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We consider the propagation of ultrashort solitons in noncentrosymmetric quadratically nonlinear optical media
described by a general Hamiltonian of multilevel atoms. We use a long-wave approximation to derive a coupled
system of Korteweg–de Vries equations describing ultrashort soliton evolution in such materials. This model was
derived by using a rigorous application of the reductive perturbation formalism (multiscale analysis). The study
of linear eigenpolarizations in the degenerate case and the corresponding formation of half-cycle solitons from
few-cycle-pulse inputs are also presented.

DOI: 10.1103/PhysRevA.85.053826 PACS number(s): 42.65.Tg, 42.65.Sf, 47.20.Ky

I. INTRODUCTION

Ultrashort pulses with durations of only a few periods of
the optical radiation have become intensively used in the past
decade in many important problems of dynamics of nonlinear
optical waves since the seminal works performed in 1999
[1]. Such few-cycle pulses [2,3] find applications in a wide
variety of research areas such as light-matter interactions at
high field intensities, high-order harmonic generation, extreme
nonlinear optics [4], and attosecond physics [5,6]; see also
a recent special issue dedicated to the 10th anniversary
of the generation of both attosecond pulse trains and of
isolated attosecond pulses [7] using high-harmonic generation
processes [8].

In parallel to the fast experimental progress in the study of
the formation of few-cycle pulses (FCPs) in nonlinear optical
media new theoretical approaches to model their propagation
in a lot of physical settings were developed. It is to be
noticed that three classes of main dynamical models for FCPs
have been put forward in the past years: (i) the quantum
approach [9–12], (ii) the refinements within the framework
of slowly varying envelope approximation (SVEA) of the
nonlinear Schrödinger-type envelope equations [13–20], and
the non-SVEA models [21–35]. It was therefore found in
these earlier studies that the propagation of FCPs in Kerr-type
nonlinear optical media can be described beyond the SVEA
by using the modified Korteweg–de Vries (mKdV) [27,28],
sine-Gordon (sG) [29,30], or mKdV-sG equations [31–33].
It is to be noticed that the mKdV and sG equations are
completely integrable by means of the inverse scattering
transform method [36,37], whereas the mKdV-sG equation
is completely integrable only if some condition between its
coefficients is satisfied [38,39].

We also mention other relevant recent works on the
formation and dynamics of few-cycle pulses in a variety of
physical settings: the propagation and interaction of extremely
short electromagnetic pulses in quadratic nonlinear media
[40–42], the study of few-cycle light bullets created by
femtosecond filaments [43], the investigation of ultrashort
spatiotemporal optical solitons in quadratic nonlinear media
[44], the ultrashort spatiotemporal optical pulse propagation

in cubic media without the use of the slowly varying envelope
approximation [45,46], the possibility of generating few-cycle
dissipative optical solitons [47,48], the generation of unipolar
pulses from nonunipolar optical pulses in quadratic nonlinear
media [49], and the existence of guided optical solitons of
femtosecond duration and nanoscopic mode area [50].

Other recent relevant studies deal with the problem of
ultrafast pulse propagation in mode-locked laser cavities in the
few femtosecond pulse regime and the derivation of a master
mode-locking equation for ultrashort pulses [51]. Also, a
recent theoretical work presents a class of few-cycle elliptically
polarized solitary waves in isotropic Kerr media [52]. More-
over, robust circularly polarized few-optical-cycle solitons in
Kerr media in both long-wave and short-wave approximation
regimes were also studied in recent papers [53–55].

It is to be mentioned that most of theoretical investigations
concern only FCPs propagating in nonlinear optical media de-
scribed by a Hamiltonian related to two-level atoms. However,
in a recent work [56] we extended the existing studies to a more
general physical situation when we considered a multilevel
system in the framework of the reductive perturbation method
(multiscale analysis) [57]. In Ref. [56] we gave a detailed
mathematical derivation of the mKdV equation for a general
Hamiltonian. We assumed that the absorption spectrum of
the nonlinear medium does not extend below some cutoff
frequency, and that the typical frequency of the FCP is much
less than the latter. In other words, we assumed that the
transparency range of the medium is very large, and we
considered only the frequencies located in the ultraviolet
spectral domain and further; thus a nonlinear cubic (Kerr-like)
medium which has no transition in the infrared was actually
described in Ref. [56].

It is well known that nonlinear propagation of few-optical-
cycle pulses in quadratic nonlinear optical media can be
described by means of a KdV model, which can be derived
in a rigorous way by means of the reductive perturbation (or
multiple scales) method, either from a quantum mechanical
two-level model with a nonzero dipolar momentum in the
excited state, or from a classical model of anharmonic
oscillators [42].
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In the present work we intend to give a detailed mathe-
matical derivation of the coupled KdV equations describing
ultrashort soliton propagation in quadratic nonlinear media by
considering a general Hamiltonian for multilevel atoms. We
thus assume that the absorption spectrum of the medium does
not extend below some cutoff frequency, and that the typical
frequency of the FCP is much less than the latter. We therefore
consider that the transparency range of the medium is very
large, and we take into account only the frequencies located in
the ultraviolet domain and further. The effect of the infrared
transitions, which yield a sG model in the case of two-level
atoms and cubic nonlinearity, will be considered in a further
study.

This paper is organized as follows: In the next section we
present in detail the governing Heisenberg equations for the
density matrix ρ in the case of the most general Hamiltonian for
multilevel atoms and we analyze the corresponding Maxwell
wave equations. We consider the case of quadratic nonlinear
media (i.e., we assume a noncentrosymmetric material with
a nonvanishing second-order susceptibility χ (2)). We work in
the so-called long-wave regime and we perform the multiscale
analysis [57] order by order. In Sec. III we analyze in detail the
nondegenerate case (i.e., we assume that the two values of the
refractive indices are distinct). Then, in Sec. IV we consider
the degenerate case, i.e., we consider that the two possible
linear polarizations propagating in the direction defined by
the z axis have the same refractive index n. In the particular
case when the propagation axis z is one of the eigenaxes of the
medium, the degeneracy conditions imply that the crystal is
uniaxial and the optical axis is the propagation one. The study
of linear eigenpolarizations in the degenerate case and the
corresponding formation of half-cycle solitons from few-cycle
inputs are given in Sec. V. Finally, in Sec. VI we present our
conclusions.

II. STARTING GOVERNING EQUATIONS AND
MULTISCALE ANALYSIS

We consider a set of atoms described by a very general
Hamiltonian:

Ĥ0 = h̄

⎛
⎜⎜⎜⎝

ω1 0 · · · 0

0 ω2 · · · · · ·
· · · · · · · · · · · ·
0 · · · · · · ωN

⎞
⎟⎟⎟⎠ . (1)

The evolution of the density matrix ρ is governed by the
Heisenberg equation

ih̄∂tρ = [Ĥ ,ρ], (2)

in which the total Hamiltonian

Ĥ = Ĥ0 − �μ · �E (3)

includes a term accounting for the coupling between the
electric field �E and the atoms through a dipolar momentum
operator �μ = (μx,μy,μz), in which the matrices

μα = (
μα

mn

)
(mn)∈[1,N] (4)

are Hermitian (i.e., μα
nm = μα

mn
∗, where the star denotes the

complex conjugate), and α = x, y, z.

The evolution of the electric field is governed by the
Maxwell wave equation

�∇2 �E − �∇( �∇ · �E) = 1

c2
∂2
t

(
�E + 1

ε0

�P
)

, (5)

in which �∇ is the gradient operator, and the polarization density
�P is expressed as

�P = NTr (ρ �μ) . (6)

We consider a quadratic nonlinearity; that is, we assume that
the material is noncentrosymmetric, so that the second-order
susceptibility χ (2) does not vanish.

We introduce the slow variables

τ = ε

(
t − z

V

)
, (7)

ζ = ε3t, (8)

so that

∂t = ε∂τ , (9)

∂z = − ε

V
∂τ + ε3∂ζ . (10)

The electric field �E, the polarization density �P and the
density matrix ρ are expanded in a power series of some small
parameter ε as [57]

�E =
∑
p�2

εp �Ep =
∑
p�2

εp(up,vp,wp), (11)

�P =
∑
p�2

εp �Pp =
∑
p�2

εp(Pp,Qp,Rp), (12)

ρ =
∑
p�0

εpρ(p). (13)

A. Order 0

The Heisenberg equation (2) at order ε0 is

0 = [Ĥ0,ρ
(0)], (14)

and since

([H0,ρ])mn = h̄�mnρmn, (15)

in which we have set

�mn = ωm − ωn, (16)

it yields ρ(0)
mn = 0 for m �= n (m,n = 1,2, . . . ,N).

B. Order 1

The Heisenberg equation (2) at order ε1 is

ih̄∂τ ρ
(0) = [Ĥ0,ρ

(1)]. (17)

Using Eq. (15) into Eq. (17), we obtain the equations

ih̄∂τ ρ
(0)
mm = 0 (18)

and

ih̄∂τ ρ
(0)
mn = −h̄�mnρ

(1)
mn (19)
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for m �= n. Consequently, ρ(1)
mn = 0 for m �= n, while the

diagonal terms ρ(0)
mm are constant.

C. Order 2

The Heisenberg equation (2) at order ε2 is

ih̄∂τ ρ
(1) = [Ĥ0,ρ

(2)] − �E2 · [ �μ,ρ(0)]. (20)

Since

([μα,ρ])mn =
N∑

ν=1

(
μα

mνρνn − ρmνμ
α
νn

)
, (21)

and using (15), we obtain the equations

ih̄∂τ ρ
(1)
mn = h̄�mnρ

(2)
mn − u2

N∑
ν=1

(
μx

mνρ
(0)
νn − ρ(0)

mνμ
x
νn

)

− v2

N∑
ν=1

(
μy

mνρ
(0)
νn − ρ(0)

mνμ
y
νn

)

−w2

N∑
ν=1

(
μz

mνρ
(0)
νn − ρ(0)

mνμ
z
νn

)
(22)

for m �= n and

ih̄∂τ ρ
(1)
mm = − u2

N∑
n=1

(
μx

mnρ
(0)
nm − ρ(0)

mnμ
x
nm

)

− v2

N∑
n=1

(
μy

mnρ
(0)
nm − ρ(0)

mnμ
y
nm

)

− w2

N∑
n=1

(
μz

mnρ
(0)
nm − ρ(0)

mnμ
z
nm

)
. (23)

The off-diagonal components of both ρ(0) and ρ(1) being zero,
Eq. (22) reduces to

ρ(2)
mn =

(
ρ(0)

nn − ρ(0)
mm

)
h̄�mn

(
u2μ

x
mn + v2μ

y
mn + w2μ

z
mn

)
, (24)

while Eq. (23) shows that the diagonal components ρ(1)
mm

should be constant. We assume that ρ(0) tends to its thermal
equilibrium value, and all ρp with p � 1 tend to zero, at
infinity, and consequently ρ(1)

mm = 0 for any m.
The polarization density �P is given by Eq. (6), which yields

at order ε2

P2 = N
∑
nm

ρ(2)
nmμmn. (25)

The diagonal terms ρ(2)
mm are zero. This point will be presented

below with the third order for the sake of clarity, but can be
derived now, and the sum in Eq. (25) extends on m �= n only.
Then, using the results of order 1, we get

P2 = N
∑
nm

(
u2μ

x
nm + v2μ

y
nm + w2μ

z
nm

) (
ρ(0)

mm − ρ(0)
nn

)
h̄�nm

μx
mn,

(26)

etc., which can be rewritten as

�P2 = ε0χ
(1) · �E2, (27)

where χ (1) is the linear susceptibility tensor given by

χ
(1)
αβ = N

ε0h̄

∑
nm

(
ρ(0)

mm − ρ(0)
nn

) μα
nmμ

β
mn

�nm

, (28)

where α, β = x, y, z. Equation (28) is worth being compared
to the known expression of the linear susceptibility, which is
(Eq. 3.5.15, p. 163 of Ref. [58])

χ
(1)
αβ (ω) = N

ε0h̄

∑
nm

(
ρ(0)

mm − ρ(0)
nn

) μα
nmμ

β
mn

(�nm − ω) − iγnm

.

(29)

Here we neglect the damping (i.e., γnm = 0) and, due to the
long-wave approximation, the susceptibility must be evaluated
as ω tends to zero. Then Eq. (28) coincides with Eq. (29).

Now let us consider the Maxwell wave equation (5) at the
leading order ε4:

1

V 2
∂2
τ u2 = 1

c2
∂2
τ

(
u2 + 1

ε0
P2

)
, (30)

1

V 2
∂2
τ v2 = 1

c2
∂2
τ

(
v2 + 1

ε0
Q2

)
, (31)

0 = 1

c2
∂2
τ

(
w2 + 1

ε0
R2

)
. (32)

By substituting Eq. (27) into Eqs. (30)–(32) we get, after two
integrations with respect to τ ,

n2u2 = u2+
(
χ (1)

xx u2 + χ (1)
xy v2 + χ (1)

xz w2
)
, (33)

n2v2 = v2+
(
χ (1)

yx u2 + χ (1)
yy v2 + χ (1)

yz w2
)
, (34)

0 = w2+
(
χ (1)

zx u2 + χ (1)
zy v2 + χ (1)

zz w2
)
, (35)

where n = c/V is the refractive index. Equation (35) has the
solution

w2 = −Sxu2 − Syv2, (36)

where we have set

Sα = χ (1)
αz

1 + χ
(1)
zz

, (37)

for α = x,y. Then Eqs. (33) and (34) become

(1 − n2 + χ ′
xx)u2 + χ ′

xyv2 = 0, (38)

χ ′
xyu2 + (1 − n2 + χ ′

yy)u2 = 0, (39)

in which we have set

χ ′
αβ = χ

(1)
αβ − χ (1)

αz χ
(1)
βz

1 + χ
(1)
zz

, (40)

for α, β = x, y. Recall that the tensor χ (1) is real symmetrical,
then the system (38), (39) has a nonzero solution if

(1 − n2)2 + (1 − n2)(χ ′
xx + χ ′

yy) + χ ′
xxχ

′
yy − χ ′

xy

2 = 0.

(41)
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The discriminant of this second-order polynomial equation for
(1 − n2) reduces to

� = (χ ′
xx − χ ′

yy)2 + 4χ ′
xy

2
, (42)

and consequently there are always two real solutions, and two
distinct values of the refractive index n, except if χ ′

xx = χ ′
yy

and χ ′
xy = 0 [this analysis proves that (1 − n2) is real but

the condition (1 − n2) < 0, which must be satisfied in real
materials for physical reasons, does not follow from it].

III. NONDEGENERATE CASE

Let us assume that the two values of the refractive index n

are distinct. According to Eqs. (38) and (39), the two values
of (n2 − 1) are the eigenvalues of the matrix(

χ ′
xx χ ′

xy

χ ′
xy χ ′

yy

)
,

which is a real symmetrical one and consequently admits
orthogonal real eigenvectors. The mapping in the space which
maps the axes x and y to the eigenaxes and leaves z unchanged
is a rotation around the z axis, which is the propagation
direction. Hence, by means of an adequate rotation around
this axis, we can restrict to the case where χ ′

xy = 0 without

loss of generality. Obviously, considering the particular case
in which the propagation direction itself is an eigenaxis of
the linear susceptibility χ (1), would considerably simplify the
analysis. However, χ (2) crystals must be noncentrosymmetric,
and hence they are, in general, strongly anisotropic from the
point of view of nonlinear optics. It is an important point that
our analysis is valid for any propagation direction in the crystal,
and not only for propagation along one of the eigenaxes.

The refractive index is then given either by n2 = 1 + χ ′
xx

or by n2 = 1 + χ ′
yy , let us choose the first value, the refractive

index is thus given by

n2 = 1 +
(

χ (1)
xx −

(
χ (1)

xz

)2

1 + χ
(1)
zz

)
. (43)

Equations (38) and (39) then reduce to v2 = 0, while u2

remains free. Equation (36) reduces to w2 = −Sxu2, with Sx

given by Eq. (37), which completes the analysis at this order.

A. Order 3

The Heisenberg equation (2) at order ε3 is

ih̄∂τ ρ
(2) = [H0,ρ3] − �E3 · [ �μ,ρ(0)] − �E2 · [ �μ,ρ(1)]. (44)

Using Eqs. (15) and (21), it yields the equations

ih̄∂τ ρ
(2)
mn = h̄�mnρ

(3)
mn − u3

N∑
ν=1

(
μx

mνρ
(0)
νn − ρ(0)

mνμ
x
νn

) − v3

N∑
ν=1

(
μy

mνρ
(0)
νn − ρ(0)

mνμ
y
νn

) − w3

N∑
ν=1

(
μz

mνρ
(0)
νn − ρ(0)

mνμ
z
νn

)

−u2

N∑
ν=1

(
μx

mνρ
(1)
νn − ρ(1)

mνμ
x
νn

) − w2

N∑
ν=1

(
μz

mνρ
(1)
νn − ρ(1)

mνμ
z
νn

)
(45)

for m �= n and

ih̄∂τ ρ
(2)
mm = −u3

N∑
ν=1

(
μx

mνρ
(0)
νm − ρ(0)

mνμ
x
νm

) − v3

N∑
ν=1

(
μy

mνρ
(0)
νm − ρ(0)

mνμ
y
νm

) − w3

N∑
ν=1

(
μz

mνρ
(0)
νm − ρ(0)

mνμ
z
νm

)

−u2

N∑
ν=1

(
μx

mνρ
(1)
νm − ρ(1)

mνμ
x
νm

) − w2

N∑
ν=1

(
μz

mνρ
(1)
νm − ρ(1)

mνμ
z
νm

)
. (46)

We used v2 = 0. Since ρ(0) is diagonal and ρ(1) = (0), Eq. (46) shows that ρ(2)
mm = 0 for all m, which was used in the computation

of �P2 above. In the same way, Eq. (45) gives

ρ(3)
mn = i

�mn

∂τρ
(2)
mn +

(
u3μ

x
mn + v3μ

y
mn + w3μ

z
mn

) (
ρ(0)

nn − ρ(0)
mm

)
h̄�mn

(47)

or, substituting Eq. (24) into Eq. (47) and taking into account that w2 = −Sxu2,

ρ(3)
mn = i

(
ρ(0)

nn − ρ(0)
mm

)
h̄�mn

2

(
μx

mn − Sxμ
z
mn

)
∂τu2 +

(
u3μ

x
mn + v3μ

y
mn + w3μ

z
mn

) (
ρ(0)

nn − ρ(0)
mm

)
h̄�mn

. (48)

It allows us to obtain the polarization density at order ε3 as

P3 = N

h̄

∑
nm

i
(
ρ(0)

mm − ρ(0)
nn

)
μx

mn

�nm
2

(
μx

nm − Sxμ
z
nm

)
∂τu2 + N

h̄

∑
nm

(
ρ(0)

mm−ρ(0)
nn

)
μx

mn

�nm

(
u3μ

x
nm+v3μ

y
nm+w3μ

z
nm

)
(49)

and analogous expressions for Q3 and R3. Let us set

Aαβ = N

ε0h̄

∑
nm

i
(
ρ(0)

mm − ρ(0)
nn

)
μα

nmμ
β
mn

�2
nm

, (50)
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for α, β = x, y, z. It is straightforward to prove that the matrix
(Aαβ)α,β=x,y,z is skew-symmetric and real. In fact it is zero,
this can be justified as follows on a physical basis: Taking the
derivative of Eq. (29) (where we have set γnm = 0), we see
that

Aαβ = i
dχ

(1)
αβ (ω)

dω

∣∣∣∣∣
ω=0

. (51)

We assume that the decay rates γnm are zero, and consequently
no absorption occurs. In this case the linear susceptibility
χ (1)(ω) must be real for any ω, and so must be its derivative.
Since direct computation shows that dχ

(1)
αβ (ω)/dω|ω=0 is

purely imaginary, we see that it must be zero (i.e., Aαβ = 0 for
all α, β). Then the polarization density at this order reduces

to

�P3 = ε0χ
(1) · �E3, (52)

with χ (1) defined according to Eq. (28). The Maxwell wave
equation (5) at order ε5 is

1

V 2
∂2
τ u3 = 1

c2
∂2
τ

(
u3 + 1

ε0
P3

)
, (53)

1

V 2
∂2
τ v3 = 1

c2
∂2
τ

(
v3 + 1

ε0
Q3

)
, (54)

0 = 1

c2
∂2
τ

(
w3 + 1

ε0
R3

)
. (55)

It is thus the same system as was satisfied by �E2. Hence
its solution is straightforward: w3 = −Sxu3, v3 = 0, and u3

remains free.

B. Order 4

The Heisenberg equation (2) at order ε4 is

ih̄∂τ ρ3 = [Ĥ0,ρ4] − �E4 · [ �μ,ρ(0)] − �E3 · [ �μ,ρ(1)] − �E2 · [ �μ,ρ(2)]. (56)

Using Eqs. (15) and (21) into Eq. (56), we obtain the equations

ih̄∂τ ρ
(3)
mn = h̄�mnρ

(4)
mn − u4

N∑
ν=1

(
μx

mνρ
(0)
νn − ρ(0)

mνμ
x
νn

) − v4

N∑
ν=1

(
μy

mνρ
(0)
νn − ρ(0)

mνμ
y
νn

) − w4

N∑
ν=1

(
μz

mνρ
(0)
νn − ρ(0)

mνμ
z
νn

)

−u3

N∑
ν=1

(
μx

mνρ
(1)
νn − ρ(1)

mνμ
x
νn

) − w3

N∑
ν=1

(
μz

mνρ
(1)
νn − ρ(1)

mνμ
z
νn

)

−u2

N∑
ν=1

(
μx

mνρ
(2)
νn − ρ(2)

mνμ
x
νn

) − w2

N∑
ν=1

(
μz

mνρ
(2)
νn − ρ(2)

mνμ
z
νn

)
(57)

for m �= n and

ih̄∂τ ρ
(3)
mm = −u4

N∑
ν=1

(
μx

mνρ
(0)
νm − ρ(0)

mνμ
x
νm

) − v4

N∑
ν=1

(
μy

mνρ
(0)
νm − ρ(0)

mνμ
y
νm

) − w4

N∑
ν=1

(
μz

mνρ
(0)
νm − ρ(0)

mνμ
z
νm

)

−u3

N∑
ν=1

(
μx

mνρ
(1)
νm − ρ(1)

mνμ
x
νm

) − w3

N∑
ν=1

(
μz

mνρ
(1)
νm − ρ(1)

mνμ
z
νm

)

−u2

N∑
ν=1

(
μx

mνρ
(2)
νm − ρ(2)

mνμ
x
νm

) − w2

N∑
ν=1

(
μz

mνρ
(2)
νm − ρ(2)

mνμ
z
νm

)
. (58)

ρ(0) and ρ(1) being diagonal, Eq. (57) reduces to

ih̄∂τ ρ
(3)
mn = h̄�mnρ

(4)
mn − u4μ

x
mn

(
ρ(0)

nn − ρ(0)
mm

) − v4μ
y
mn

(
ρ(0)

nn − ρ(0)
mm

)
−w4μ

z
mn

(
ρ(0)

nn − ρ(0)
mm

) − u3μ
x
mn

(
ρ(1)

nn − ρ(1)
mm

) − w3μ
z
mn

(
ρ(1)

nn − ρ(1)
mm

)
−u2

N∑
ν=1

(
μx

mνρ
(2)
νn − ρ(2)

mνμ
x
νn

) − w2

N∑
ν=1

(
μz

mνρ
(2)
νn − ρ(2)

mνμ
z
νn

)
. (59)

Then substituting Eqs. (24) and (48) into Eq. (59) yields

ρ(4)
mn = i

�mn

∂τρ
(3)
mn +

(
ρ(0)

nn − ρ(0)
mm

)
h̄�mn

(
u4μ

x
mn + v4μ

y
mn + w4μ

z
mn

) +
(
ρ(1)

nn − ρ(1)
mm

)
h̄�mn

(
μx

mn − Sxμ
z
mn

)
u3

+ 1

h̄�mn

[
N∑

ν=1

(
μx

mνρ
(2)
νn − ρ(2)

mνμ
x
νn

) − Sx

N∑
ν=1

(
μz

mνρ
(2)
νn − ρ(2)

mνμ
z
νn

)]
u2. (60)
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The corresponding polarization density is

P4 = −N

h̄

∑
nm

(
ρ(0)

mm − ρ(0)
nn

)
μx

mn

�3
nm

(
μx

nm − Sxμ
z
nm

)
∂2
τ u2 + N

h̄

∑
nm

i
(
ρ(0)

mm − ρ(0)
nn

)
μx

mn

�nm
2

(
μx

nm − Sxμ
z
nm

)
∂τu3

+ N

h̄

∑
nm

(
ρ(0)

mm − ρ(0)
nn

)
�nm

μx
mn

(
u4μ

x
nm + v4μ

y
nm + w4μ

z
nm

) + N

h̄2

∑
nmν

[(
ρ(0)

mm − ρ(0)
νν

)
�nm�νm

−
(
ρ(0)

νν − ρ(0)
nn

)
�nm�nν

]
μx

mnμ
x
νmμx

nνu2
2

+ N

h̄2

∑
nmν

[(
ρ(0)

mm − ρ(0)
νν

)
�nm�νm

−
(
ρ(0)

νν − ρ(0)
nn

)
�nm�nν

]
μx

mnμ
z
νmμz

nνSx
2u2

2

− N

h̄2

∑
nmν

[(
ρ(0)

mm − ρ(0)
νν

)
�nm�νm

−
(
ρ(0)

νν − ρ(0)
nn

)
�nm�nν

]
μx

mn

(
μx

nνμ
z
νm + μz

nνμ
x
νm

)
Sxu2

2, (61)

and analogous expressions for Q4 and R4.
The Maxwell wave equation (5) at the order ε6 is

1

V 2
∂2
τ u4 − 2

V
∂τ ∂ζ u2 = 1

c2
∂2
τ

(
u4 + 1

ε0
P4

)
, (62)

1

V 2
∂2
τ v4 − 2

V
∂τ ∂ζ v2 = 1

c2
∂2
τ

(
v4 + 1

ε0
Q4

)
, (63)

0 = 1

c2
∂2
τ

(
w4 + 1

ε0
R4

)
. (64)

Let us introduce a few shortcuts, the first of which is Aαβ given
by Eq. (50). Recall that it is always zero. We define

Bαβ = N

ε0h̄

∑
nm

(
ρ(0)

mm − ρ(0)
nn

)
μα

nmμ
β
mn

�nm
3 , (65)

for α, β = x, y, z. Permutation of n and m in the sum in
Eq. (65) shows that Bαβ = Bβα . We also will need the tensorial
quantity

Tαβγ = N

ε0h̄

∑
nmν

[(
ρ(0)

mm−ρ(0)
νν

)
�nm�νm

−
(
ρ(0)

νν −ρ(0)
nn

)
�nm�nν

]
μα

mnμ
β
νmμγ

nν,

(66)

for α, β, γ = x, y, z. Then using the results of previous orders
and the tensors (50), (65), and (66), system (62)–(64) reduces
to

1

V 2
∂2
τ u4 − 2

V
∂τ ∂ζ u2

= 1

c2
∂2
τ

[(
1 + χ (1)

xx

)
u4 + χ (1)

xy v4 + χ (1)
xz w4

+ (Axx − SxAxz) ∂τu3 − (Bxx − SxBxz) ∂2
τ u2

+ Txxxu2
2 + Txzzw2

2 + (Txxz + Txzx) u2w2
]
, (67)

1

V 2
∂2
τ v4 = 1

c2
∂2
τ

[
χ (1)

xy u4 + (
1 + χ (1)

yy

)
v4 + χ (1)

yz w4

+ (Ayx − SxAyz)∂τu3 − (Byx − SxByz)∂
2
τ u2

+ Tyxxu2
2 + Tyzzw2

2 + (Tyxz + Tyzx)u2w2
]
,

(68)

0 = 1

c2
∂2
τ

[
χ (1)

zx u4 + χ (1)
zy v4 + (

1 + χ (1)
zz

)
w4

+ (Azx − SxAzz) ∂τu3 − (Bzx − SxBzz) ∂2
τ u2

+Tzxxu2
2 + Tzzzw2

2 + (Tzxz + Tzzx) u2w2
]
. (69)

Since all Aαβ are zero, the terms involving ∂τu3 vanish.
Equation (69) is solved to yield

w4 = 1

1 + χ
(1)
zz

[ − χ (1)
zx u4 − χ (1)

zy v4

+ (Bzx − SxBzz) ∂2
τ u2 + T ′

zxxu2
2] (70)

where we have set

T ′
zxx = Tzxx − Sx (Tzxz + Tzzx) + Sx

2Tzzz. (71)

Then, reporting w4 into Eqs. (67) and (68), we get a system of
equations for u4 and v4, whose homogeneous part is identical to
system (38) and (39) for u2 and v2. Hence v4 can be computed
as a function of u2 and u3 in Eq. (68), while both u4 and v4

vanish from Eq. (67), which can be reduced to

2nc∂ζ u2 − β2

2
∂3
τ u2 + �∂τu2

2 = 0, (72)

which is the KdV equation and where we have set

� = Txxx − Sx (Txxz + Txzx) + Sx
2Txzz − SxT

′
zxx (73)

and

β2 = 2
(
Bxx − 2SxBxz + Sx

2Bzz

)
. (74)

Taking the derivative of Eq. (29) (with γnm = 0), we see
that

Bαβ = 1

2

d2χ
(1)
αβ (ω)

dω2

∣∣∣∣∣
ω=0

. (75)

Hence,

β2 = (1,0, −Sx) · d2χ (1)

dω2

∣∣∣∣
ω=0

·
⎛
⎝ 1

0
−Sx

⎞
⎠ . (76)

Computing the second derivative of χ ′
xx = n2 − 1 defined by

Eq. (40) and taking into account the fact that the first-order
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derivatives dχ
(1)
αβ /dω = 0 for ω = 0 shows that

β2 = d2n2

dω2

∣∣∣∣
ω=0

, (77)

which gives a simple expression of the dispersion coefficient
β2.

The nonlinear coefficient can be reduced as follows: The
expression of the second-order susceptibility χ (2) can be found
in Ref. [58] (Eq. 3.6.14, p. 173) as

χ
(2)
αβγ (ωp + ωq ; ωq,ωp)

= N

2ε0h̄
2

∑
mnν

{(
ρ(0)

mm−ρ(0)
νν

) [
μα

mnμ
β
nνμ

γ
νm

(�nm − ωp−ωq − iγnm)(�νm−ωp − iγνm)
+ μα

mnμ
γ
nνμ

β
νm

(�nm−ωp − ωq − iγnm)(�νm−ωq − iγνm)

]

− (
ρ(0)

νν − ρ(0)
nn

) [
μα

mnμ
β
νmμ

γ
nν

(�nm − ωp − ωq − iγnm)(�nν − ωp − iγnν)
+ μα

mnμ
γ
νmμ

β
nν

(�nm − ωp − ωq − iγnm)(�nν − ωq − iγnν)

]}
. (78)

It is thus seen that

χ
(2)
αβγ (0; 0,0) = 1

2 (Tαβγ + Tαγβ), (79)

where we have neglected damping (γmn = 0). Hence,

� = (1,0, −Sx) · χ
(2)
αβγ (0; 0,0) :

⎛
⎝ 1

0
−Sx

⎞
⎠ ,

⎛
⎝ 1

0
−Sx

⎞
⎠ . (80)

It is straightforwardly checked that expressions (77) and (80) of
the coefficients of the KdV equation reduce to the expressions
found in Ref. [42] in the scalar case. Hence we have proved
that the KdV equation derived in Ref. [42] holds for an
arbitrary number of atomic levels and arbitrary propagation
direction, using in the latter case the effective refractive
index and nonlinear coefficients seen by the wave. The only
assumption is that (i) the transitions which contribute are all
well above the wave frequency and (ii) the difference between
the two indices in the chosen propagation direction cannot be
neglected.

IV. DEGENERATE CASE

We now assume that the two possible linear polarizations
propagating in the direction defined by the z axis have the
same index of refraction n. Mathematically, this assumption
is that Eq. (41), which is the dispersion relation, has a double
root, which according to Eq. (42) implies that

χ ′
xx = χ ′

yy and χ ′
xy = 0. (81)

If the propagation axis z is one of the eigenaxes of the material,
then χ (1)

αz = 0 for α = x, y, and Eq. (40) reduces to χ ′
αβ =

χ
(1)
αβ . In this particular case, the degeneracy condition is that

the crystal is uniaxial, and the optical axis is the propagation
axis (z axis). However, the analysis remains valid for any
coincidence of the two eigenvalues of the optical index. Is it
easy to prove that such a coincidence may occur in a biaxial
crystal. Let us call X, Y , Z the eigendirections, nX, nY , nZ the
three eigenindices, and assume nX < nY < nZ . We assume a
propagation direction in the XZ plane, making an angle θ

with the X axis. Then one of the two eigenvalues of the optical

index in the propagation direction defined by θ is nY , while
the other one—let us call it n(θ )—ranges from nZ as θ = 0
to nX as θ = π/2. Since n(θ ) varies continuously, n(0) < nY

and n(π/2) > nY , the indices n(θ ) and nY must coincide for
some value of θ . The condition that the propagation direction
lies in the XZ plane is obviously required for getting a simple
proof only, a coincidence will also occur for other propagation
directions, not too far from the XZ plane. The assumption
(81) is thus physically relevant and more general than the
mere assumption of propagation along the optical axis; that is
why we consider it.

The set of equations (33) and (34) gotten at order ε2 reduces
thus to w2 = −Sxu2 − Syv2, [i.e., Eq. (36)], with Sx and Sy

given by Eq. (37), which is the value of the refractive index
given by Eq. (43), while u2 and v2 remain free.

A. Order 3

The Heisenberg equation (2) at order ε3 is still Eq. (44);
however, Eq. (45) for m �= n becomes

ih̄∂τ ρ
(2)
mn = h̄�mnρ

(3)
mn − u3

N∑
ν=1

(
μx

mνρ
(0)
νn − ρ(0)

mνμ
x
νn

)

− v3

N∑
ν=1

(
μy

mνρ
(0)
νn − ρ(0)

mνμ
y
νn

)

−w3

N∑
ν=1

(
μz

mνρ
(0)
νn − ρ(0)

mνμ
z
νn

)

−u2

N∑
ν=1

(
μx

mνρ
(1)
νn − ρ(1)

mνμ
x
νn

)

− v2

N∑
ν=1

(
μy

mνρ
(1)
νn − ρ(1)

mνμ
y
νn

)

+ (Sxu2 + Syv2)
N∑

ν=1

(
μz

mνρ
(1)
νn − ρ(1)

mνμ
z
νn

)
. (82)

Equation (46) for the diagonal term is modified in the same
way.
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As in the degenerate case, ρ(2)
mm = 0 for all m, and Eq. (47) holds. Then Eq. (48) is replaced with

ρ(3)
mn = i

(
ρ(0)

nn − ρ(0)
mm

)
h̄ (�mn)2

[(
μx

mn − Sxμ
z
mn

)
∂τu2 + (

μy
mn − Syμ

z
mn

)
∂τ v2

] +
(
u3μ

x
mn + v3μ

y
mn + w3μ

z
mn

) (
ρ(0)

nn − ρ(0)
mm

)
h̄�mn

. (83)

The polarization density at order ε3 is thus

P3 = ε0[(Axx − SxAxz) ∂τu2 + (Axy − SyAxz)∂τ v2] + N

h̄

∑
nm

(
ρ(0)

mm − ρ(0)
nn

)
μx

mn

�nm

(
u3μ

x
nm + v3μ

y
nm + w3μ

z
nm

)
, (84)

where we used the shortcut Aαβ (α, β = x, y, z) given by Eq. (50). Q3 and R3 have analogous expressions. Since it was seen
from Eq. (51) that Aαβ is always zero, the polarization density at this order still reduces to Eq. (52), and the Maxwell wave
equation at this order ε5 [Eqs. (53)–(55)] coincides again with the same system as was satisfied by �E2. Its solution is thus
w3 = −Sxu3 − Syv3, where u3 and v3 remain free.

B. Order 4

The Heisenberg equation (2) at order ε4 is Eq. (56) as in the nondegenerate case. Equation (57) for m �= n is modified as

ih̄∂τ ρ
(3)
mn = h̄�mnρ

(4)
mn − u4

N∑
ν=1

(
μx

mνρ
(0)
νn − ρ(0)

mνμ
x
νn

) − v4

N∑
ν=1

(
μy

mνρ
(0)
νn − ρ(0)

mνμ
y
νn

) − w4

N∑
ν=1

(
μz

mνρ
(0)
νn − ρ(0)

mνμ
z
νn

)

−u3

N∑
ν=1

(
μx

mνρ
(1)
νn − ρ(1)

mνμ
x
νn

) − v3

N∑
ν=1

(
μy

mνρ
(1)
νn − ρ(1)

mνμ
y
νn

) + (Sxu3 + Syv3)
N∑

ν=1

(
μz

mνρ
(1)
νn − ρ(1)

mνμ
z
νn

)

−u2

N∑
ν=1

(
μx

mνρ
(2)
νn − ρ(2)

mνμ
x
νn

) − v2

N∑
ν=1

(
μy

mνρ
(2)
νn − ρ(2)

mνμ
y
νn

) + (Sxu2 + Syv2)
N∑

ν=1

(
μz

mνρ
(2)
νn − ρ(2)

mνμ
z
νn

)
. (85)

Equation (58) for the diagonal terms is modified in an analogous way, which allows us to compute ρ(4)
mn as

ρ(4)
mn = i

�mn

∂τρ
(3)
mn +

(
ρ(0)

nn − ρ(0)
mm

)
h̄�mn

(
u4μ

x
mn + v4μ

y
mn + w4μ

z
mn

) +
(
ρ(1)

nn − ρ(1)
mm

)
h̄�mn

[(
μx

mn − Sxμ
z
mn

)
u3 + (

μy
mn − Syμ

z
mn

)
v3

]

+ 1

h̄�mn

{[
N∑

ν=1

(
μx

mνρ
(2)
νn − ρ(2)

mνμ
x
νn

) − Sx

N∑
ν=1

(
μz

mνρ
(2)
νn − ρ(2)

mνμ
z
νn

)]
u2

+
[

N∑
ν=1

(
μy

mνρ
(2)
νn − ρ(2)

mνμ
y
νn

) − Sy

N∑
ν=1

(
μz

mνρ
(2)
νn − ρ(2)

mνμ
z
νn

)]
v2

}
. (86)

The corresponding polarization density thus involves terms in ∂τ v3, ∂2
τ v2, v2

2, and u2v2 in addition to those present in Eq. (61).
The Maxwell wave equation (5) at the order ε6 [Eqs. (62)–(64)] can be written down using the shortcuts Aαβ , Bαβ , Tαβγ

(α, β, γ = x, y, z) given by Eqs. (50), (65), and (66) respectively, as

1

V 2
∂2
τ u4 − 2

V
∂τ ∂ζ u2 = 1

c2
∂2
τ

[(
1 + χ (1)

xx

)
u4 + χ (1)

xy v4 + χ (1)
xz w4 + (Axx − SxAxz) ∂τu3 + (Axy − SyAxz)∂τ v3

− (Bxx − SxBxz)∂
2
τ u2 − (Bxy − SyBxz)∂

2
τ v2 + Txxxu2

2 + Txyyv2
2 + Txzzw2

2 + (Txxy + Txyx)u2v2

+ (Txxz + Txzx)u2w2 + (Txyz + Txzy)v2w2
]
, (87)

1

V 2
∂2
τ v4 − 2

V
∂τ ∂ζ v2 = 1

c2
∂2
τ

[
χ (1)

yx u4 + (
1 + χ (1)

yy

)
v4 + χ (1)

yz w4 + (Ayx − SxAyz)∂τu3 + (Ayy − SyAyz)∂τ v3

− (Byx − SxByz)∂
2
τ u2 − (Byy − SyByz)∂

2
τ v2 + Tyxxu2

2 + Tyyyv2
2 + Tyzzw2

2 + (Tyxy + Tyyx)u2v2

+ (Tyxz + Tyzx)u2w2 + (Tyyz + Tyzy)v2w2
]
, (88)

0 = 1

c2
∂2
τ

[
χ (1)

zx u4 + χ (1)
zy v4 + (

1 + χ (1)
zz

)
w4 + (Azx − SxAzz)∂τu3 + (Azy − SyAzz)∂τ v3

− (Bzx − SxBzz)∂
2
τ u2 − (Bzy − SyBzz)∂

2
τ v2 + Tzxxu2

2 + Tzyyv2
2 + Tzzzw2

2 + (Tzxy + Tzyx)u2v2

+ (Tzxz + Tzzx)u2w2 + (Tzyz + Tzzy)v2w2
]
. (89)
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Since all Aαβ are zero, the terms involving ∂τu3 or ∂τ v3 vanish.
Equation (89) is solved to yield

w4 = 1

1 + χ
(1)
zz

[−χ (1)
zx u4 − χ (1)

zy v4 + (Bzx − SxBzz)∂
2
τ u2

+ (Bzy − SyBzz)∂
2
τ v2 + T ′

zxxu2
2

+ (T ′
zxy + T ′

zyx)u2v2 + T ′
zyyv2

2
]
, (90)

where we have set

T ′
zαβ = Tzαβ − SαTzzβ − SβTzαz + SαSβTzzz, (91)

for α, β = x, y. The definition (71) of T ′
zxx coincides with

Eq. (91) for α = β = x. Then, as in the nondegenerate case,
we insert w4 into Eqs. (67) and (68) and get a system of
equations for u4 and v4, whose homogeneous part is identical
to system (38) and (39) for u2 and v2 and hence completely
vanishes. Equations (87) and (88) can be reduced to

2nc∂ζ u2 − βxx

2
∂3
τ u2 − βxy

2
∂3
τ v2 + �xxx∂τu2

2

+�xyy∂τ v2
2 + 2�xxy∂τu2v2 = 0, (92)

2nc∂ζ v2 − βyx

2
∂3
τ u2 − βyy

2
∂3
τ v2 + �yxx∂τu2

2

+�yyy∂τ v2
2 + 2�yxy∂τu2v2 = 0, (93)

which is a set of two coupled KdV equations. We have set

βαβ = 2(Bαβ − SαBβz − SβBαz + SαSβBzz) (94)

and

�αβγ = 1
2 (�′

αβγ + �′
αγβ), (95)

where

�′
αβγ = Tαβγ − SβTαzγ − Sγ Tαβz + SβSγ Tαzz − SαT ′

zβγ ,

(96)

for α, β = x, y. Note that β2 defined by Eq. (74) coincides
with βxx and that � defined by Eq. (73) coincides with �xxx .

Using Eq. (75), we see that

βαβ = �dα· d2χ (1)

dω2

∣∣∣∣
ω=0

· �dβ, (97)

where

�dx =
⎛
⎝ 1

0
−Sx

⎞
⎠ and �dy =

⎛
⎝ 0

1
−Sy

⎞
⎠ . (98)

As in the nondegenerate case, computing the second derivative
of χ ′

αβ defined by Eq. (40) and taking into account the fact that

the first-order derivatives of χ
(1)
αβ vanish for ω = 0 shows that

βαβ = d2χ ′
αβ

dω2

∣∣∣∣
ω=0

. (99)

The vanishing of χ ′
xy may be due to the symmetry, as in the

case of propagation along the optical axis of a uniaxial crystal,
or perpendicular to one of the eigenaxes of a biaxial crystal. It
can also depend merely on specific values of the three indices,
if the coincidence of the two indices occurs accidentally in
some direction which is not simply related to the eigenaxes. In

the latter case, there is no reason that neither the coincidence
of indices nor the vanishing of χ ′

xy occurs at some frequency
other than the selected one (which is the limit ω −→ 0 due to
the long-wave approximation), and consequently the second
derivatives do not coincide: βxx �= βyy and βxy �= 0. If, on the
contrary, the coincidence of the two indices is due to symmetry,
it occurs at any frequency, and the second derivatives coincide:
βxx = βyy and βxy = 0. An accidental coincidence of the
indices in a configuration which fixes the eigenpolarizations is
also possible, then βxx �= βyy but βxy = 0.

The nonlinear coefficients can be reduced by using the
expression (78) of the second-order susceptibility χ (2) and
Eq. (79). It is seen that

�′
αβγ = �dα · T : �dβ, �dγ , (100)

and consequently

�αβγ = �dα·χ (2) (0; 0,0) : �dβ, �dγ . (101)

V. SOLITONS

A. Linear eigenpolarizations in degenerate case

Let us seek solutions to system (92) and (93), which
represent linearly polarized waves; that is, we seek solutions
of the form

u2 = U cos ϕ, v2 = Usinϕ, (102)

in which the angle ϕ determines the direction of the wave
polarization. Inserting Eq. (102) into system (92) and (93),
it is found that U satisfies a single KdV equation if the two
conditions

βxx + βxy tan ϕ = βyy + βxy cotan ϕ, (103)

tan3 θ�xyy + tan2 θ (2�xxy − �yyy)

+ tan θ (�xxx − 2�yxy) − �yxx = 0 (104)

are satisfied. Hence in general, such an eigenpolarization of the
nonlinear propagation equations do not exist, since we have
two conditions for a single variable. However, if βxy = 0 and
βxx = βyy (i.e., if the dispersion terms do not effectively show
the anisotropy), the condition (103) is automatically satisfied.
Condition (104) is a third-order polynomial equation for tan θ ;
hence it has either 1 or 3 real solutions. This means that, in the
considered conditions, either one or three eigenpolarizations of
the nonlinear propagation problem exist. For such a solution,
U satisfies the KdV equation

2nc∂ζ U − β

2
∂3
τ U + �∂τU

2 = 0, (105)

with β = βxx = βyy and

� = �xxx cos ϕ + �xyy sin ϕ tan ϕ + 2�xxy sin ϕ

= �yxx cos ϕ cotan ϕ + �yyy sin ϕ + 2�yxy cos ϕ.

(106)

B. Soliton formation from FCP input

Rather than specifying some particular material, we prefer
to discuss solution of the KdV equation (72) or (105) in the
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standard dimensionless form

fZ + 6f ∂T f + ∂3
T f = 0, (107)

which is obtained by means of he linear transform

Z = −β2ζ

4ncT 3
0

, T = τ

T0
, ϕ = −2�T 2

0

3β2
u2, (108)

in which T0 is some reference time. The well-known soliton
of the KdV equation (107) is

f = 2p2sech2(pT − 4p3Z), (109)

where p is an arbitrary parameter. It was first derived in
1872 [59]. The KdV equation can be solved by means of the
inverse scattering transform (IST) method [60], which shows
that any input evolves into a finite set of solitons, plus some
dispersive wave, called ‘radiation’ in the terminology of the
mathematical theory of solitons. We have solved numerically
the KdV equation (107) by means of the modified Euler
exponential time differencing scheme [61], starting from an
initial data in the form of a FCP, as

f = A cos (ωT + ψ) sech2 (T/T0) . (110)

We take as a reference time T0 = 0.8 fs, so that a dimensionless
angular frequency ω = 1.5 corresponds to a wavelength very
close to 1 μm. In the most simple geometry, � coincides
with χ (2)

ααα , α being the polarization direction. We can take
as a typical value of � the value of χ (2)

yyy in beta barium
borate (BBO) [i.e., 4.4 pm/V (cf. [58], p. 50)]. Sellmeier
approximations of the dispersion relation for BBO are given
by industrials selling such crystals (we use the data given
by Red Optronics [62]). Straightforward calculations give
then the value of β2, we get β2 = −0.0111 and −0.0180 fs2

for the ordinary and extraordinary indices, respectively, at
λ = 1 μm. We retain the largest of these two values. It must
be noted that we do not claim that BBO is the best candidate
for the experimental realization of the present theory. Other
crystals commonly used for second-harmonic generation, such
as potassium dihydrogen phosphate (KDP) or silver gallium
sulfide (AgGaS2) may be considered in the same way; the

key questions of the applicability of the theory are that the
transparency domain of the medium is sufficient, and that it
actually supports the huge instantaneous intensity of the FCP.
Many secondary questions arise, such as the actual description
of the dispersion, since the present model does not take into
account the resonances at large wavelengths, due to the a long-
wave approximation. Only real experiments can answer the
question of to what extent the theory should be corrected on this
point. We use the values pertaining to BBO as typical orders
of magnitude. We consider normalized amplitudes as 3.5 and
5, which corresponds according to Eq. (108) to maximum
electric field Em = 3.4 and 4.8 × 1010 V/m, respectively.
Using Im = cε0E

2
m as the expression of the instantaneous

intensity, it corresponds to Im = 3 and 6 × 1014 W/cm2,
which belongs to the range of huge values of intensities that
can be reached in the few-cycle regime.

As expected from the IST theory, the input FCP evolves
into a few solitons, plus a dispersive wave. The number of
solitons depend on the amplitude and duration of the initial
pulse and on the carrier envelope phase. Two typical examples
are shown in Figs. 1 and 2. Although an appreciable part of
the energy is dispersed, high-amplitude solitons are formed.
The influence of the carrier-envelope phase ψ is illustrated on
Fig. 1: whereas for a cosine-type pulse (i.e., ψ = 0) or for ψ

close to zero the typical outcome is formed by a single soliton
or, more generally, one soliton much larger than all others, two
identical solitons are formed for ψ = π . It it seen in Fig. 1(b)
that the two solitons have the same velocity. For the most
narrow and energetic pulses of the cosine type, as we said, a
single soliton is formed, or several solitons among which one
strongly dominates. If the FCP duration is a bit larger and if its
amplitude is not too large, the difference between the leading
soliton and the smaller ones may be less important, as seen in
Fig. 2, which shows the formation of three solitons: a larger
one and two smaller ones.

A quite important part of the energy is converted into
dispersive waves. In the (T ,Z) frame, the solitons propagate
forward and the dispersive waves backward. Recall that the
variable T is the retarded time (i.e., the figures are plotted in

T

Z

-20

0

20

40

60

80

100

(a) (b)

0 1 2 3 4 5 6

FIG. 1. (Color online) Formation of two solitons from a FCP input. Panel (a) shows the wave profile. Dashed line is input (Z = 0),
solid line is output ( Z = 6). Panel (b) shows the evolution. The dimensionless parameters are amplitude A = 5, angular frequency ω = 1.5,
carrier-envelope phase ψ = π , duration T0 = 3.2 (dimensionless).
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FIG. 2. (Color online) Formation of three solitons from a FCP input. Panel (a) shows the wave profile. Dashed line is input (Z = 0), solid
line is output ( Z = 3). Panel (b) shows the evolution. The dimensionless parameters are amplitude A = 3.5, angular frequency ω = 1.5,
carrier-envelope phase ψ = 0, duration T0 = 5.33 (dimensionless).

the frame moving at the velocity V ). It is defined as V = c/n,
where the index n is given by Eq. (43). Exactly, V is both
the linear group and phase velocities at the limit of large
wavelengths. If β2 is negative, Z and ζ are in same direction:
the solitons propagate slower than V , the dispersive waves
faster. If, on the contrary, β2 is positive, Z and ζ are in opposite
directions and the results are inverted: the solitons propagate
faster than V . However, backward-propagating waves can also
be formed, which cannot accounted for by the KdV model,
which is unidirectional. Especially, when a FCP coming from
vacuum is launched into a χ (2) medium, reflection occurs at
the interface, and nonlinear effects may increase the reflected
part [47,49]. Nonlinear backward diffusion distributed in the
medium may also arise, but it remains very small with respect
to refection at the interface. Although in some situations
forward and backward nonlinear diffusions may compensate,
leading to the formation of a lossless traveling wave [35],
backward diffusion may be understood as one of the absorption
and diffusion mechanisms responsible for the damping of the
wave, which was neglected in the present approach.

VI. CONCLUSIONS

In conclusion, in this work we have studied in detail
the propagation of ultrashort pulses in noncentrosymmetric
nonlinear optical media described by a general Hamiltonian
of multilevel atoms. Assuming that all transition frequencies
of the medium are well above the typical wave frequency,
we used a long-wave approximation to derive a governing

model describing ultrashort soliton propagation in a quadratic
nonlinear medium.

The result depends on the difference between the two
indices of the medium in the considered propagation direction.
If this difference is large enough, so that the two eigen-
polarizations cannot interact, a generic Korteweg–de Vries
model is derived. It describes the decay of a FCP input into
one or a few unipolar half-cycle solitons. If the difference
between the two indices can be neglected, a generic coupled
system of Korteweg–de Vries equations describing ultrashort
soliton evolution in quadratic materials was derived by using
a rigorous application of the multiscale analysis.

However, in a real nonlinear optical medium, a broad
transparency range is required, and hence all atomic transitions
must be far enough from the pulse central frequency. However,
in such materials not all transitions belong to the ultraviolet
domain. The contribution of the infrared transitions, yielding
a sine-Gordon model in the case of two-level atoms and cubic
nonlinearity, which are not taken into account in the present
work, should be considered in a further study by means
of a short-wave approximation applied to the same general
quantum mechanical model.
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