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We propose and demonstrate an effective mode-filtering technique of non-Gaussian states generated by photon
subtraction. More robust non-Gaussian states have been obtained by removing noisy low frequencies from
the original mode spectrum. We show that non-Gaussian states preserve their nonclassicality after quantum
teleportation to a higher degree when they have been mode filtered. This is indicated by a stronger negativity,
−0.033 ± 0.005, of the Wigner function at the origin, compared to −0.018 ± 0.007 for states that have not been
mode filtered. This technique can be straightforwardly applied to various kinds of photon-subtraction protocols
and can be a key ingredient in a variety of applications of non-Gaussian states, especially teleportation-based
protocols toward universal quantum information processing.
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I. INTRODUCTION

In the field of optical quantum information processing
(QIP), non-Gaussian states of light have recently attracted
great interest as an essential requirement for universal
continuous-variable (CV) QIP. This universality is proven to
be unattainable with only Gaussian states and operations [1].
In order to generate a variety of nonclassical non-Gaussian
states, the photon-subtraction technique [2–6] has been playing
a central role. This technique enables the proposal and
experimental demonstration of more advanced and powerful
CV protocols with non-Gaussian states [7–10].

In practice, such CV protocols are less efficient in the
lower frequencies around the laser carrier frequency due to
various sources of noises, as well as higher frequencies due
to the finite bandwidths associated with squeezing and the
electronics used [Fig. 1(a)]. To achieve the robust implemen-
tation of these protocols, fragile non-Gaussian states should
be encoded properly within the highly efficient frequencies.
However, such encoding has been a challenging task in photon
subtraction, where the frequency mode of non-Gaussian states
is determined by a mode of squeezed light associated with
probabilistic photon detection [11]. Sideband-mode encoding
[Fig. 1(a)], often used for Gaussian states, can also be achieved
here with nondegenerate squeezed modes, but it requires
high-speed electronics to observe the generated states [12].
In contrast, center-band encoding with a degenerate mode
[Fig. 1(b)] is subject to low-frequency noises, which need
to be removed with electrical high-pass filters (HPFs) during
homodyne detection. These HPFs also filter out the low-
frequency information of non-Gaussian states, thereby causing
an inevitable frequency mode mismatch which degrades the
fragile non-Gaussian states.

Here we propose a mode-filtering strategy to achieve a
more efficient encoding of non-Gaussian states via photon
subtraction. Our strategy is to filter out optically the prob-
lematic low frequencies of the degenerate squeezed mode
[Fig. 1(c)], instead of using its full spectrum. By introducing
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an optical HPF with any desired cutoff in the photon-detection
channel, we can tailor the frequency mode of the non-Gaussian
states without any purity degradation or manipulation of the
state itself. It enables us to achieve almost perfect mode
matching in homodyne detection, thereby making maximum
use of the fragile non-Gaussian states. In this paper, we
develop a theoretical time-domain description of the mode-
filtering process and then experimentally demonstrate the
successful mode reshaping as predicted from the theory. The
simple technique demonstrated here can be straightforwardly
applied to various photon-subtraction protocols, including
state generation [13,14] and entanglement distillation [10].

Our mode-filtering strategy is especially effective for a
wide range of CV protocols based on quantum teleportation
[15,16], where the low frequencies are often contaminated by
noisy measurements and feed-forward operations [17–19]. We
have used the quantum teleportation apparatus in Ref. [9] as
a testing device to show the advantages of mode filtering.
With this device, we teleported nonclassical non-Gaussian
states generated by mode filtering and then measured the
degree of nonclassicality preserved in the state. The Wigner
function of the teleported state has a minimum negativ-
ity of W (0,0) = −0.033 ± 0.005, compared to W (0,0) =
−0.018 ± 0.007 without mode filtering, where the negativity
here is an indication of the state’s nonclassicality (h̄ = 1).
These results show a clear filtering-related enhancement
of the quality, thereby demonstrating that our scheme is
more effective for the robust implementation of various
teleportation-based protocols with non-Gaussian states.

This paper is organized as follows. In Sec. II, we first review
the basics of photon subtraction and then introduce the idea
and theory of mode filtering. In Sec. III, we give details of
our experimental setup. In Sec. IV, the experimental results
of photon subtraction with mode filtering are presented and
compared with the theory. In Sec. V, we show the results
of quantum teleportation and demonstrate the advantages of
mode filtering. Finally Sec. VI concludes this paper.

II. SCHEME OF MODE FILTERING

Photon subtraction is a method to conditionally gener-
ate non-Gaussian states by the assistance of single-photon
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FIG. 1. (Color online) Frequency modes where quantum states are encoded. (a) Sideband modes. (b) Degenerate mode. (c) Filtered
degenerate mode. ω0, the carrier frequency; γ , the bandwidth of the degenerate mode; and κ , the cutoff of the optical high-pass filter.

detection [2]. As illustrated in Fig. 2, a small fraction R of
a squeezed vacuum generated by a weakly pumped optical
parametric oscillator (OPO) is reflected via a tapping beam
splitter (TBS) toward an avalanche photodiode (APD). This
beam is used as a trigger beam, whereas the transmitted beam
is called the signal beam. Conditioned on an APD click,
one photon is subtracted from its corresponding quantum
mode on the signal beam, and the resulting photon-subtracted
state shows nonclassical features in its non-Gaussian Wigner
function with a negative dip.

Since this scheme relies on the quantum correlation
between the signal and trigger modes, as well as the projective
measurement of the trigger mode, the frequency mode of the
non-Gaussian states is strongly correlated with the frequency
mode of the photons detected by the APD. The degenerate
OPO produces correlated photon pairs within a Lorentzian
spectrum with bandwidth γ in the weak pumping limit. Any
photon within this spectrum can be reflected by the TBS,
trigger the APD click, and thereby herald a conditional photon
in the signal mode. Thus, the correlation over the full spectrum
is used to induce non-Gaussian states. As is proven in Ref. [11],
the non-Gaussian states have the same frequency spectrum
as that of the OPO, and their temporal mode function is
given by the Fourier transform of the Lorentzian spectrum
as f0(t) = √

γ e−γ |t | [normalized as
∫ |f0(t)|2 dt = 1]. In the

time domain, this mode is a short wave packet of light whose
information can be extracted by multiplying f0(t) with the
homodyne measurement signal.
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FIG. 2. (Color online) A simple schematic of photon subtraction
with quantum mode filtering. APD, avalanche photodiode; CW,
continuous wave; HPF, high-pass filter; OPO, optical parametric
oscillator; and TBS, tapping beam splitter.

In this scheme, the frequency mode of the non-Gaussian
state is totally determined by the Lorentzian spectrum of
the OPO. From an engineering point of view, however, this
frequency mode can be contaminated by low-frequency laser
noise and also electric noise around the carrier frequency ω0

(more details of the noise contamination are mentioned in
Sec. III). These types of noise are critical and strongly
deteriorate the fragile nonclassicality of the non-Gaussian
states. In order to avoid the noise contamination, we introduce
a reflecting cavity before the APD. The cavity has bandwidth
κ which transmits photons in the low frequencies and reflects
the rest of the components toward the APD. The input-output
relation of this cavity can be given in the frequency domain
by [20]

âr(ω0 + ω) = iω

κ − iω
âin(ω0 + ω) + κ

κ − iω
âv(ω0 + ω),

(1)

where âin and âr are annihilation operators of the input and
reflected modes and âv is an auxiliary vacuum mode which
does not affect the APD detection. The response function
iω/(κ − iω) in Eq. (1) shows that the reflecting cavity acts like
an optical HPF, which removes low-frequency photons before
photon detection. As a result, quantum correlations in the low
frequencies are unaffected by the projective measurement, and
thus the non-Gaussian state is generated within a mode without
low-frequency components.

Note that the optical HPF is introduced not in the signal
mode to directly remove the low-frequency components of the
state, but in the trigger mode to remove the low-frequency
quantum entanglement between the signal and trigger modes.
The advantage of this scheme is to virtually apply a filter
on the signal mode through the signal-trigger entanglement
and the direct filtering of the trigger mode. The generation
rate of the non-Gaussian state is reduced as a result, but it
does not affect the heralded quantum state itself: As we show
below, the ideal heralded state is still the same non-Gaussian
state. Therefore, this scheme makes it possible to reshape
the frequency mode of the generated state without any purity
degradation or manipulation of the state within the mode. Since
APDs have inevitable dark counts in practice, the reduced
generation rate means reduced signal-to-noise ratio of the
photon-detection events and hence the degradation of the
heralded states. However, this effect is negligible when the
cutoff κ is chosen properly as in our case (see Sec. III).

The mode-filtering scheme can be modeled in time-
domain descriptions with an annihilation operator â(t) =
(2π )−1/2

∫
dωâ(ω0 + ω)e−iωt . To begin with, a squeezed state
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generated from the OPO can be written in the time domain as

exp(P̂C − P̂
†
C) |0〉 =

∞∑
n=0

1

n!
(P̂C − P̂

†
C)n |0〉 , (2)

where

P̂
†
C = 1√

2

∫
dtdt ′C(t,t ′)â†(t)â†(t ′) (3)

is the photon-pair creation operator [21]. C(t,t ′) denotes
the two-time correlation function, which satisfies C(t,t ′) =
C(t ′,t) = C(t − t ′,0) and therefore depends only on the time
difference |t − t ′| because the output field of the OPO is
stationary. C(t,t ′) can be shown to be O(ε), where ε represents
the pumping power of the OPO [21,22].

We start with the simplest case of a weak pumping limit
of ε → 0. The higher order terms of n � 2 in Eq. (2) can
be neglected to order O(ε). The squeezed state thus can be
written approximately as |0〉 + (P̂C − P̂

†
C) |0〉 = (1 − P̂

†
C) |0〉,

and P̂
†
C |0〉 is the only term relevant to the photon detection.

By the beam-splitter transformation of the TBS â†(t) →√
1 − Râ

†
s (t) + √

Râ
†
t (t), P̂

†
C |0〉 transforms into

1√
2

∫
dtdt ′C(t,t ′)[(1 − R)â†

s (t)â†
s (t ′)

+ 2
√

R(1 − R)â†
s (t)â†

t (t ′) + Râ
†
t (t)â†

t (t ′)] |0〉s |0〉t , (4)

where the subscripts “s” and “t” denote the signal and trigger
modes, respectively. Assuming R � 1, we can neglect the
case when more than two photons are reflected toward photon
detection. Thus, the only term in Eq. (4) relevant to the photon
detection has the form∫

dtdt ′C(t,t ′)â†
s (t)â†

t (t ′) |0〉s |0〉t . (5)

Assuming an infinite bandwidth of the APD, we can model
an APD detection at a time t = tc as a projection onto
〈0|t ât(tc). This projective measurement of Eq. (5) gives∫

dtC(t − tc,0)â†
s (t) |0〉s. The operator

∫
dtC(t − tc,0)â†

s (t)
can be regarded as a creation operator of a single photon,
whose temporal mode is defined by a mode function f (t) ∝
C(t − tc,0). In a sense, the beam-splitter transformation and
the projective measurement subtract one photon from P̂

†
C |0〉

by replacing the P̂
†
C operator with the corresponding single-

photon creation operator. Thus, we can use f (t) to observe the
induced single-photon state in the weak pumping regime of
the conventional photon subtraction.

When the optical HPF of Eq. (1) is applied to the
trigger mode before photon detection, the effect can be
described in the Schrödinger picture as the replacement of
â
†
t (ω0 + ω) → g(ω)â†

t (ω0 + ω), where g(ω) = iω/(κ − iω).
In Eq. (5), this effect appears as a convolution of C(t,t ′) with
g(t) = (2π )−1/2

∫
dωg(ω)e−iωt as∫

dtdt ′
(∫

dτC(t,t ′ − τ )g(τ )

)
â†

s (t)â†
t (t ′) |0〉s |0〉t . (6)

Here the projection onto 〈0|t ât(tc) results in∫
dt

(∫
dτC(t − tc − τ,0)g(−τ )

)
â†

s (t) |0〉s . (7)

In this case, the mode function can be defined as fHPF(t) ∝∫
dτC(t − tc − τ,0)g(−τ ) ∝ ∫

dτf (t − τ )g(−τ ). Thus, the
effect of the optical HPF can be included as a convolution
of g(−t) with the original mode function f (t).

A similar analysis can be applied to the higher order terms
(n � 2) in Eq. (2). First, a simple inductive proof shows the
following statement (A): “For any order n, (P̂C − P̂

†
C)n |0〉

can be decomposed into the terms written only with n or
less P̂ † operators with various correlation functions, including
the vacuum term |0〉.” This statement (A) holds for n = 0
explicitly. Suppose that the statement (A) holds for n = m, and
therefore (P̂C − P̂

†
C)m |0〉 can be decomposed into the sum of

the terms in the form |0〉 or P̂
†
C1

P̂
†
C2

. . . P̂
†
Ck

|0〉 (k � m), where
Ci(t,t ′) (i = 1,2, . . . ,k) is the correlation function of each
operator. In this case, all of the terms resulting from the (m +
1)-th order term (P̂C − P̂

†
C)m+1 |0〉 can be obtained by applying

(P̂C − P̂
†
C) to each mth order term as (P̂C − P̂

†
C) |0〉 = −P̂

†
C |0〉

or (P̂C − P̂
†
C)P̂ †

C1
P̂

†
C2

. . . P̂
†
Ck

|0〉. The latter term can be decom-
posed with the commutation relation [â(t),â†(t ′)] = δ(t − t ′)
and [â(t),â(t ′)] = [â†(t),â†(t ′)] = 0 as

(P̂C − P̂
†
C)P̂ †

C1
P̂

†
C2

. . . P̂
†
Ck

|0〉

=
(

k∑
i

ci P̂
†
C1

. . . P̂
†
Ci−1

P̂
†
Ci+1

. . . P̂
†
Ck

+ 4
k∑

i<j

P̂
†
Ci,j

P̂
†
C1

. . . P̂
†
Ci−1

P̂
†
Ci+1

. . . P̂
†
Cj−1

P̂
†
Cj+1

. . . P̂
†
Ck

− P̂
†
CP̂

†
C1

. . . P̂
†
Ck

)
|0〉 , (8)

where ci = ∫
dtdt ′C∗(t,t ′)Ci(t,t ′) and Ci,j (t,t ′) =∫

dτdτ ′C∗(τ,τ ′)Ci(t,τ )Cj (τ ′,t ′). Here, the second term in the
right-hand side of Eq. (8) vanishes when k = 1. These decom-
positions show that all of the (m + 1)-th order terms can also be
decomposed into the form P̂

†
C ′

1
P̂

†
C ′

2
. . . P̂

†
C ′

k
|0〉 (k � m + 1), and

thus the statement (A) holds for n = m + 1 as well. The above
discussion proves that the statement (A) holds for any order n.

Then, in a similar way, the transformation of the TBS and
the projection onto 〈0|t ât(tc) subtract one photon from one of
the correlated photon pairs in each term P̂

†
C1

P̂
†
C2

. . . P̂
†
Ck

|0〉. As
a result, various photon-subtracted terms are produced by the
replacement of one of these P̂ † operators with its correspond-
ing single-photon creation operator. The replacement of P̂

†
Ci

(i = 1,2, . . . ,k) gives(∫
dtCi(t − tc,0)â†

s (t)

)

×P̂
†
C1

P̂
†
C2

. . . P̂
†
Ci−1

P̂
†
Ci+1

. . . P̂
†
Ck−1

P̂
†
Ck

|0〉s . (9)

Here, the projective measurement induces a single photon
defined by the mode function fi(t) ∝ Ci(t − tc,0). By select-
ing the fi(t) mode, we can observe the pure single photon
induced by the APD detection, as well as some fraction
of the photon pairs generated in the OPO. When applying
the optical HPF, we need to replace Ci(t − tc,0) in Eq. (9)
with

∫
dτCi(t − tc − τ,0)g(−τ ). The effect of mode filtering

here can also be included as a convolution of fi(t) with
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FIG. 3. The dependence of the optically high-pass-filtered mode
function fHPF(t) on cutoff κ . We set γ = 2π × 6.2 MHz.

g(−t), as shown previously. Note that different terms resulting
from the projection can have single photons with different
mode functions [when i �= j , fi(t) �= fj (t) in general], thereby
making it impossible to extract all the induced single photons
purely at the same time. However, the mode-filtering effect on
all the mode functions {f1(t),f2(t), . . . ,fk(t)} can be written
in the same way as the convolution with g(−t). Therefore,
when we introduce the optical HPF to the photon-subtraction
scheme, we only need to replace the originally used mode
function f (t) with

∫
dτf (t − τ )g(−τ ), regardless of the

pumping power ε.
Our experiment is performed in the weak pumping regime,

and thus we can assume that the original mode function
is f0(t) = √

γ e−γ |t |. g(t) can be derived from the Fourier
transform of g(ω) = iω/(κ − iω) as

g(t) =
√

2π ×
{

[κe−κt − δ(t)] (t � 0)

−δ(t) (t < 0)
. (10)

Thus, by convoluting f0(t) with g(−t) and then setting the
normalization constant properly, we obtain the optically high-
pass-filtered mode function as

fHPF(t) = √
γ ×

{
e−γ t (t � 0)(

γ+κ

γ−κ
eγ t − 2κ

γ−κ
eκt

)
(t < 0)

. (11)

The temporal shapes of Eq. (11) are shown in Fig. 3. Contrary
to the original non-negative mode function, this function has
a negative dip due to its lack of low-frequency components.

III. EXPERIMENTAL SETUP

Our experimental setup consists of three parts: The first
part is for photon subtraction, the second part is for quantum
teleportation, and the third part is for evaluating the quality of
the teleported states (Fig. 4). Apart from the optical HPF part,
the setup is mostly identical to that in Ref. [9], where more
details are provided.

The output of a single-mode continuous-wave Ti:sapphire
laser (SolsTiS-SRX, M squared lasers) around 860 nm is used
as the light source, a part of which is frequency doubled for
pumping three OPOs. First, in the photon-subtraction part, a
weakly squeezed vacuum is generated from OPO1 [half width
at half maximum (HWHM): 6.2 MHz] with a 15-mW pump.

BobAlice

OPO3

OPO1

~12mOPO2

EOM

Evaluation

Filtering

HBS

LO-x

LO-p

LOPBS
QWP

Optical

APD

Photon-subtraction

3%R

Quantum teleportation

99.5%Rcavities

HBS

HPF

EOM

Displacement
beams

FIG. 4. (Color online) Experimental setup. APD, avalanche pho-
todiode; EOM, electro-optic modulator; HBS, half beam splitter; LO,
local oscillator; OPO, optical parametric oscillator; PBS, polarizing
beam splitter; and QWP, quarter wave plate.

The output of OPO1 is directed into a TBS, which reflects 3%
of the beam toward an APD as the trigger beam, while the other
beam is sent to the teleportation setup as the signal beam. In
the trigger channel, photons in all of the modes except for the
degenerate squeezed mode are blocked with two Fabry-Perot
filtering cavities with much wider HWHM (55 and 18 MHz)
than that of OPO1. Then the trigger beam is injected into an
optical HPF, which is a Fabry-Perot cavity with a round-trip
length of 280 mm (HWHM: 500 kHz, finesse: 1080). Here the
theoretical cutoff κ is set to 2π × 0.5 MHz. By increasing
κ , we can reduce the low-frequency noise contamination.
However, this decreases the event-to-dark-count ratio on the
APD, which degrades the purity of the generated states.
Therefore the choice of κ is a compromise between these two
effects. The reflection of the optical HPF is mode reshaped
and sent to the APD, while the transmission is monitored on a
photodiode for locking the cavity. Ideally, the cavity perfectly
blocks the ω0 component when locked on resonance, but in
our setup 14% of the reflected component remains due to
a slight mismatch between the transmittances of two cavity
mirrors (impedance mismatch). This effect can be taken into
account by a more detailed model of the mode function, which
is described in the Appendix. Conditioned on an APD click, a
photon-subtracted squeezed vacuum is generated in the signal
beam and used as an input state for the subsequent quantum
teleportation circuit.

For realizing quantum teleportation of this state, first Alice
and Bob need to share a pair of broadband Einstein-Podolsky-
Rosen (EPR) correlated beams as a resource. This pair can
be obtained by mixing two strongly squeezed vacua from
OPO2 and OPO3 (HWHM: 12 MHz) on a half beam splitter
(HBS). Alice combines the input state with one of the EPR
pairs on a half beam splitter and then measures the x and p

quadratures of the resulting two outputs. The measurement
results are sent to Bob as gain-tuned electric signals, which
Bob uses to modulate displacement beams (shown in Fig. 4)
and to correct the other beam of the EPR pair. As a result, the
input state is reconstructed. In order to faithfully teleport the
quantum state within the original wave-packet quantum mode,
all these operations are performed over a frequency spectrum
broader than this wave-packet spectrum.
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In order to evaluate the quality of the teleported quantum
states, the output beam is measured by a balanced homodyne
detector. The local oscillator phase in this detector is scanned
for the full angular resolved tomography of the state, and
100 000 quadrature data are recorded over [0,2π ]. We use the
inverse Radon transform based on polynomial series expansion
[23] to reconstruct the Wigner functions W (x,p).

In this teleportation circuit, and in other teleportation-based
circuits as well, low frequencies can be contaminated by
mainly two sources of noise. The first source is the laser noise
around the carrier frequency. The non-Gaussian states can be
deteriorated by this noise derived from the local oscillator
beams in imperfectly balanced homodyne detections for Alice
and the final evaluation, as well as the displacement beams
directly mixed by Bob. The second source is the low-frequency
electric noise, which contaminates Alice’s homodyne signal
for the displacement operation and the final homodyne signal
for the evaluation. These types of noise often need to be
removed with electrical HPFs. In our setup, a HPF with a cutoff
frequency of 101 kHz is required in the final homodyne signal.
Non-Gaussian states generated without mode filtering have
low-frequency components, which are inevitably removed by
this HPF. The resulting frequency mode mismatch in the
homodyne detection directly deteriorates the non-Gaussian
states, thereby limiting the quality of the teleportation. In
contrast, non-Gaussian states generated with mode filtering
do not have frequency components lower than 101 kHz, and
thus we can avoid the low-frequency noise contamination as
well as achieve almost perfect mode matching in the final
homodyne detection.

IV. NON-GAUSSIAN STATE GENERATION
WITH MODE FILTERING

First the states generated by photon subtraction are analyzed
to demonstrate the mode-filtering effect by the optical HPF.
We record 200 000 frames of quadrature data both in the
conventional and mode-filtering photon subtraction. When

using the conventional method, we unlock the optical HPF and
monitor the signal of the transmitted beam to keep it totally
off-resonant during the measurement time.

Experimental Wigner functions W (x,p) in these two
methods are shown in Figs. 5(a) and 5(b). Here we applied
the mode function including the effect of the impedance
mismatch of the optical HPF [Eq. (A2) in the Appendix].
Each Wigner function is reconstructed by optimizing the
parameters γ and κ of the mode function to extract the
minimum W (0,0) (κ is set to 0 for the conventional method).
The optimal parameters of γ = 2π × 6.5 MHz and κ =
2π × 0.48 MHz match well the experimentally estimated
values of 2π × 6.2 MHz (OPO1 bandwidth) and 2π ×
0.50 MHz (optical HPF bandwidth). Both Wigner func-
tions have minimum negativities of W (0,0) = −0.171 ±
0.003 (conventional) and W (0,0) = −0.179 ± 0.003 (mode
filtering) without any corrections, thereby excluding any
description as a classical probability density. The experimental
Wigner functions sometimes have minimum values not exactly
at the origin but at a slightly shifted point around the origin,
possibly due to the interference of the trigger photons with
the other unwanted fake trigger photons. Here, we adopt the
minimum negativity around the origin as W (0,0). This non-
classical negative region is fragile and easily disappears with
every percent of experimental loss and other imperfections.
Thus, the quality of these non-Gaussian states can be evaluated
by their negativity.

In Fig. 5(c), we plot the dependence of the minimum
value W (0,0) on the cutoff κ of applied mode functions
(γ is fixed at γ = 2π × 6.5 MHz). Without the optical HPF,
the theoretical mode function f0(t) = √

γ e−γ |t | corresponds
to the case of κ = 0 in Eq. (A2). Therefore W (0,0) increases
with increasing κ as a result of the mode mismatch between
the photon-subtracted temporal mode and the applied mode
function. With the optical HPF, the plot shows the different κ

dependence which has an optimal κ .
These experimental data are in good agreement with the

theoretical curves calculated from a simple and realistic model

(a) (b) (c)

-0.2

-0.15
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 0  0.5  1  1.5
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FIG. 5. Experimental results of photon subtraction with or without mode filtering. (a) Wigner function with the conventional method.
γ /2π = 6.5 MHz, κ/2π = 0 MHz, W (0,0) = −0.171 ± 0.003. (b) Wigner function with the mode-filtering method. γ /2π = 6.5 MHz,
κ/2π = 0.48 MHz, W (0,0) = −0.179 ± 0.003. (c) The dependence of W (0,0) on the cutoff κ of the applied mode function (γ /2π = 6.5 MHz).
Theoretical curves based on Eq. (12) are plotted as well.

053824-5



SHUNTARO TAKEDA et al. PHYSICAL REVIEW A 85, 053824 (2012)

[24], thereby showing the experimental success of the mode
filtering [Fig. 5(c)]. In the theoretical model, the generated state
is modeled by âŜ(r) |0〉, where â is the annihilation operator
describing photon subtraction and Ŝ(r) is the squeezing
operator with a squeezing parameter r . This state is degraded
by experimental losses and imperfections, and as a result the
value of the Wigner function at the origin can be expressed
as [24]

W (0,0) = 1 − 2η + 2ζη[1 + 2(1 − η) sinh2(r)]

π [1 + 4η(1 − η) sinh2(r)]3/2
, (12)

where η is the overall efficiency and ζ is given as a dark count
rate divided by a total count rate. The ideal limit of η = 1 and
ζ = 0 gives W (0,0) = −1/π regardless of r .

From our analysis the squeezing parameters were estimated
as r = 0.38 ± 0.02 (conventional) and r = 0.36 ± 0.02 (mode
filtering). The total count rates were 8200 ± 300 and 7200 ±
300 per second respectively, in which the dark count rate
of 150 ± 30 per second was included. Therefore, ζ = 0.02
for each case. The overall efficiency can be calculated as
η = η0(ηκ )2, where η0 is the efficiency before applying a
mode function, and ηκ = ∫

fopt(t)fκ (t)dt is a mode-matching
parameter between the optimal mode function fopt(t) and the
applied mode function fκ (t). Using the parameters above, we
calculated W (0,0) for each κ by fixing the unknown parameter
η0 for the most plausible value of 0.83.

η0 was also calculated directly from experimentally es-
timated values as η0 = ηOPOηpr(ηvis)2ηhom, where the OPO
escape efficiency ηOPO = 0.98, the propagation efficiency
ηpr = 0.95, the visibility ηvis = 0.98, and the homodyne
efficiency ηhom = 0.95 which includes the efficiency of the
photodiode and the electrical signal-to-noise ratio. All these
values gave η0 = 0.85, which is reasonably close to the directly
estimated value of 0.83.

It appears there is some discrepancy between experiment
and theory at κ = 0 in Fig. 5(c), which we partly ascribe
to some low-frequency noise. It implies that the negativity
in the conventional method is partly limited by this noise,

whereas in the mode-filtering method the mode does not
have low-frequency components and thus can avoid this
limitation.

These data and analyses show the successful mode filtering
as predicted from the theory. Therefore, we succeeded in
tailoring the quantum mode of non-Gaussian states, while
preserving or even enhancing the nonclassicality of the state
within the mode.

V. QUANTUM TELEPORTATION WITH MODE
FILTERING

The next step is to demonstrate the advantage of our mode-
filtering method by measuring the degree of nonclassicality
preserved in the state after teleportation. For this purpose a
tomography data set of the teleported states with and without
the mode filtering (100 000 frames each) is measured four
times in a row. We reconstructed Wigner functions from each
data set with optimized parameters of mode functions. The
minimum negativities W (0,0) of all data sets are shown in
Fig. 6(a), and a selection of the teleported Wigner functions
are shown in Figs. 6(b) and 6(c).

All of the Wigner functions exhibit negativities around
the origin, showing the successful teleportation of the fragile
nonclassical feature. Negative values are estimated from four
sets of reconstructed Winger functions as W (0,0) = −0.018 ±
0.007 (conventional) and W (0,0) = −0.033 ± 0.005 (mode
filtering). The Wigner functions in Figs. 6(b) and 6(c) exhibit a
clear difference in the depth at the center dip. The mode-filtered
states explicitly preserve stronger negativities, demonstrating
a clear filtering-related enhancement of the states’ robustness
in the teleportation process. Due to the impedance mismatch
of the optical HPF, our mode-filtered states still have some
low-frequency components and are therefore partly affected
by the noise contamination. If perfect impedance matching is
obtained, the enhancement can be even greater.

In summary, we have experimentally demonstrated that
our efficient encoding strategy with mode filtering is highly
effective in the current teleportation apparatus, where low

-0.04

-0.03

-0.02

-0.01

 0

 1  2  3  4

Data set number

conventional
mode filtering

(a) (b) (c)

FIG. 6. Experimental results of quantum teleportation with or without mode filtering. (a) W (0,0) of four data sets. Averaged values
are plotted with dashed (mode filtering) and dot-dashed (conventional) lines. (b) Wigner function with the conventional method. W (0,0) =
−0.017 ± 0.005. (c) Wigner function with the mode-filtering method. W (0,0) = −0.033 ± 0.005. Panels (b) and (c) correspond to data set 2 of
panel (a).
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frequencies are contaminated by the laser noise and electric
noise in three homodyne measurements and two displacement
operations. This filtering-related enhancement can also be seen
in a wide range of CV protocols, especially teleportation-based
protocols with the same kind of inevitable noise contamination
in practice.

VI. CONCLUSION

In conclusion, we have developed and demonstrated a
mode-filtering technique of non-Gaussian states generated
by photon subtraction. By introducing a reflecting cavity
in the trigger channel, we removed the problematic noisy
low-frequency components of the non-Gaussian states. The
mode-reshaped states are analyzed with the mode function
derived from a theoretical model, and the agreement of
experiment and theory shows the successful mode filtering
without any degradation of the nonclassical states within
the mode. After the teleportation, the mode-filtered states
show stronger nonclassicality than the states without mode
filtering, thereby showing that our technique is effective to
achieve robust implementation of CV protocols, especially
teleportation-based protocols utilizing non-Gaussian states.
This technique can be straightforwardly applied to various
types of photon-subtraction protocols, and thus it should
be an important ingredient in a variety of applications of
non-Gaussian states toward universal CV QIP.
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APPENDIX: THE EFFECT OF IMPEDANCE MISMATCH

In general, the reflected mode of the optical HPF can be
written in the frequency domain as [20]

âr(ω0 + ω) = (κ1 − κ2)/2 + iω

(κ1 + κ2)/2 − iω
âin(ω0 + ω)

+
√

κ1κ2

(κ1 + κ2)/2 − iω
âv(ω0 + ω), (A1)

where κ1 and κ2 denote the decay rates of two cavity mirrors.
If κ1 = κ2 = κ , the impedance match is perfect and Eq. (A1)
gives Eq. (1). Otherwise we define κ ≡ (κ1 + κ2)/2 and κ ′ ≡
(κ1 − κ2)/2, and then the response function of the cavity is
given by g̃(ω) = (κ ′ + iω)/(κ − iω). Since g̃(0) �= 0, some
part of the ω0 component is reflected toward the APD. By
convoluting g̃(−t) with the original mode function f0(t) =√

γ e−γ |t |, we obtain

f̃HPF(t) = N ×
{

γ−κ ′
γ+κ

e−γ t (t � 0)(
γ+κ ′
γ−κ

eγ t − 2γ (κ+κ ′)
γ 2−κ2 eκt

)
(t < 0)

,

(A2)

where N is a normalization constant given by

N =
√

γ κ(γ + κ)2

γ 2κ + κ ′2(2γ + κ)
. (A3)

In this experiment, κ ′ is set to κ ′ = −0.37κ based on
experimental values.
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