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Goos-Hänchen and Imbert-Fedorov shifts of vortex beams at air–left-handed-material interfaces
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In this paper, we present a systematic study of beam shifts and angular momenta of paraxial vortex beams at
air–left-handed-material (LHM) interfaces. It is shown that, compared to their counterparts at air–right-handed-
material (RHM) interfaces, the spatial Goos-Hänchen (GH) and Imbert-Fedorov (IF) shifts remain the same,
while the angular GH and IF shifts are reversed at air-LHM interfaces. The spatial and angular shifts of paraxial
vortex beams have their respective origins in transverse angular momenta and transverse linear momenta. The
spatial GH and IF shifts remain unreversed as a result of both reversions of transverse angular momenta and
z-component linear momentum, while the angular GH and IF shifts are reversed because the z-component linear
momentum is reversed and the transverse linear momenta are unreversed at air-LHM interfaces. In addition, we
perform a quantitative analysis on spin-orbit angular momentum conversion and orbit-orbit angular momentum
conversion, which further helps us understand the essence of vortex beam shifts at air-LHM interfaces and their
fundamental distinctions from those at air-RHM interfaces.
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I. INTRODUCTION

The reflection and transmission of light at an air-medium
interface has been the topic of ongoing investigation and
contention. Initially, the amplitudes and directions of reflected
and transmitted light were determined by Fresnel formulas
and Snell’s law. Deviations were later found in total internal
reflection (TIR), however. They are the Goos-Hänchen (GH)
shift [1–4] and the Imbert-Fedorov (IF) shift [5–10], which are
parallel and perpendicular to the incident plane, respectively.
Artmann’s formula [2] for GH shift and Schilling’s formula [6]
for IF shift in TIR are widely accepted. The exact formulas
for IF shifts in partial reflection and transmission, however,
have divided many physicists [8,11–14]. Owing to Hosten’s
precise measurement, the debate was settled down [15].
Apart from the constant spatial GH and IF shifts, the light
beam also experiences angular shifts [16,17], which increase
proportionally with propagation distance z. In general, the
spatial GH and IF shifts stem from spin-orbit interaction at
the air-medium interface [18,19]. To satisfy the z-component
angular momentum conservation law, the reflected and trans-
mitted beams must possess extrinsic transverse orbital angular
momenta, which result in spatial GH and IF shifts. The
angular shift is essentially a diffractive correction on light
beams and is governed by the linear momentum conservation
law [18,20].

The emergence of left-handed materials (LHMs) has
brought about great opportunities and sophisticated pathways
to manipulate light [21–24]. As a branch of metamaterials,
LHMs usually refer to those materials whose permittivity and
permeability are negative simultaneously. LHMs have shown
very unique properties, such as negative refraction [23], inverse
Doppler effect [25,26], unreversed rotational Doppler effect
[27], and inverse Cherenkov radiation [28]. Apart from these
properties, beam shifts in LHMs have been demonstrated to
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be significantly different from right-handed materials (RHMs)
[29–33]. Theoretical papers [29,30] indicate that the light beam
experiences negative GH shift at the air-LHM interface and
this shift can be amplified in a layered structure. The IF shift
in partial reflection, however, remains unreversed owing to
unreversed spin angular momentum in LHMs [33]. As for the
vortex beam, it carries intrinsic orbital angular momentum.
Therefore, orbit-orbit conversion is inevitable in reflection
and transmission. Will the spatial GH and IF shifts remain
unreversed in the presence of orbital angular momentum?
What about the angular shifts? What does the physical picture
of spin-orbit and orbit-orbit conversions look like? Clarifying
these problems not only is conducive to understanding the
detailed behaviors of vortex beams at the air-LHM interface but
also sheds new light on the essence of the angular momentum
and linear momentum of the vortex beam.

In this paper, we endeavor to offer concrete expressions
of the spatial and angular shifts of the vortex beam at the
air-LHM interface and elaborate on their relations with the
linear and angular momenta. We also contrast these results
with the air-RHM interface. Although some of the results are
similar to our previous paper [33], we conduct considerably
rigorous analyses of the topics and give thorough explanations
of the results. The rest of the paper is arranged as follows.
In Sec. II, we adopt the angular spectrum method to derive
the electric fields of reflected and transmitted vortex beams
at the air-LHM interface. Except for some special cases, for
instance, in the vicinity of the critical angle of TIR and the
Brewster angle, the expressions of electric fields generally
hold true. The longitudinal fields are included as well, which
take on polarization-sensitive vortex structure [34], providing
a new perspective on the mechanism of IF shifts other than
spin-orbit conversion. In Sec. III, we adopt the operator method
to calculate the spatial and angular shifts, which is signif-
icantly different from the conventional calculation method
[14,33–35] and saves us considerable time and effort. The GH
and IF shifts in TIR and partial transmission are demonstrated
and contrasted with the air-RHM interface. The impact of
the incident angle on the beam shifts is analyzed as well. In
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Sec. IV, we calculate the linear and angular momenta of the
incident, reflected, and transmitted beams. The origins of the
spatial and angular shifts are clarified. A quantitative analysis
of the spin-orbit conversion and orbit-orbit conversion is also
given.

II. ELECTRIC FIELDS OF REFLECTED AND
TRANSMITTED VORTEX BEAMS

In this study, we adopt the angular spectrum method to
establish a model for the reflected and transmitted vortex
beams at the air-LHM interface. The main procedures of
this method are as follows. We first decompose the vortex
beams into plane waves with a finite spectral width. Then,
we analyze the incident angle and Fresnel coefficients of each
plane-wave component separately. In this case, the incident
angle and Fresnel coefficients of each plane wave slightly differ
from those of the main Fourier component (also known as the
central-wave component). Therefore, we expand the Fresnel
coefficients in a Taylor series around the central incident angle
and make an approximation to the first order. Afterward, we
transform the electric fields from momentum space to position
space.

The geometry of reflection and transmission is demon-
strated in Fig. 1. The incident vortex beam propagates along the
zi axis and impinges on the air-LHM interface. The incident
plane of the main Fourier component is xoz. The reflected wave
and transmitted wave of the main Fourier component travel
along the zr axis and zt axis, respectively. The incident angle,
reflection angle, and transmission angle of the main Fourier
component are θi , θr , and θt , respectively. The relations among
the coordinates o-xyz, oi-xiyizi , or -xryrzr , and ot -xtyt zt are
determined by Snell’s law:

⎡
⎢⎣
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ŷτ
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FIG. 1. (Color online) Geometry of reflection and transmission.
The incident plane of the main Fourier component is xoz [marked
with green (light gray) lines]. For an arbitrary plane wave, the incident
plane is XOZ [marked with blue (dark gray) lines].

where τ = i,r , or t , [x̂ ŷ ẑ] and [x̂τ ŷτ ẑτ ] are the unit basis
vectors of the coordinates o-xyz and oτ -xτyτ zτ , respectively,
[ϑi ϑr ϑt ] = [θi π − θi − θt ], θi = θr , and sin θt = sin θi/|n|.
The constant n is the refractive index of the LHM. For
an arbitrary plane wave, we assume that the incident plane
is XOZ. The incident, reflected, and transmitted plane
waves travel along the Zi , Zr , and Zt axes, respectively.
The incident angle, reflection angle, and transmission an-
gle of an arbitrary Fourier component are θ ′

i , θ ′
r , and θ ′

t ,
respectively. The relations among coordinates O-XYZ, Oi-
XiYiZi , Or -XrYrZr , and Ot -XtYtZt are easily acquired by
revising [ϑi ϑr ϑt ] in Eq. (1) as [θ ′

i π − θ ′
i − θ ′

t ]. From
Fig. 1, we derive the incident angle of an arbitrary plane
wave, θ ′

i = arccos(−kxi
sin θi/k + kzi

cos θi/k), where k is
the wave number in vacuum and kxi

, kyi
, and kzi

are the
components of the wave vector along the xi , yi , and zi axes,
respectively. We can expand the incident angle θ ′

i around
the central incident angle θi in series of kxi

/k and kyi
/k.

Therefore, θ ′
i ≈ θi + kxi

/k, θ ′
t ≈ θt + kxi

/(|n|ηk), where
η = cos θt/ cos θi .

After introducing the geometry of reflection and transmis-
sion, we start analyzing the angular spectrum of reflected and
transmitted beams by using the transformation matrix. Note
that the incident, reflected, and transmitted vortex beams are
presented in local coordinate systems oτ -xτyτ zτ . The angular
spectrum of incident beam is

Ẽi =
[
αx̂i + βŷi − 1

k

(
αkxi

+ βkyi

)
ẑi

]
ũi ,

ũi = Clw0

2

[
w0

( − ikxi
+ sgn[l]kyi

)/√
2
]|l|

(2)

× exp
[−w2

0

(
k2
xi

+ k2
yi

)/
4
]
,

where ũi is the angular spectrum of vortex beams, l is the
vortex charge, Cl = √

2/(π |l|!) is the normalization constant,
w0 is the width of the beam waist, kxi

and kyi
are wave-vector

components along the xi and yi axes, k is wave number in
vacuum, sgn[l] is the sign function, and α and β are Jones
vectors, where |α|2 + |β|2 = 1. There are two parameters
that characterize the polarization state of paraxial beams:
σ = 2Im [α∗β] ,χ = 2Re [α∗β]. σ is the degree of circular
polarization. A value of σ = +1 corresponds to the left
circularly polarized light beam, whereas a parameter of σ =
−1 corresponds to the right circularly polarized light beam.
σ = 0 represents linear polarization, and values between 0
and 1 should correspond to elliptically polarized states. χ is
the degree of linear polarization. It is generally recognized
that the circularly polarized vortex beam has intrinsic angular
momentum (l + σ )h̄ per photon [36,37].

We first write the electric field in coordinates Oi-XiYiZi .
This target will be achieved in three steps. First, we
write the electric field in o-xyz by using the matrix in
Eq. (1). Second, we transform the electric field from o-xyz

to O-XYZ. This step is accomplished by using the re-
lations X̂ = (ẑ × k̂i) × ẑ/|(ẑ × k̂i) × ẑ|, Ŷ = ẑ × k̂i/|ẑ × k̂i |,
Ẑ = ẑ, where k̂i = (kxi

x̂i + kyi
ŷi + kzi

ẑi)/k. Therefore, this
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transformation matrix is⎡
⎢⎣

X̂

Ŷ

Ẑ

⎤
⎥⎦ =

⎡
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kxi
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0
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⎤
⎥⎥⎦

⎡
⎢⎣
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ŷ

ẑ

⎤
⎥⎦ . (3)

Third, we transform the electric field from O-XYZ to Oi-
XiYiZi using a revised version of Eq. (1). The transformation
matrix of these three steps is written as⎡

⎢⎣
X̂i

Ŷi

Ẑi

⎤
⎥⎦ =

⎡
⎢⎢⎣

1
kyi

cot θi

k
− kxi

k

− kyi
cot θi

k
1 − kyi

k
kxi

k

kyi

k
1

⎤
⎥⎥⎦

⎡
⎢⎣

x̂i

ŷi

ẑi

⎤
⎥⎦ . (4)

In Eq. (4), we assume that terms equivalent to or higher than
(kxi

/k)2, (kyi
/k)2 are null.

After we get the expression for the electric field in Oi-
XiYiZi coordinates, the reflected and transmitted fields can
be easily obtained by multiplying the Fresnel coefficients.
We define the amplitude reflection coefficients of the main
Fourier component as rp,rs and the amplitude transmission
coefficients of the main Fourier component as tp,ts , where
p and s denote p-polarized and s-polarized states. We also
define the amplitude reflection coefficients of an arbitrary
plane wave as r ′

p,r ′
s and the amplitude transmission coefficients

of an arbitrary plane wave as t ′p,t ′s . To simplify the Fresnel
coefficients of an arbitrary wave component, we expand them
around the central incident angle θi in series of kxi

/k and kyi
/k

and retain the first-order term. Thus, r ′
p,s = rp,s + ∂rp,s

∂θi

kxi

k
,

t ′p,s = tp,s + ∂tp,s

∂θi

kxi

k
. Note that the reflected and transmitted

electric fields are still presented in Or -XrYrZr and Ot -XtYtZt

coordinates. Hence, we need to transform them back to
the or -xryrzr and ot -xtyt zt coordinates. The transformation
matrices are⎡

⎢⎣
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ẑr

⎤
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1
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1

⎤
⎥⎥⎦
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Ŷr

Ẑr

⎤
⎥⎦ ,

(5)⎡
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x̂t

ŷt

ẑt

⎤
⎥⎦ =

⎡
⎢⎢⎣

1
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1

⎤
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⎡
⎢⎣

X̂t

Ŷt
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⎥⎦ .

The detailed procedures are similar to Eq. (4). As mentioned
previously, we eliminate terms equal to or higher than (kxi

/k)2

and (kyi
/k)2.

The Fresnel coefficients only reveal the amplitudes of
reflected and transmitted vortex beams. To get the full
expressions of reflected and transmitted vortex beams, we still
need the phase-matching conditions. For an arbitrary plane-
wave component, the boundary conditions [38] require that
in the plane xoy, exp[iki · r] = exp[ikr · r] = exp[ikt · r],
where ki , kr , and kt are the wave vectors of the incident,
reflected, and transmitted beams, respectively. Therefore, the
phase-matching conditions are presented as follows:

kxr
= −kxi

, kyr
= kyi

, kzr
= kzi

;
(6)

kxt
= kxi
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= kyi
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= nkzi
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FIG. 2. (Color online) The helical wave fronts of incident,
reflected, and transmitted beams. Incident, reflected, and transmitted
vortex beams propagate along the zi,zr , and zt axes, respectively. We
choose l = 1 for the incident vortex beam. The incident, reflected,
and transmitted vortex beams have counterclockwise, clockwise, and
clockwise helical wave fronts, respectively.

Combining the Fresnel coefficients and Eqs. (2) and (4)–
(6), we get the electric fields of reflected and transmitted
beams:

Ẽr =
[
α

(
rp − ∂rp

∂θi

kxr

k

)
+ β(rs + rp) cot θi

kyr

k

]
ũr x̂r

+
[
β

(
rs − ∂rs

∂θi

kxr

k

)
− α(rs + rp) cot θi

kyr

k

]
ũr ŷr

−1

k

(
αrpkxr

+ βrskyr

)
ũr ẑr , (7)

Ẽt =
[
α

(
tp + η

∂tp

∂θi

kxt

k

)
+ β(tp − ηts) cot θi

kyt

k

]
ũt x̂t

+
[
β

(
ts + η

∂ts

∂θi

kxt

k

)
+ α(ηtp − ts) cot θi

kyt

k

]
ũt ŷt

− 1

nk

(
αtpkxt

+ βtskyt

)
ũt ẑt , (8)

where ũr,t = ũi(γr,t kxr,t
,kyr,t

), γr = −1,γt = η. Note that the
reflected and transmitted vortex beams experience extra phase
shifts [39] associated with diffraction while propagating,

which are exp[ikzr (1 − k2
xr

+k2
yr

2k2 )] and exp[inkzt (1 − k2
xt

+k2
yt

2n2k2 )],
respectively.

At this point, we feel obliged to make several comments.
First, the phase-matching conditions, as demonstrated in
Eq. (6), play a crucial role in this paper. For instance, kxr

=
−kxi

and kyr
= kyi

show that the wave front of the reflected
vortex beam is reversed (shown in Fig. 2), resulting in a
reversed orbital angular momentum −lh̄ per photon. kzt

= nkzi

shows that the transmitted beam in LHMs undergoes negative
phase velocity, resulting in a reversed helical wave front
(shown in Fig. 2). The reversed wave front in LHMs does
not lead to reversed orbital angular momentum, which is
explained in Sec. IV. The equation kxt

= kxi
/η means that
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the transmitted beam experiences a beam deformation in the
cross section. Second, in the vicinity of critical angle θC of TIR
and Brewster angle θB [|θi − θB,C | � θ0, where θ0 = 2/(kw0)
is the beam divergence angle], we should be cautious. For
example, in the vicinity of the critical angle (|θi − θC | � θ0),
the first derivatives of rp,s are extremely large [40], meaning
that Eqs. (7) and (8) should be revised to include terms higher
than (kxi

/k)2 and (kyi
/k)2. If a p-polarized vortex beam

impinges on the air-LHM interface with the incident angle
being in the vicinity of the Brewster angle (|θi − θB | � θ0),
the power of the reflected beam would be on the scale of θ2

0
(approximately 10−4 ∼ 10−6 for paraxial beams) compared
with that of the incident beam. This constitutes the reason why
the experiments [41,42] fail to collect reliable data concerning
the shift of p-polarized beams in the vicinity of the Brewster
angle. Third, although the beam shape and the shift of the
reflected vortex beam are already clear [18,43,44], the profile
of the transmitted vortex beam is far from clear-cut. We
formulate a rigorous transmitted field in the Appendix. By
referencing the Appendix, the beam shape of the transmitted
vortex beam is easily acquired.

III. SPATIAL AND ANGULAR SHIFTS

The paraxial wave equation is identical to the two-
dimensional Schrödinger equation with z replaced by t . Hence,
the operator formalism proposed by Stoler [45] has become a
powerful tool in physical optics [46–48]. In this section, we
will apply the operator formalism to calculate the centroid of
the reflected and transmitted beams. In momentum space, the
transverse position operator is i∂k⊥ . Therefore, the centroid of
the beams in a given plane z = const is readily given by

〈r⊥〉 = 〈GẼ|i∂k⊥|GẼ〉
〈GẼ|GẼ〉 , (9)

where r⊥ = xx̂ + yŷ, ∂k⊥ = ∂
∂kx

x̂ + ∂
∂ky

ŷ, and the propagation

operator G = exp[inkz − iz
2nk

(k2
x + k2

y)]. The above equation
can be easily formulated into the following one:

〈r⊥〉 = 〈Ẽ|i∂k⊥|Ẽ〉
〈Ẽ|Ẽ〉 + z

nk

〈Ẽ|k⊥|Ẽ〉
〈Ẽ|Ẽ〉 , (10)

where k is the wave number in vacuum and n is the refractive
index. The first and second terms in Eq. (10) are the spatial and
angular shifts, which are independent of and dependent on z,
respectively. From the second term in Eq. (10), we can easily
find that the negative refractive index n results in reversed
angular shifts in LHMs [33]. For the reflected and transmitted
beams, the GH and IF shifts can be expressed as 〈xτ 〉 = xτ +
zτθxτ

and 〈yτ 〉 = yτ + zτθyτ
, where τ = r,t .

We first calculate the spatial and angular shifts of reflected
beams. Substituting Eq. (7) into Eq. (10), we get the spatial
and angular shifts of reflected beams:

xr = χl cot θi(|rs |2 − |rp|2)

2k(|αrp|2 + |βrs |2)
+

|αrp|2 ∂φrp

∂θi
+ |βrs |2 ∂φrs

∂θi

k(|αrp|2 + |βrs |2)
,

(11)

yr =
−l

(|α|2|rp| ∂|rp |
∂θi

+ |β|2|rs | ∂|rs |
∂θi

)
k(|αrp|2 + |βrs |2)

− cot θi

2k(|αrp|2 + |βrs |2)

{
2χ |rs ||rp| sin

(
φrs

− φrp

)
+ σ

[|rp|2 + |rs |2 + 2|rp||rs | cos
(
φrs

− φrp

)]}
, (12)

θxr
=

−(|l| + 1)
(|α|2|rp| ∂|rp |

∂θi
+ |β|2|rs | ∂|rs |

∂θi

)
kzR(|αrp|2 + |βrs |2)

, (13)

θyr
= χ (|l| + 1) cot θi(|rp|2 − |rs |2)

2kzR(|αrp|2 + |βrs |2)
, (14)

where rp,s = |rp,s | exp[iφrp,s
], σ = 2Im[α∗β], χ =

2Re[α∗β], and zR = kw2
0/2 is the Rayleigh length.

When evaluating the energy term 〈Ẽ|Ẽ〉, we discard the
cross-polarization terms (terms proportional to kxr

/k or
kyr

/k) and zr -component electric field Ẽzr
since their average

energy density is proportional to θ2
0 . The first terms of

Eqs. (11) and (12) are vortex-induced spatial GH and IF
shifts. They were initially proposed by Bliokh et al. [18] and
Fedoseyev [43], respectively. Experimental demonstrations
were accomplished by Merano et al. [44] and Dasgupta
and Gupta [41] at the air-glass interface. Note that the
vortex-induced spatial GH shift only exists in mixed linearly
polarized beams (the polarization vector is oblique to the
incident plane), while the vortex-induced spatial IF shift
occurs in the arbitrary polarized state. The second term in Eq.
(11) coincides with the well-known Artmann’s formula [2].
The second term of Eq. (12) is the spin-dependent IF
shift [6,14,35]. In partial reflection and TIR, it turns into
the Bliokh’s formula [14] and Schilling’s formula [6],
respectively. Equations (13) and (14) are the angular shifts. In
general, they are proportional to θ2

0 . For p-polarized beams,
these angular shifts could be remarkably magnified through
Brewster resonance [17] (finally in the scale of θ0 near the
Brewster angle). In these cases, the cross-polarization terms
are not negligible when we calculate the energy intensity.

A careful assessment of Eqs. (11)–(14) indicates that, in
the partial reflection region, the spatial and angular GH and
IF shifts at loss-free air-LHM and air-RHM interfaces are
identical. In TIR, shifts are different, however. In this case,
the vortex-induced shifts and angular shifts are null. The
phase φrp,s

has the same magnitude but the opposite sign for
RHMs and LHMs, resulting in a negative GH shift [29,30]
in LHMs. The IF shifts for circularly polarized beams and
mixed linearly polarized beams are −σ cot θi[1 + cos(φrs

−
φrp

)]/k and −χ cot θi sin(φrs
− φrp

)/k, respectively. Here, we
theoretically predict that, owing to the phase reversion, the
IF shift in the total reflection region would also be reversed
at the air-LHM interface when the incident beam is in the
mixed linearly polarized state. This prediction is illustrated
in Fig. 3. With the refractive index nR = −nL = 1.515, we
choose incident θi = π/4 to avoid the deformation of reflected
beams [40]. Figures 3(a) and 3(b) show that the IF shift in TIR
remains unreversed when the incident beam is in the circularly
polarized state. Figures 3(c) and 3(d) suggest that the IF shift
in TIR is reversed when the incident beam is in the mixed
linearly polarized state.

053822-4
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FIG. 3. (Color online) The GH and IF shifts in TIR. The
parameters are incident angle θi = π/4, refractive index of LHM
nL = −1.515, refractive index of RHM nR = 1.515, vortex charge
l = 1, propagation distance z = zR , and beam waist w0 = 20λ,
where λ is the wavelength in vacuum. To make the shifts more
noticeable, we amplify them by 20 times. In (a) and (b), the incident
beam is left circularly polarized. The actual beam shifts of (a) are
〈xL

r 〉 = 1.129λ and 〈yL
r 〉 = −0.282λ. The actual beam shifts of (b)

are 〈xR
r 〉 = −1.129λ and 〈yR

r 〉 = −0.282λ. In (c) and (d), the incident
beam is mixed linearly polarized with χ = 1. The actual beam shifts
of (c) are 〈xL

r 〉 = 1.129λ and 〈yL
r 〉 = 0.101λ. The actual beam shifts

of (d) are 〈xR
r 〉 = −1.129λ and 〈yR

r 〉 = −0.101λ.

Now, we begin to study the shifts of transmitted vortex in
LHMs. We substitute Eq. (8) into Eq. (10) and get the spatial
and angular shifts of transmitted beams:

xt = χηl cot θi(|tp|2 − |ts |2)

2k(|αtp|2 + |βts |2)
−

η
(|αtp|2 ∂φtp

∂θi
+ |βts |2 ∂φts

∂θi

)
k(|αtp|2 + |βts |2)

,

(15)

yt =
−l

(|α|2|tp| ∂|tp |
∂θi

+ |β|2|ts | ∂|ts |
∂θi

)
k(|αtp|2 + |βts |2)

+ cot θi

2k(|αtp|2 + |βts |2)

{
2χη|ts ||tp| sin

(
φts − φtp

)
− σ

[|tp|2 + |ts |2 − 2η|tp||ts | cos
(
φts − φtp

)]}
, (16)

θxt
=

η(|l| + 1)
(|α|2|tp| ∂|tp |

∂θi
+ |β|2|ts | ∂|ts |

∂θi

)
kzRx

(|αtp|2 + |βts |2)
, (17)

θyt
= χ (|l| + 1) cot θi(|tp|2 − |ts |2)

2kzRy
(|αtp|2 + |βts |2)

, (18)

where tp,s = |tp,s | exp[iφtp,s
] and zRx

= nkη2w2
0/2 and zRy

=
nkw2

0/2 are the Rayleigh lengths along xt and yt axes,
respectively. These Rayleigh lengths of the transmitted vortex
beam in LHMs are both negative owing to negative phase
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FIG. 4. (Color online) The spatial GH and IF shifts of transmitted
vortex beams at air-LHM and air-RHM interfaces. The parameters
are incident angle θi = π/4, refractive index of LHM nL = −1.515,
refractive index of RHM nR = 1.515, polarization state σ = 1/2,
χ = 1/2, propagation distance z = zR , and beam waist w0 = 20λ.
To make the shifts more noticeable, we amplify them by a factor of
200. In (a) and (b), the vortex charge is l = 1. The actual beam shifts
of (a) and (b) are xL

t = 0.006λ and yL
t = 0.085λ. In (c) and (d),

the vortex charge is l = −1. The actual beam shifts of (c) and (d) are
xL

t = −0.006λ and yL
t = −0.033λ.

velocity [49]. The first terms in Eqs. (15) and (16) are
vortex-induced spatial GH and IF shifts. Until now, no
experiments have been reported on these vortex-induced GH
and IF shifts. The vortex-induced GH shift of the transmitted
beam occurs when the incident beam is in the mixed linearly
polarized state. The vortex-induced IF shift, however, exists
in any polarization state. The second term in Eq. (15) is the
phase-dependent GH shift. In lossy media, this part is not
negligible. The second term in Eq. (16) is the spin-dependent
IF shift. If the LHM is loss free, this term degenerates into
the Bliokh’s formula [14]. A special case is “total transmis-
sion,” where n = −1. In this case, tp = ts = 1, and we get
〈xt 〉 = 〈yt 〉 = 0.

We closely examine Eqs. (15)–(18) and find that spatial GH
and IF shifts of partial transmitted beams remain unreversed at
the air-LHM interface compared to the air-RHM interface.
The angular shifts, however, are reversed. Figure 4 shows
the spatial GH and IF shifts of transmitted beams at the
air-LHM and air-RHM interfaces. The beam profiles are drawn
according to Eqs. (A4), (A7), and (A8). We can easily find
that the transmitted beam is stretched along the xt axis,
which is a pure geometrical phenomenon. We assume that the
LHM is low loss or loss free. This assumption is reasonable
considering state-of-the-art micro- and nanomanufacturing
technology. For example, by incorporating gain media into the
fishnet structure [50] or exploiting the second-order magnetic
resonance of the fishnet structure [51], we can obtain a
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FIG. 5. (Color online) The spatial GH and IF shifts of transmitted
vortex beams at air-LHM and air-RHM interfaces. The parameters
are the refractive index of LHM nL = −1.515, the refractive index
of RHM nR = 1.515, polarization state σ = 1/2, and χ = 1/2. The
spatial shifts are presented on the scale of λ.

low-loss, three-dimensional, polarization-independent LHM
in the visible spectral range. Based on this assumption, the
phase-dependent term of the spatial GH shift vanishes, and
the spatial GH shift only depends on vortex. This argument is
confirmed by Figs. 4(a) and 4(c), where the vortex charge is
l = 1 and l = −1, respectively. Figures 4(a) and 4(c) indicate
that when the vortex charge is reversed, the spatial GH shift
is also reversed. The spatial IF shift is both vortex and spin
dependent. Therefore, when the vortex charge is flipped,
the absolute value of the spatial IF shift is altered [but not
flipped; see Figs. 4(a) and 4(c)]. In Fig. 5, we demonstrates
how the incident angle impacts the spatial GH and IF shifts.
When the incident angle increases, both GH and IF shifts
increase. The IF shift fails to converge when θi approaches
90◦. We note that in this case, the energy transmission
coefficient is zero. Hence, the spatial shifts of transmitted
beams are meaningless. Figure 5 also suggests that both spatial
GH and IF shifts can be enhanced by raising the vortex
charge.

We proceed to analyze the angular GH and IF shifts.
Figure 6 demonstrates how the incident angle affects the
angular shifts. Figures 6(a) and 6(b) show the angular GH shift
at the air-LHM and air-RHM interfaces, respectively. They
indicate that the angular GH shift is reversed at the air-LHM
interface. Figures 6(c) and 6(d) show the angular IF shift at the
air-LHM and air-RHM interfaces, respectively. They indicate
that the angular IF shift is reversed at the air-LHM interface.
For the angular IF shift at the air-LHM interface, there exists
a minimum point as incident angle increases from 0◦ to 90◦.
These angular shifts increase proportionally as we raise the
absolute value of vortex charge.
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FIG. 6. (Color online) The angular GH and IF shifts of transmitted
vortex beams at air-LHM and air-RHM interfaces. The parameters
are the refractive index of LHM nL = −1.515, the refractive index
of RHM nR = 1.515, polarization state σ = 1/2, and χ = 1/2. The
angular shifts are presented on the scale of θ2

0 .

IV. LINEAR AND ANGULAR MOMENTA

In this section, we start to analyze the linear and angular
momenta of reflected and transmitted vortex beams. In general,
the linear momentum density can be divided into the orbital
part and the spin part [52], which reads

p = Im[E∗ · (∇)E] + 1
2 Im[∇ × (E∗ × E)], (19)

where the first term is orbital momentum density po, the second
term is spin momentum density ps , and E is the electric field
in position space. In momentum space, we can write Eq. (19)
as

p = |GẼ|2k + (kx ŷ − ky x̂)(G∗Ẽ∗
xGẼy − GẼxG

∗Ẽ∗
y ). (20)

Therefore, the momentum per unit length is

P = 〈Ẽ|k|Ẽ〉 + 〈Ẽx |kx |Ẽy〉ŷ − 〈Ẽy |ky |Ẽx〉x̂, (21)

where the first term is orbital momentum PO and the second
and third terms are spin momentum PS . From the above
equation, we find that Pz ∝ nk, which means Pz in LHMs is
opposite to Pz in RHMs. For both paraxial and nonparaxial
beams, the spin part makes no contribution to the linear
momentum [48,53]: PS = 0.

In position space, the angular momentum density is denoted
by j = r × p. In momentum space, we replace r with the
operator i∂k⊥ + zẑ and get the angular momentum:

J = 〈GẼ|(i∂k⊥ + zẑ) × k|GẼ〉
+ [〈GẼy |i

(
∂kx

kx + ∂ky
ky

)|GẼx〉
−〈GẼx |i

(
∂kx

kx + ∂ky
ky

)|GẼy〉
]
ẑ, (22)
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where the first term is orbital angular momentum JO and the
second and third terms are spin angular momentum JS . Note
that the transverse spin angular momenta are null, which means
J S

x = J S
y = 0. We substitute the propagation operator G =

exp[inkz − iz
2nk

(k2
x + k2

y)] into Eq. (22) and get the orbital and
spin angular momenta [47,48,53]:

JO = 〈Ẽ|ink∂ky
|Ẽ〉x̂ + 〈Ẽ| − ink∂kx

|Ẽ〉ŷ
+〈Ẽ|i(ky∂kx

− kx∂ky

)|Ẽ〉ẑ, (23)

JS = [〈Ẽy |i
(
∂kx

kx + ∂ky
ky

)|Ẽx〉
−〈Ẽx |i

(
∂kx

kx + ∂ky
ky

)|Ẽy〉
]
ẑ. (24)

We find that the transverse orbital angular momenta JO
x and

JO
y are proportional to nk, which means they have opposite

directions in LHMs compared to their counterparts in RHMs.
Equations (23) and (24) also indicate that the z-component
orbital angular momentum JO

z and spin angular momentum
J S

z have the same directions in LHMs and RHMs. Comparing
Eq. (10) with Eqs. (21) and (23), we can easily get the following
relations:

x = − JO
y

P O
z

, y = JO
x

P O
z

; θx = P O
x

P O
z

, θy = P O
y

P O
z

,

(25)

where x and y are spatial shifts and θx and θy are
angular shifts.

We first offer a qualitative explanation of why spatial shifts
are unreversed in LHMs but angular shifts are reversed in
LHMs. Equation (25) indicates that spatial shifts have no direct
relation to the z-component orbital angular momentum JO

z

and spin angular momentum J S
z . They are dependent on the

transverse angular momenta JO
⊥ and the z-component linear

momentum P O
z [47]. Since the directions of JO

⊥ and P O
z

are both reversed in LHMs, the spatial shifts r⊥ remain
unreversed as a result. The angular shifts, however, solely
depend on linear momentum. The reason why angular shifts
are reversed in LHMs is that the transverse linear momentum
PO

⊥ is unreversed but the z-component linear momentum P O
z

is reversed.
From now on, we will perform a quantitative analysis of

the linear and angular momenta and confirm the momentum
conservation laws. Therefore, we assume that the LHM is
loss free and the amplitude reflection coefficients rp,s and
amplitude transmission coefficients tp,s are real variables. By
substituting Eqs. (2), (7), and (8) into Eq. (21), we obtain
the linear momenta of the incident, reflected, and transmitted
beams:

Pi = kẑi ,

Pr = −(|l| + 1)

2zR

∂Qr

∂θi

x̂r + χ (|l| + 1)

2zR

(
r2
p − r2

s

)
(cot θi)ŷr

+ kQr ẑr ,

Pt = (|l| + 1)

2η2zR

∂T

∂θi

x̂t + χ (|l| + 1)

2ηzR

(
t2
p − t2

s

)
(cot θi)ŷt

+ nkT

η
ẑt , (26)

where Qr = |αrp|2 + |βrs |2 is the energy reflection coefficient
and T = |αtp|2 + |βts |2. The energy transmission coefficient
is Qt = |n|ηT . Note that the linear momenta of incident, re-
flected, and transmitted beams are presented in three different
coordinate systems oi,r,t -xi,r,t yi,r,t zi,r,t . We can verify that the
linear momenta along the x and y axes satisfy the conservation
law [19,20]

Pzi
sin θi = Pzr

sin θi − Pxr
cos θi

+ |n|η2
(
Pxt

cos θt − Pzt
sin θt

)
, (27)

Pyi
= Pyr

+ |n|η2Pyt
= 0.

For the incident beam, there is no transverse linear mo-
mentum. To satisfy the linear momentum conservation law,
transverse linear momenta Pxr

, Pyr
, Pxt

, Pyt
are produced.

These transverse linear momenta are responsible for angular
shifts.

We proceed to analyze the angular momenta. By substi-
tuting Eqs. (2), (7), and (8) into Eqs. (23) and (24), we get
the angular momenta of incident, reflected, and transmitted
beams:

Ji = (l + σ )ẑi ,

Jr =
[

− l

2

∂Qr

∂θi

− σ

2
(rp + rs)

2 cot θi

]
x̂r

+ χl

2

(
r2
p − r2

s

)
(cot θi)ŷr + (−lQr + σrprs)ẑr , (28)

Jt =
[

− nl

2η

∂T

∂θi

− nσ

2η

(
t2
p + t2

s − 2ηtpts
)

cot θi

]
x̂t

+ nχl

2

(
t2
s − t2

p

)
(cot θi)ŷt +

[
l(1 + η2)T

2η2
+ σ tpts

η

]
ẑt ,

where the spin angular momenta of incident, reflected, and
transmitted beams are σ , σrprs , and σ tptsη

−1, respectively.
For each individual photon, the angular momenta of the
incident, reflected, and transmitted beams are (l + σ )h̄, (−l +
σrprs/Qr )h̄, and [l(η + η−1)/2 + σ tpts/T ]h̄, respectively.
Though the orbital and spin momenta of the reflected photon
and transmitted photon depend on the absolute value of the
refractive index, they are independent of the sign of the
refractive index. The z-component angular momenta satisfy
the conservation law

Jzi
cos θi = −Jzr

cos θi − Jxr
sin θi

+ |n|η2
(
Jxt

sin θt + Jzt
cos θt

)
. (29)

From Eqs. (28) and (29), we can infer that there are two types of
momentum conversions. The first type is spin-orbit conversion.
The z-component spin angular momentum of incident beam
σ cos θi converts into transverse angular momenta JO

xr
and

JO
xt

, resulting in spin-dependent IF shifts. The second type
is orbit-orbit conversion. The z-component orbital angular
momentum of incident beam l cos θi converts into transverse
angular momenta JO

xr
and JO

xt
, resulting in vortex-induced

IF shifts. The vortex-induced GH shifts, though related to
JO

yr,t
, are not governed by the angular momentum conservation

law.
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In TIR, the linear and angular momenta of incident and
reflected beams are

Pi = kẑi , Pr = kẑr ; Ji = (l + σ )ẑi ,

Jr = − cot θi

[
σ + σ cos

(
φrs

− φrp

) + χ sin
(
φrs

− φrp

)]
x̂r

−
(

|α|2 ∂φrp

∂θi

+ |β|2 ∂φrs

∂θi

)
ŷr

+ [−l + σ cos
(
φrs

− φrp

) + χ sin
(
φrs

− φrp

)]
ẑr .

(30)

We can easily verify that they fulfill the conservation law

Pzi
sin θi = Pzr

sin θi,
(31)

Jzi
cos θi = −Jzr

cos θi − Jxr
sin θi .

At this point, we would like to add three comments. First,
it is worth noting that we adopted the Minkowski momentum
in Eqs. (27) and (29) in this paper. Although the Abraham-
Minkowski dilemma has been solved [54–56], why Minkowski
momentum is a proper form in this study, we believe, is an
interesting problem worth further investigation. Second, two
important papers [34,57] were published while our paper was
being peer reviewed. One paper [34] adopted the real-space ap-
proach and revealed the role of longitudinal field Ez in IF shifts
for the first time. We think additional analysis of the connection
between longitudinal field and spin-orbit conversion could also
be carried out in the momentum space. The other paper [57]
unambiguously separated the effects of beam shape and other
parameters (such as polarization, the property of the interface)
on GH and IF shifts, which have long escaped researchers’ at-
tention over the past years. But the discussions are confined to
a reflected vortex beam. Generalization to a transmitted vortex
beam, we think, remains quite challenging. Third, owing to the
close similarity between light beams and matter waves, scien-
tists have found that electron beams can also possess orbital
angular momentum by passing through a spiral phase plate [58]
or nanofabricated diffraction hologram [59]. In this regard, the
vortex electron beam might also experience vortex-induced
shifts in a potential well [60,61]. By properly designing the
potential well and taking advantage of quantum weak measure-
ments or other measuring technology, we may even observe the
vortex-induced beam shifts of an electron beam in experiment.

V. CONCLUSIONS

In conclusion, we have derived the reflected and transmitted
fields of a vortex beam at the air-LHM interface via the angular
spectrum method. By using this method, we have managed to
get the formulas of spatial GH shifts, spatial IF shifts, angular
GH shifts, and angular IF shifts. These formulas suggest that
the spatial GH and IF shifts remain unreversed at the air-LHM
interface compared with the air-RHM interface. By raising the
vortex charge, the spatial shifts can be remarkably enhanced.
In TIR, apart from the reversed GH shift, we predict that the
IF shift would also be reversed when the incident beam is in a
mixed linearly polarized state. The physical interpretation of
these interesting phenomena lies in the reversed transverse
angular momenta and reversed linear momenta. Although
the spatial shifts have no direct relation to the z-component
angular momentum (the z-component angular momentum is

not reversed in LHMs), they are actually the outcomes of spin-
orbit and orbit-orbit conversion. Therefore, the unreversed
spatial shifts are indirect evidence of unreversed angular
momentum of LHMs. As for angular shifts, they are reversed
at the air-LHM interface and can be amplified by enhancing
the vortex charge. This is direct evidence of the reversed linear
momentum of LHMs. In addition to this qualitative analysis,
we also offer concrete expressions of the transverse linear and
angular momenta, which explicitly reveal the physical picture
of spin-orbit and orbit-orbit conversions. These momentum
conversions are governed by the z-component angular mo-
mentum conservation law.
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APPENDIX: ELECTRIC FIELDS IN POSITION SPACE

In this Appendix, we will give the full analytical expressions
of the electric fields of reflected and transmitted beams. The
electric fields in position space are given by inverse Fourier
transformation,

u(x,y,z) = 1

2π

∫
dkxdkyũ(kx,ky) exp[i(kxx + kyy)]

× exp

[
inkz − iz

2nk

(
k2
x + k2

y

)]
. (A1)

We first apply Eq. (A1) to calculate the reflected fields.
Substituting Eq. (7) into Eq. (A1), we get the reflected beams:

Er =
{
αrp + i

k

[
α

∂rp

∂θi

∂

∂xr

− β(rs + rp) cot θi

∂

∂yr

]}
ur x̂r

+
{
βrs + i

k

[
β

∂rs

∂θi

∂

∂xr

+ α(rs + rp) cot θi

∂

∂yr

]}
ur ŷr

+ i

k

(
αrp

∂

∂xr

+ βrs

∂

∂yr

)
ur ẑr , (A2)

ur = Clkw0

2(zR + izr )

[
kw0√

2

xr − isgn[l]yr

zR + izr

]|l|

× exp

[
− k

(
x2

r + y2
r

)
2(zR + izr )

+ ikzr

]
. (A3)

Note that the orbital angular momentum of the reflected beam
is −lh̄ per photon. Equations (A2) and (A3) are the full
expressions of the reflected electric fields.

We proceed to calculate the transmitted electric fields.
Substituting Eq. (8) into Eq. (A1), we get the transmitted fields:

Et =
{
αtp − i

k

[
αη

∂tp

∂θi

∂

∂xt

+ β(tp − ηts) cot θi

∂

∂yt

]}
ut x̂t

+
{
βts − i

k

[
βη

∂ts

∂θi

∂

∂xt

+ α(ηtp − ts) cot θi

∂

∂yt

]}
ut ŷt

+ i

nk

(
αtp

∂

∂xt

+ βts
∂

∂yt

)
ut ẑt . (A4)
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The formula for ut is rather lengthy. If |l| is an even number, then the formula is

ut = Cl|n|kw0

2π

1√(
zRx

+ izt

)(
zRy

+ izt

)
[

w0√
2

]|l|
exp

[
−nk

2

(
x2

t

zRx
+ izt

+ y2
t

zRy
+ izt

)
+ inkzt

]

×
{ |l|∑

m=0,2,4,...

Cm
|l|

[−iη√
a

]|l|−m [
sgn[l]√

c

]m

exp[−ab2 − cd2]�

(
1 + |l| − m

2

)
�

(
1 + m

2

)

×1F1

(
1 + |l| − m

2
,
1

2
,ab2

)
1F1

(
1 + m

2
,
1

2
,cd2

)

+
|l|−1∑

m=1,3,5,...

Cm
|l|

[−iη√
a

]|l|−m [
sgn[l]√

c

]m

4
√

acbd exp[−ab2 − cd2]�

(
1 + |l| − m

2

)
�

(
1 + m

2

)

×1F1

(
1 + |l| − m

2
,
3

2
,ab2

)
1F1

(
1 + m

2
,
3

2
,cd2

)}
; (A5)

if |l| is an odd number, then the formula is

ut = Cl|n|kw0

2π

1√(
zRx

+ izt

)(
zRy

+ izt

)
[

w0√
2

]|l|
exp

[
−nk

2

(
x2

t

zRx
+ izt

+ y2
t

zRy
+ izt

)
+ inkzt

]

×
{ |l|−1∑

m=0,2,4,...

Cm
|l|

[−iη√
a

]|l|−m [
sgn[l]√

c

]m

2
√

ab exp[−ab2 − cd2]�

(
1 + |l| − m

2

)
�

(
1 + m

2

)
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2
,
3

2
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)
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(
1 + m

2
,
1

2
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)

+
|l|∑

m=1,3,5,...

Cm
|l|

[−iη√
a

]|l|−m [
sgn[l]√

c

]m

2
√

cd exp[−ab2 − cd2]�

(
1 + |l| − m

2

)
�

(
1 + m

2

)

×1F1

(
1 + |l| − m

2
,
1

2
,ab2

)
1F1

(
1 + m

2
,
3

2
,cd2

)}
, (A6)

where Cm
|l| is the binomial coefficient, � is the Gamma function, 1F1 is the Kummer confluent hypergeometric function,

a = η2w2
0/4 + izt/2nk, b = ixt/2a, c = w2

0/4 + izt/2nk, and d = iyt/2c. Equations (A4)–(A6) fully describe the transmitted
vortex beams. Although Eqs. (A5) and (A6) are cumbersome, we still manage to get the electric fields for several low-order
vortex beams:

ul=1
t ∝

(
ηxt

zRx
+ izt

+ iyt

zRy
+ izt

)
, (A7)

ul=−1
t ∝

(
ηxt

zRx
+ izt

− iyt

zRy
+ izt

)
, (A8)

ul=2
t ∝

[ (
ηxt

zRx
+ izt

+ iyt

zRy
+ izt

)2

+ izt (1 − η2)

nk
(
zRx

+ izt

)(
zRy

+ izt

)]
, (A9)

ul=−2
t ∝

[ (
ηxt

zRx
+ izt

− iyt

zRy
+ izt

)2

+ izt (1 − η2)

nk
(
zRx

+ izt

)(
zRy

+ izt

)]
. (A10)
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