjd

2s⊥

= k3

2
Imαe

∫
|s⊥|�1

F̃ (0)(ks⊥)szd
2s⊥ = F nc,curl

z .

(18)

Namely, for unpolarizad radiation

F nc,pr
z = 2F nc,curl

z = 2
3F nc

z . (19)

III. EXCITATION OF SURFACE PLASMON POLARITONS:
NUMERICAL RESULTS

A. Normalized force

Without loss of generality, we shall also address surface
plasmon polaritons (SPPs) that are excited on the source plane
z = 0. Let this be gold, for example, choosing, for instance,
λ = 459.9 nm; its permittivity is ε = −2.546 + i3.37 [58].
The SPP wave vector ks⊥ = ksSPP

⊥ = ±k[ε/(ε + 1)]1/2 corre-
sponds to a pole of the Fresnel transmission coefficient (in
the assumed transmission setup configuration) T (p)(ks⊥,ω)
[50,59] (see also the Appendix). Then it is easy to obtain
that Eqs. (7) and (8) are valid upon replacing Ẽ (0)

jk (ks⊥,ω) by

Ẽ (0)
jk (ks⊥,ω)|T (p)(ks⊥,ω)|2 [45].

Figure 2 shows the normalized value F
grad
z (z,ω)/

[k3S(ω)Reαe/(2π )2] of the attractive gradient optical force
due to evanescent components for two random sources: one
without and one with excited SPPs [see Figs. 2(a) and 2(b),
respectively]. As predicted by Eq. (7), the normalized gradient
force drags the particle toward the source plane (notice that
since this normalization does not include Reαe, it does not
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FIG. 2. (Color online) Pulling gradient optical force due to
evanescent components. (a) Gradient force versus distance to the
source z/λ for different values of the source coherence length σ .
(b) Same force as in (a) when SPPs are excited in the source.
A significant decrease of the magnitude of this force is clearly
seen as σ increases to λ/2 and beyond. The normalized value
F

grad
z (z,ω)/[k3S(ω)Reαe/(2π )2] is represented in arbitrary units.

contain an eventual negative value of this quantity). In both
figures we observe its exponential increase as the distance z of
the particle to the source decreases. Nevertheless, this force is
mainly governed by the coherence length σ . For σ = λ/8 (red
line with squares), the magnitude of this force is maximum, but
we observe that it presents an important decrease, with values
between 10−3 and 10−4, at approximately σ = λ/2 (blue
line with down triangles) and beyond, even at subwavelength
distances z, which are practically zero (F grad

z � 10−8) for
σ = λ and z = 0 (this latter curve is not shown).

Hence we demonstrate that the decrease of the source
coherence length gives rise to an increase of the gradient force
and its effect is larger than that of the distance z of the particle
to the source plane. Eventually, a δ-correlated source (thus
σ → 0), e.g., a thermal source, will maximize this force. In
addition, we show in Fig. 2(b) that the excitation of SPPs in
the source increases the strength of this near-field force by
approximately one order of magnitude. This is due to the then
larger values of Ẽ (0)

jk (ks⊥,ω)|T (p)(ks⊥,ω)|2 stemming from the
pole of |T (p)(ks⊥,ω)|2 at ksSPP

⊥ .
Correspondingly, Figs. 3(a) and 3(b) show the normalized

total force F tot
z (z,ω) = [(2π )2/k3S(ω)][F grad

z (z,ω)/Reαe +
F nc

z (z,ω)/Imαe], in arbitrary units, without and with SPP
excitation, respectively. At large distances (z > λ), the total
force is a constant of the distance z and repulsive according
to the behavior of the nonconservative component F nc

z , which
dominates in this region of z, regardless of the value of σ . In
addition, this nonconservative force increases as σ decreases.

One might think that, due to its evanescent wave com-
position, the magnitude of the normalized gradient force at
subwavelength distances would be higher than that of the
corresponding nonconservative force; however, this is not
completely true due the larger effect of the source coherence
length on F

grad
z rather than on F nc

z . In the near field F tot �
F grad for σ � λ/4; however, as σ increases, F grad becomes
negligible, being for σ > λ/4 F tot � F nc. These effects appear
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FIG. 3. (Color online) (a) Normalized total optical force (see
the text) in arbitrary units versus the distance z/λ to the source for
different values of the coherence length σ . (b) Same as in (a) when
SPPs are excited. In this latter case we observe an increment z in
the value z/λ at which the magnitude of the gradient force starts to
exponentially increase.

in Figs. 3(a) and 3(b). In particular we see in Fig. 3(b) that if
SPPs are excited, an increment z appears in the distance z/λ

where the magnitude of the attractive gradient component is
noticeable [compare Figs. 3(a) and 3(b)]. The enhancement of
the near-field intensity due to SPP resonances then conveys a
larger range of the gradient force.

IV. A SOURCE SPECTRUM MODEL TO ILLUSTRATE THE
OPTICAL FORCE ON A DIPOLAR PARTICLE

So far we have calculated the relative weights of the gradient
and nonconservative forces without taking into account the
strength of the particle-induced dipole. This was done by nor-
malizing those forces to the corresponding real and imaginary
values of the particle polarizability. However, it is well known
that this latter quantity largely influences the values of these
forces [4,5]; hence its presence should be relevant in estimating
the actual mechanical action of the emitted light. We shall now
address this with a certain source spectrum model.

A small particle of radius r0 with relative permittivity
εp in the Rayleigh limit (kr0 � 1) is assumed. We adopt
the expression for the dynamic electric polarizability that
conserves energy on scattering [4], namely,

αe = α(0)
(
1 − i 2

3k3α(0)
)−1

, (20)

with α(0) being the static polarizability

α(0) = r3
0
εp − 1

εp + 2
. (21)

For a nonmonochromatic source, the total mean force exerted
by the random field on the dipolar particle is determined by ω

integration of each frequency component, i.e.,

Fi(r) =
∫

Fi(r,ω)dω (i = 1,2,3). (22)

Of course, as discussed above, in our study the source
contributes with the Cartesian component Fz(r,ω) only.

We assume a Gaussian spectrum model [14] [cf. Eq. (10)]
so that

S(ω) = A

σω

√
2π

e−(ω−ω0)2/2σ 2
ω , (23)

where A, σω, and ω0 are positive constants. Incidentally, it
is straightforward to see that in the monochromatic case at
frequency ω0 (σω → 0), we recover Eqs. (12) and (13) with
S(ω) = Aδ(ω − ω0).

As an example we perform the integral (22) for a small
dielectric particle of radius r0 = 25 nm with a constant value
of εp = 2,25 in the range of studied frequencies. In the case
of SPP excitation, an Au source surface is considered like
in Sec. III A, with a frequency variation of its permittivity
approximated by [60,61]

ε(ω) = ε∞ − ω2
d

ω2 + iγ ω

+
2∑

p=1

Ap�p

(
eiφp

�p − ω − i�p

+ e−iφp

�p + ω + i�p

)
,

(24)

where the values of the parameters are considered to be the
same as in Ref. [61].

An optical power of 300 mW impinging the parti-
cle is assumed at the central wavelength λ0 = 2πc/ω0 =
579 nm. Then Reαe = 4593 nm3 � Imαe = 17 nm3. The
spectral width is taken as σω = 0.01ω0. The constant A is
then adjusted to these values.

The total force calculated on introducing Eqs. (12) and (13)
into Eq. (22) (that is to say, this time without introducing any
normalization) is shown in Figs. 4(a) and 4(b), without and
with excitation of surface plasmon polariton resonances on
the source surface, respectively.

As predicted in Sec. III, the total force is governed in the
near field by its gradient component for σ � λ/4, with its
magnitude increasing as the coherence length σ decreases.
In addition, its exponential growth as the particle approaches
the source is remarkable. In particular, at z/λ = 0.5 and for
σ = λ/8, the magnitude of the gradient force when SPPs are
excited is practically double (3 × 10−16 N) than when they are
absent.

For z/λ > 1 the total force is due to its nonconservative part;
however, the distance at which this force begins to dominate
is larger than that shown in Fig. 3 for the normalized force.
This is due to the fact that now we have introduced in the
calculations Reα, which is much larger than Imα.

In contrast, Fig. 4 manifests a behavior of both the
gradient and scattering plus curl forces similar to that of their
nonintegrated normalized counterparts, shown in Fig. 3, both
without and with SPP excitation. However, the action of the
gradient force reaches larger distances from the source than
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FIG. 4. (Color online) Total optical force in Newtons versus
distance z/λ0, obtained by integration over a Gaussian spectrum of
the source. Results for different values of the coherence length σ0 are
shown. Surface plasmons polaritons (a) are absent and (b) are excited
on the metallic surface of the source.

its normalized counterpart as Fig. 4 shows in comparison with
Fig. 3, at least within the scale of values shown here.

V. CONCLUSION

We have reported a study of photonic forces exerted
on dipolar particles by discussing near-field effects due to
fluctuating sources. The behavior of gradient and noncon-
servative forces opens the possibility of new theoretical and
experimental observations on subwavelength phenomena, par-
ticularly at the nanoscale, concerning optical manipulation in
physics cases such as those ranging from emission by partially
correlated primary sources (i.e., beyond δ-correlated thermal
sources and blackbodies), e.g., fluctuations in nanoantennas, to
secondary sources resulting from light propagation through the
turbulent atmosphere [29], e.g., speckle patterns from a large
variety of statistical structures including scatterers, random
rough surfaces, phase screens, and optical diffusers [62–64].

We have seen that in the large variety of stationary
statistically homogeneous and isotropic sources, only the
evanescent components contribute to the gradient forces, while
the nonconservative part that contains radiation pressure and
curl forces is due solely to emitted propagating components.
Hence the subwavelength information is encoded in the
gradient forces. Same numerical examples were given for
statistically isotropic unpolarized emitted wave fields, showing
the important effect that the source coherence length has
on these forces, especially on the gradient component. In
addition, due to the higher concentration of energy in the
near field when there is excitation of surface waves in the
source, this largely enhances the magnitude of the gradient
part of these forces while slightly diminishing the strength of

their nonconservative part. We expect that these findings will
stimulate further experiments and applications in this particle
manipulation scenario, which may also have implications
when fluctuations in the small particles, which are analogous
to those leading to van der Waals and Casimir interactions
between bodies, are also addressed.
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APPENDIX

In this appendix we relate the limiting value of the emitted
field at z = 0, E(0)(ρ,ω) [r = (ρ,z)], to the fluctuating currents
j(r,ω) and polarizations P(r,ω) of the source (assumed to
be nonmagnetic) that characterize the emission. If we let the
source occupy a volume V in z < 0, the electric field emitted
into the free space z � 0 by these distributions is

E(r,ω) =
∫

V

[
ik

c
j(r′,ω) + k2P(r′,ω)

]
G(r,r′)d3r′, (A1)

where G(r,r′) is the dyadic Green’s function whose elements
Gij (i,j = 1,2,3) are [44,65]

Gij (r,r′,ω)

= i

8π2

∫ ∞

−∞

ŝiT
(s)(ks⊥,ω)ŝj + p̂iT

(p)(ks⊥,ω)p̂(1)
j

ksz

× eik(s·r−s′ ·r′)d2s⊥. (A2)

Here the caret denotes a unit vector and ŝ = ŝ⊥ × ẑ, p̂ =
|s⊥|ẑ + szŝ⊥, p̂(1) = |s⊥|ẑ + s ′

zŝ⊥, s = (s⊥,sz), s′ = (s⊥,s ′
z),

and s ′
z =

√
ε − |s⊥|2 (for |s⊥|2 � ε) and i

√
|s⊥|2 − ε (for

|s⊥|2 > ε). The superindices (s) and (p) denote the Fresnel
transmission coefficient under s and p polarization, respec-
tively. The source medium permittivity is denoted by ε, which
we shall assume is isotropic.

From Eqs. (A1) and (A2) one obtains the correlation
function of the emitted field

〈E∗
i (r,ω)Ej (r′,ω′)〉

=
∫∫

V

G∗
ik(r,r′′)Gj l(r′,r′′′)

[(
k

c

)2

〈j ∗
k (r′′,ω)jl(r′′′,ω′)〉

+ k4〈P ∗
k (r′′,ω)Pl(r′′′,ω′)〉

]
d3r′′d3r′′′

=
∫

V

ImGij (r − r′ − R)
1

Imε

(
1

c

)2

[〈j ∗
k (r′′,ω)jk(r′′ + R,ω′)〉

+ k2〈P ∗
k (r′′,ω)Pk(r′′ + R,ω′)〉]d3R, (A3)

where 〈j ∗
k (r,ω)jl(r′,ω′)〉 = δkl〈j ∗

k (r,ω)jk(r′,ω′)〉δ(ω − ω′)
(with an analogous expression for the polarization
correlations) due to the isotropy of the source medium.
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In addition, we have taken into account that G(r′′,r′′′) =
G(r′′ − r′′′), having written R = r′′′ − r′′ and using the
equality [44,66]

k2
∫

V

ImεG∗
ik(r − r′′)Gjk(r′ − r′′)d3r′′ = ImGij (r − r′).

(A4)

In particular, in the Lifshitz-Rytov theory in which the emitted
wave is a thermal field at temperature T , the sources are
characterized by the currents j(r,ω), obeying the fluctuation-
dissipation theorem [26,29,52,67]

〈j ∗
i (r,ω)jj (r′,ω′)〉 = ω�(ω,T )

4π2
Imεδij δ(r − r′)δ(ω − ω′),

(A5)

with �(ω,T ) the well-known Planck energy of the quantum
oscillator. If the source is magnetic, then the magnetization
M(r,ω) and/or magnetic currents jm(r,ω) are necessary, and
similarly introduced, to describe the radiated field.

In contrast, when the source is secondary, namely, the
emitted field is due to scattering by, e.g., a random medium or
rough surface with inhomogeneities in its dielectric and/or
magnetic susceptibility χ (r,ω) and/or η(r,ω), respectively,

then the source is characterized by these latter constitutive
parameters that act as scattering potentials. For example, if
the medium is nonmagnetic, the integrand in Eq. (A1) should
be replaced by [50,68] P(r,ω) = χ (r,ω)E(r,ω). Then, based
on Eqs. (A1)–(A3), calculations of the emitted field are very
similar in either case, whether the fluctuating source is primary
or secondary.

It is known [44,69,70] that if P(r,ω) and j(r,ω) are
statistically homogeneous and isotropic and each of them has a
correlation length L, when the distance z to the source surface
z = 0 holds, z � L � λ, then the electric cross-spectral
density tensor elements in the source plane z = 0 given by the
correlations E (0)

ij (ρ1,ρ2,ω) = 〈E(0)∗
i (ρ1)E(0)

j (ρ2)〉 = E (0)
ij (ρ,ω)

(ρ = ρ2 − ρ1) (see Sec. II A) have a correlation length σ � L.
In contrast, when L � z � λ, one has σ � z and the

amplitude of the correlation functions at such distances z,
Eij (ρ,z � 0; ω), is of the order of 1/z [44,71]. Hence, when
P(r,ω) and j(r,ω) are both δ correlated so that L → 0, then so
is the emitted field at z = 0, E(0)(r,ω), and therefore σ → 0.
We base on these facts the use made in Sec. II A of this limiting
value of the wave field as the quantity that characterizes the
fluctuating source at its exit plane z = 0, even in the case of
δ-correlation currents and/or polarizabilities.
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